Nothing Special   »   [go: up one dir, main page]

JPS60131969A - Chemical vapor growth deposition device - Google Patents

Chemical vapor growth deposition device

Info

Publication number
JPS60131969A
JPS60131969A JP23954083A JP23954083A JPS60131969A JP S60131969 A JPS60131969 A JP S60131969A JP 23954083 A JP23954083 A JP 23954083A JP 23954083 A JP23954083 A JP 23954083A JP S60131969 A JPS60131969 A JP S60131969A
Authority
JP
Japan
Prior art keywords
substrate
processed
reaction chamber
heater
chemical vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23954083A
Other languages
Japanese (ja)
Inventor
Toshihiko Fukuyama
福山 敏彦
Tsuguaki Hirata
平田 継明
Fumiya Matsui
松井 文哉
Kazuo Maeda
和夫 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Japan Inc
Original Assignee
Applied Materials Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Japan Inc filed Critical Applied Materials Japan Inc
Priority to JP23954083A priority Critical patent/JPS60131969A/en
Publication of JPS60131969A publication Critical patent/JPS60131969A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To reduce the size of the titled device and to deposit and form uniformly a required film on the surface of a substrate with good productivity by forming a heating body of a ceramic heater in common use as a supporting base for supporting a substrate to be treated. CONSTITUTION:A resistor is printed on a sheet consisting of alumina, etc. and an insulating protective layer is coated thereon and is integrally sintered to form a ceramic heater 30. A substrate 31 to be treated is held on the heater 30. A reactive gas is introduced from a reactive gas source 32 into a reaction chamber 36. Electricity is fed to the heater 30 by an electrode lead-out wire 40 provided through the spacer. The resistor heats directly the supporting part consisting of the ceramics and the substrate 31 by the transferred heat and therefore the heat response is fast and shorter time is required for heating up to the required temp. The treating cycle is thus reduced.

Description

【発明の詳細な説明】 本発明は化学気相成長処理装置に関し、一層詳細には、
シリコン基板等の被処理基板を必要処理温度まで迅速に
加熱昇温させ、かつ被処理基板表面を均一に加熱して、
生産性良く被処理基板表面に所望の皮膜を均一に被着形
成することのできる化学気相成長処理装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a chemical vapor deposition processing apparatus, and more particularly, to
It quickly heats the substrate to be processed, such as a silicon substrate, to the required processing temperature, and evenly heats the surface of the substrate to be processed.
The present invention relates to a chemical vapor deposition processing apparatus capable of uniformly depositing a desired film on the surface of a substrate to be processed with high productivity.

化学気相成長処理装置は半導体基板またはセラミック基
板等の被処理基板上に二酸化シリコン(Si0z)膜、
窒化シリコン(SiJN+ )膜、リンシリケートガラ
ス(PSG )膜、多結晶シリコン膜等を被着形成処理
する目的で提供される。
Chemical vapor deposition processing equipment deposits a silicon dioxide (Si0z) film on a substrate to be processed such as a semiconductor substrate or a ceramic substrate.
It is provided for the purpose of depositing and forming silicon nitride (SiJN+) films, phosphosilicate glass (PSG) films, polycrystalline silicon films, etc.

これら装置においては一層の生産効率の向上と、被着形
成される皮膜が精度良く均一厚さに形成されることが要
望される。
In these devices, it is desired that production efficiency be further improved and that the deposited film be formed to have a uniform thickness with high accuracy.

このような気相成長処理に使用される化学気相成長用装
置は従′来より、例えば第1図に示す縦型構造および第
2図に示す横型構造のものがある。
Chemical vapor deposition apparatuses used in such vapor phase growth processes have conventionally been of the vertical type shown in FIG. 1 and the horizontal type shown in FIG. 2, for example.

これらの装置においては、反応室11.21内に目的、
の皮膜被着処理のための原料ガス、例えばモノシラン(
SII14)、ホスフィン(PHa ) 、酸素(0z
)等を反応ガス導入管12.22より導入し、これを排
気管13.23により排気しながら反応室を加工のため
の適当な温度に保っている。そしてこの反応室11.2
1内に処理すべき半導体基板またはセラミック基板1’
4.24を支持台15゜25に載置して配設しておくこ
とにより、該被処理基板の表面に例えばシリコン化合物
膜、多結晶シリコン膜等の皮膜の被着形成処理をするこ
とができる。
In these devices, within the reaction chamber 11.21 the objective,
Raw material gas for film deposition treatment, such as monosilane (
SII14), phosphine (PHa), oxygen (0z
), etc. are introduced through a reaction gas introduction pipe 12.22, and the reaction chamber is maintained at an appropriate temperature for processing while being exhausted through an exhaust pipe 13.23. And this reaction chamber 11.2
1. Semiconductor or ceramic substrate 1' to be processed within 1
By placing 4.24 on a support stand 15°25, it is possible to form a film such as a silicon compound film or a polycrystalline silicon film on the surface of the substrate to be processed. can.

なお第1図において、10はヒーターカバー、16は加
熱体(ヒータ)、17は反応ガス源、18は冷却板、1
9はガス流バッファであり、また第2図において、20
は圧力検知器、26は加熱体、27は反応ガス源、28
は石英ガラス管である。
In FIG. 1, 10 is a heater cover, 16 is a heating element (heater), 17 is a reactant gas source, 18 is a cooling plate, 1
9 is a gas flow buffer, and in FIG.
is a pressure detector, 26 is a heating element, 27 is a reactant gas source, 28
is a quartz glass tube.

上記第1図に示す縦型のものにあっては、主として加熱
体(ヒータ)16からの熱輻射により支持台15が加熱
され、その支持台15からの熱伝導により、被処理基板
14が所望温度に加熱される。そして被処理基板14が
支持台15に密着していることから被処理基板14の温
度の均一制御が容易であるという利点がある。
In the case of the vertical type shown in FIG. heated to temperature. Since the substrate 14 to be processed is in close contact with the support stand 15, there is an advantage that the temperature of the substrate 14 to be processed can be easily controlled uniformly.

しかしながら上記の場合、被処理基板14は支持台15
を介して加熱されるため、被処理基板14表面で所望温
度を得ようとすれば、加熱体16自体の温度は該所望温
度よりも100℃〜200℃高く設定せねばならず、し
かも輻射熱のみを利用するものであるから効率的でない
。また熱応答が遅いため、被処理基板14を設置してか
ら所望温度に回復するのに10〜20分程度を程度、生
産性が著しく劣るという難点がある。さらにまた、被処
理基板14は当然に支持台15の一面側にしか設置でき
ず、両面に設置することは不可能であり、処理量的にも
生産性が劣る。さらには、被処理基板14が大口径化さ
れるにつれ、加熱体16を大型化せねばならず、加熱体
16の高価格化をまぬがれ得ない。また加熱体16が反
応室11内に設置されるときは、例えばタンタル線等か
ら成る加熱体16自体が、半導体装置の製造で最もきら
うアルカリ金属汚染やピンホールの原因となる粒子汚染
の発生源となる難点がある。
However, in the above case, the substrate 14 to be processed is
Therefore, in order to obtain the desired temperature on the surface of the substrate 14 to be processed, the temperature of the heating element 16 itself must be set 100°C to 200°C higher than the desired temperature, and only radiant heat is used. It is not efficient because it uses Further, since the thermal response is slow, it takes about 10 to 20 minutes to recover the desired temperature after the substrate 14 to be processed is installed, and there is a drawback that productivity is extremely poor. Furthermore, the substrate to be processed 14 can naturally be installed only on one side of the support stand 15, and cannot be installed on both sides, resulting in poor productivity in terms of throughput. Furthermore, as the diameter of the substrate 14 to be processed increases, the size of the heating element 16 must be increased, which inevitably increases the price of the heating element 16. Furthermore, when the heating element 16 is installed in the reaction chamber 11, the heating element 16 itself, which is made of tantalum wire or the like, is a source of alkali metal contamination and particle contamination that causes pinholes, which are most hated in the manufacture of semiconductor devices. There is a drawback.

上記第2図に示される従来例における加熱体26は、高
周波誘導加熱や抵抗加熱方式が採用しうる。
The heating body 26 in the conventional example shown in FIG. 2 may employ a high frequency induction heating method or a resistance heating method.

しかしながら高周波誘導加熱方式は、発振機が大型かつ
高価なこと、操作に危険が伴うこと、冷却水を多量に要
するなど種々の難点がある。また抵抗加熱方式も装置が
大型化する難点に加えて、石英ガラス管28を被処理基
板24より10〜20℃程高温に加熱するから、被処理
基板24より石英ガラス管28の方により多(皮膜が形
成されてしまうという難点がある。
However, the high-frequency induction heating method has various drawbacks, such as the oscillator being large and expensive, the operation being dangerous, and the need for a large amount of cooling water. In addition, the resistance heating method also has the disadvantage of increasing the size of the apparatus, and since the quartz glass tube 28 is heated to a temperature approximately 10 to 20 degrees Celsius higher than the substrate 24 to be processed, the quartz glass tube 28 is heated to a higher temperature than the substrate 24 to be processed. The problem is that a film is formed.

本発明は上記様々の難点を解消すべくなされ、その目的
とするところは、装置の小型化が図れると共に、生産性
良く被処理基板表面に所望の皮膜を均一に被着形成する
ことのできる化学気相成長処理装置を提供するにあり、
その特徴とするところは、反応ガス等を加熱手段を備え
た反応室内に導入し、反応室内に収容した被処理基板に
所望物質の皮膜を被着形成する化学気相成長処理装置に
おいて、前記加熱手段が、セラミック等から成る支持部
の表層もしくは表層近傍に抵抗体を敷設した、前記被処
理基板を密着支持する支持台兼用の加熱体であるところ
にある。
The present invention has been made in order to solve the various difficulties mentioned above, and its purpose is to use a chemical method that can reduce the size of the apparatus and that can uniformly form a desired film on the surface of a substrate to be processed with high productivity. To provide vapor phase growth processing equipment,
The feature is that in a chemical vapor deposition processing apparatus that introduces a reaction gas or the like into a reaction chamber equipped with a heating means and forms a film of a desired substance on a substrate to be processed housed in the reaction chamber, the heating The means is a heating body that also serves as a support stand that closely supports the substrate to be processed, in which a resistor is laid on the surface layer or near the surface layer of a support portion made of ceramic or the like.

以下添付図面に基づき本発明の好適な実施例を詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below based on the accompanying drawings.

第3図に本発明に係る化学気相成長処理装置の概略の構
成を示す。
FIG. 3 shows a schematic configuration of a chemical vapor deposition processing apparatus according to the present invention.

図において30は本発明の主要構成となるセラミックヒ
ータである。セラミックヒータ30はアルミナのシート
に抵抗体をプリントし、その上に絶縁保護層をコーティ
ングして、アルミナシート、抵抗体およびアルミナ保護
層を同時に高温で一体焼結されて成る。このセラミック
ヒータ30上に被処理基板31が保持される。32は反
応ガス源であり、この反応ガス源32からの反応ガスは
、バルブ33を介してガス導入管34を経由してメソシ
ュ状フィルタ35から反応室36内に導入される。未反
応ガスおよび未反応生成物は排気パイプ37から排出さ
れる。なお38および39は金メッキされた反射板であ
り、セラミックヒータ30の背後に配置され、輻射熱の
損失を防止している。
In the figure, 30 is a ceramic heater which is the main component of the present invention. The ceramic heater 30 is made by printing a resistor on an alumina sheet, coating it with an insulating protective layer, and simultaneously sintering the alumina sheet, resistor, and alumina protective layer together at high temperature. A substrate 31 to be processed is held on this ceramic heater 30 . Reference numeral 32 denotes a reactant gas source, and the reactant gas from the reactant gas source 32 is introduced into the reaction chamber 36 through a mesoche filter 35 via a valve 33 and a gas introduction pipe 34 . Unreacted gases and unreacted products are exhausted from exhaust pipe 37. Note that reference numerals 38 and 39 are gold-plated reflecting plates, which are placed behind the ceramic heater 30 to prevent loss of radiant heat.

この反射板38.39と前記のセラミックヒータ30と
はスペーサ41を介して所定の間隔をおいて固定配置さ
れ、これによってセラベックヒータ30は反応室36内
空間の所定位置に配置されているものである。セラミッ
クヒータ30への給電は、上記のスペーサ41中を貫通
して設けた電極取り出し線40によってなされる。
The reflector plates 38 and 39 and the ceramic heater 30 are fixedly arranged at a predetermined distance via a spacer 41, so that the Ceravec heater 30 is arranged at a predetermined position within the reaction chamber 36. It is. Power is supplied to the ceramic heater 30 by an electrode lead wire 40 provided through the spacer 41 described above.

上記の化学気相成長処理装置を用いて、被処理基板31
表面にリンシリケートガラス(PSG )を被着形成さ
せた実施例を以下に示す。
Using the above chemical vapor deposition processing apparatus, the substrate to be processed 31
An example in which phosphosilicate glass (PSG) was deposited on the surface is shown below.

被処理基板としてシリコン基板を用い、セラミックヒー
タ30上に保持する。セラミックヒータ30に給電して
シリコン基板を420℃に加熱する。
A silicon substrate is used as the substrate to be processed and is held on a ceramic heater 30. Power is supplied to the ceramic heater 30 to heat the silicon substrate to 420°C.

モノシラン(N2ガスをベースとした4%SiHい流量
200cc/min ) 、ホスフィン(Nzガスをベ
ースとした0、1%PHj、流量600cc/min 
) 、酸素(02、流量200cc /win’ )を
窒素<N!、流量36/win)をキ中リアガスとして
反応ガス源32から、バルブ33を介して、ガス導入管
34、メツシュ状フィルタ35を経由□して反応室36
内に導入したところ、反応時間10分間でシリコン基板
表面にリンシリケートガラス膜が3900人の均一厚さ
で形成された。
Monosilane (4% SiH based on N2 gas, flow rate 200cc/min), phosphine (0,1% PHj based on Nz gas, flow rate 600cc/min)
), oxygen (02, flow rate 200cc/win') and nitrogen <N! , flow rate 36/win) is used as a rear gas from the reaction gas source 32, via the valve 33, the gas introduction pipe 34, and the mesh filter 35 to the reaction chamber 36.
When introduced into a phosphorus silicate glass film, a phosphosilicate glass film with a uniform thickness of 3900 nm was formed on the surface of a silicon substrate within a reaction time of 10 minutes.

本発明においては、加熱体を、被処理基板31を支持す
る支持台兼用のセラミックヒータに形成したことによっ
て、抵抗体がセラミックか6成る支持部および被処理基
板31を直接伝達熱で加温することとなるから、熱応答
が速く、支持部および被処理基板31の必要温度までの
昇温時間が、従来輻射熱で加温する場合には前記のごと
<10〜20分も要していたのが、2〜3分程度の短時
間で済み、処理サイクルが短縮され、それだけ生産能率
が向上する。また被処理基板31がセラミックヒータ3
0に密着することから被処理基板31が均一温度に加温
され、得られる皮膜が理想的に均一厚さとなる。もちろ
ん支持部たるセラミックの昇温速度は、抵抗体自体の昇
温速度よりも若干遅いが、最終的には抵抗体の温度とほ
とんど一致する温度まで昇温するので、温度制御が電流
制御のみでも容易かつ正確に行える利点を有する。また
抵抗体の熱エネルギーが、支持部たるセラミックおよび
被処理基板31を加温するのにのみ有効に利用されるか
ら、輻射熱として損失される度合は少なく、効率の良い
加熱が行える。そして支持部たるセラミックから失われ
る輻射熱は反射板38゜39によって有効に回収され、
したがってまた反応室36の壁その他の部材をほとんど
加温することがないから、これら壁等には皮膜が化学気
相成長するのを阻止できる。
In the present invention, by forming the heating body as a ceramic heater that also serves as a support stand that supports the substrate 31 to be processed, the supporting portion including the resistor made of ceramic 6 and the substrate 31 to be processed can be heated by direct transfer heat. Therefore, the thermal response is fast, and the time required to raise the temperature of the supporting part and the substrate to be processed 31 to the required temperature is less than 10 to 20 minutes as described above when conventionally heated with radiant heat. However, it only takes a short time of about 2 to 3 minutes, which shortens the processing cycle and improves production efficiency accordingly. Further, the substrate to be processed 31 is connected to the ceramic heater 3
0, the substrate 31 to be processed is heated to a uniform temperature, and the resulting film has an ideally uniform thickness. Of course, the heating rate of the ceramic that is the supporting part is slightly slower than that of the resistor itself, but eventually it will rise to a temperature that almost matches the temperature of the resistor, so even if temperature control is only current control. It has the advantage of being easy and accurate. Further, since the thermal energy of the resistor is effectively used only for heating the ceramic serving as the support portion and the substrate 31 to be processed, the degree of loss as radiant heat is small, and efficient heating can be performed. The radiant heat lost from the ceramic support is effectively recovered by the reflective plates 38 and 39.
Therefore, since the walls and other members of the reaction chamber 36 are hardly heated, chemical vapor deposition of a film on these walls can be prevented.

さらにまた本発明においては、セラミックヒータ30を
反応室36内空間に適宜部材によって支持することによ
って、セラミックヒータ30の裏面側にも被処理基板3
1を保持して皮膜を化学気相成長させることが可能とな
る。この場合には必要に応じてセラミックの両面に抵抗
体を設けることができる。なお支持部たるセラミックは
厚さ約51−程度の薄板に形成しうるから装置の小型化
が図れる。また上記の実施例においては加熱体の支持部
としてアルミナを使用する場合について説明したが、本
発明はこれに限られず、硬質ガラス、二酸化シリコン、
窒化シリコン等が有効に使用しうる。支持部の材質は処
理条件によって適宜選択される。
Furthermore, in the present invention, by supporting the ceramic heater 30 in the reaction chamber 36 interior space with appropriate members, the substrate to be processed can also be placed on the back side of the ceramic heater 30.
1 can be maintained and a film can be grown by chemical vapor deposition. In this case, resistors can be provided on both sides of the ceramic, if necessary. Note that the ceramic supporting portion can be formed into a thin plate with a thickness of about 51 mm, so that the device can be miniaturized. Further, in the above embodiment, a case was explained in which alumina was used as the support part of the heating body, but the present invention is not limited to this, and the present invention is not limited to this.
Silicon nitride or the like can be effectively used. The material of the support portion is appropriately selected depending on the processing conditions.

第4図は他の実施例を示す。FIG. 4 shows another embodiment.

図において52は反応室であり、反応ガス源42とバル
ブ43を介して連結されている。44は排気バルブ、4
5は圧力検知器である。
In the figure, 52 is a reaction chamber, which is connected to the reaction gas source 42 via a valve 43. 44 is an exhaust valve, 4
5 is a pressure sensor.

本実施例においては、反応室52底部に配置した支持板
46上に、前記と同様に構成したセラミックヒータ47
を、多数枚所定間隔をおいて平行に起立して固設してい
る。被処理基板48はこのセラミックヒータ47の両面
に保持する。この場合において、セラミックヒータ47
の両面を傾斜面に形成し、かつ該傾斜面上に被処理基板
48の下縁を支持する突ピン(図示せず)等を設けてお
くことによって、被処理基板48を傾斜面上に立て掛け
て保持しうる。
In this embodiment, a ceramic heater 47 configured in the same manner as described above is mounted on a support plate 46 disposed at the bottom of the reaction chamber 52.
A large number of these are erected and fixed in parallel at predetermined intervals. The substrate to be processed 48 is held on both sides of this ceramic heater 47 . In this case, the ceramic heater 47
The substrate to be processed 48 can be propped up on the inclined surface by forming both sides of the inclined surface and by providing a protruding pin (not shown) or the like for supporting the lower edge of the substrate to be processed 48 on the inclined surface. It can be maintained.

セラミックヒータ47への給電は、支持板46中を貫通
して引き出した電極取り出し線49が電源50に接続さ
れて行われる。なお51は金メ・ツキされた反射板であ
る。
Power is supplied to the ceramic heater 47 by connecting an electrode lead wire 49 extending through the support plate 46 to a power source 50 . Note that 51 is a gold-plated reflective plate.

本実施例においても前記の実施例と同様の作用効果を奏
することは明白であろう。
It will be obvious that this embodiment also has the same effects as the above-mentioned embodiments.

以下に、上記装置により、被処理基板48の表面に、多
結晶シリコン層を被着形成された実施例を示す。
An example in which a polycrystalline silicon layer is deposited and formed on the surface of a substrate to be processed 48 using the above-mentioned apparatus will be shown below.

被処理基板としてシリコン基板を用いて、セラミックヒ
ータ47の正面に保持し、加熱して700℃に昇温させ
る。次に排気バルブ44を開け、排気装置(図示せず)
によって排気しながら、バルブ43を開けて反応室52
内に反応ガス源42から20%のモノシラン(,5it
l+)を含む窒素ガスを導入し、反応室52内圧力を0
.57orrに保って、20分間気相成長処理を行った
ところ、シリコン基板表面に4000人の均一な厚さを
有する多結晶シリコン膜が得られた。なお反射板51と
反応室52との間を水冷することによって、反応室52
内壁に多結晶シリコンがほとんど被着形成されなかった
A silicon substrate is used as the substrate to be processed, held in front of the ceramic heater 47, and heated to 700°C. Next, open the exhaust valve 44 and use the exhaust device (not shown).
While evacuating the reaction chamber 52 by opening the valve 43,
20% monosilane (,5 it) from the reactant gas source 42
1+) is introduced, and the pressure inside the reaction chamber 52 is reduced to 0.
.. When a vapor phase growth process was performed for 20 minutes while maintaining the temperature at 57 orr, a polycrystalline silicon film having a uniform thickness of 4000 nm was obtained on the surface of the silicon substrate. Note that by cooling the space between the reflection plate 51 and the reaction chamber 52 with water, the reaction chamber 52
Almost no polycrystalline silicon was deposited on the inner wall.

また上記の場合反応室内を減圧せずに行うこともできる
Further, the above case can also be carried out without reducing the pressure inside the reaction chamber.

他の実施例としては図示しないが、反応室内に、セラミ
ックヒータを垂直方向に適宜間隔をおいて複数枚棚段状
に設け、各セラミックヒータの上下面に適宜保持手段に
よって被処理基板を保持するように構成することもでき
、垂直方向の空間を有効に利用することが可能となる。
As another example, although not shown, a plurality of ceramic heaters are provided vertically in a tiered manner at appropriate intervals in the reaction chamber, and the substrate to be processed is held on the upper and lower surfaces of each ceramic heater by appropriate holding means. It is also possible to configure it as follows, and it becomes possible to effectively utilize the space in the vertical direction.

以上のように本発明に係る化学気相成長処理装置によれ
ば、加熱体を、被処理基板を支持する支持台兼用のヒー
タに形成したことによって、装置の小型化が図れると共
に、抵抗体の支持部および被処理基板を抵抗体からの直
接の伝達熱で加熱するから昇温速度が早く、生産効率が
大幅に増大する。また加熱体の両面に被処理基板を保持
することによる生産効率の向上も図れ、さらには加熱体
の温度制御が容易かつ正確に行え、均一な厚さの皮膜を
得ることができる。またさらには加熱体が周辺の部材を
無駄に加熱する度合が少ないから、周辺の部材への皮膜
形成を防止できる。
As described above, according to the chemical vapor deposition processing apparatus according to the present invention, the heating element is formed as a heater that also serves as a support stand that supports the substrate to be processed, so that the apparatus can be made smaller, and the resistance element can be reduced. Since the supporting portion and the substrate to be processed are heated by direct heat transferred from the resistor, the temperature rise rate is fast, and production efficiency is greatly increased. Furthermore, by holding the substrate to be processed on both sides of the heating element, production efficiency can be improved, and furthermore, the temperature of the heating element can be controlled easily and accurately, and a film of uniform thickness can be obtained. Furthermore, since the heating body wastefully heats surrounding members to a lesser extent, formation of a film on surrounding members can be prevented.

以上本発明につき好適な実施例を挙げて種々説明したが
、本発明はこの実施例に限定されるものではなく、発明
の精神を逸脱しない範囲内で多くの改変を施し得るのは
もちろんのことである。
Although the present invention has been variously explained above with reference to preferred embodiments, the present invention is not limited to these embodiments, and it goes without saying that many modifications can be made without departing from the spirit of the invention. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来の化学気相成長処理装置を示す説
明図である。 第3図は本発明に係る化学気相成長処理装置を示す説明
図、第4図は他の実施例を示す説明図である。 10・・・ヒーターカバー、 11・・・反応室、 1
2・・・反応ガス導入管、 13・・・排気管、14・
・・被処理基板、 15・・・支持台、 16・・・加
熱体(ヒータ)、17・・・反応ガス源、 1B・・・
冷却板、 19・・・ガス流バッファ、20・・・圧力
検知器。 21・・・反応室、22・・・反応ガス導入管。 23・・・排気管、24・・・被処理基板。 25・・・支持台、26・・・加熱体、27・・・反応
ガス源、28・・・石英ガラス管。 30・・・セラミックヒータ、31・・・被処理基板、
32・・・反応ガス源、33・・・バルブ、34・・・
ガス導入管、35・・・メツシュ状フィルタ、36・・
・反応室。 37・・・排気パイプ、 38.39・・・反射板、4
0・・・電極取り出し線、41・・・スペーサ、42・
・・反応ガス源、43・・・バルブ、44・・・tJF
 気バルーy’、 45・・・圧力検知器、46・・・
支持板、47・・・セラミックヒータ、48・・・被処
理基板。 49・・・電極取り出し線、50・・・電源。 51・・・反射板、52・・・反応室。 特許出願人 アプライド・マテリアルズ・ ジャパン株式会社 代表者岩崎哲夫 第1図 第2図 6 第3図 第4図
FIGS. 1 and 2 are explanatory diagrams showing a conventional chemical vapor deposition processing apparatus. FIG. 3 is an explanatory diagram showing a chemical vapor deposition processing apparatus according to the present invention, and FIG. 4 is an explanatory diagram showing another embodiment. 10... Heater cover, 11... Reaction chamber, 1
2... Reaction gas introduction pipe, 13... Exhaust pipe, 14.
...Substrate to be processed, 15...Support stand, 16...Heating body (heater), 17...Reactive gas source, 1B...
Cooling plate, 19... Gas flow buffer, 20... Pressure detector. 21... Reaction chamber, 22... Reaction gas introduction pipe. 23...Exhaust pipe, 24...Substrate to be processed. 25... Support stand, 26... Heating body, 27... Reaction gas source, 28... Quartz glass tube. 30... Ceramic heater, 31... Substrate to be processed,
32... Reaction gas source, 33... Valve, 34...
Gas inlet pipe, 35...mesh filter, 36...
・Reaction chamber. 37...Exhaust pipe, 38.39...Reflector, 4
0... Electrode lead wire, 41... Spacer, 42...
...Reaction gas source, 43...Valve, 44...tJF
Air balloon y', 45...pressure detector, 46...
Support plate, 47... Ceramic heater, 48... Substrate to be processed. 49... Electrode lead wire, 50... Power supply. 51... Reflection plate, 52... Reaction chamber. Patent applicant Applied Materials Japan Co., Ltd. Representative Tetsuo Iwasaki Figure 1 Figure 2 Figure 6 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] ■1反応ガス等を加熱手段を備えた反応室内に導入し、
反応室内に収容した被処理基板に所望物質の皮−を被着
形成する化学気相成長処理装置において、前記加熱手段
が、セラミック等から成る支持部の表層もしくは表層近
傍に抵抗体を敷設した、前記被処理基板を密着支持する
支持台兼用の加熱体であることを特徴とする化学気相成
長処理装置。
■1 Reactant gas etc. is introduced into a reaction chamber equipped with heating means,
In a chemical vapor deposition processing apparatus for depositing and forming a skin of a desired substance on a substrate to be processed housed in a reaction chamber, the heating means has a resistor laid on the surface layer or near the surface layer of a support portion made of ceramic or the like. A chemical vapor deposition processing apparatus characterized in that the heating body also serves as a support stand that closely supports the substrate to be processed.
JP23954083A 1983-12-20 1983-12-20 Chemical vapor growth deposition device Pending JPS60131969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23954083A JPS60131969A (en) 1983-12-20 1983-12-20 Chemical vapor growth deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23954083A JPS60131969A (en) 1983-12-20 1983-12-20 Chemical vapor growth deposition device

Publications (1)

Publication Number Publication Date
JPS60131969A true JPS60131969A (en) 1985-07-13

Family

ID=17046324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23954083A Pending JPS60131969A (en) 1983-12-20 1983-12-20 Chemical vapor growth deposition device

Country Status (1)

Country Link
JP (1) JPS60131969A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119926A (en) * 1985-11-19 1987-06-01 Anelva Corp Vacuum device
JPS6383275A (en) * 1986-09-27 1988-04-13 Tokyo Electron Ltd Cvd device
JPH07278816A (en) * 1994-12-14 1995-10-24 Tokyo Electron Ltd Treatment of body to be treated

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119926A (en) * 1985-11-19 1987-06-01 Anelva Corp Vacuum device
JPS6383275A (en) * 1986-09-27 1988-04-13 Tokyo Electron Ltd Cvd device
JPH07278816A (en) * 1994-12-14 1995-10-24 Tokyo Electron Ltd Treatment of body to be treated

Similar Documents

Publication Publication Date Title
US4778559A (en) Semiconductor substrate heater and reactor process and apparatus
JP3581388B2 (en) Deposited polysilicon film with improved uniformity and apparatus therefor
CN1555424B (en) For controlling technique and the product produced thereby of uniformity of film
US6365225B1 (en) Cold wall reactor and method for chemical vapor deposition of bulk polysilicon
JP3984820B2 (en) Vertical vacuum CVD equipment
US7700054B2 (en) Substrate processing apparatus having gas side flow via gas inlet
KR100972962B1 (en) Heating element cvd apparatus
US4891335A (en) Semiconductor substrate heater and reactor process and apparatus
JPS60131969A (en) Chemical vapor growth deposition device
EP0728850A2 (en) Quasi hot wall reaction chamber
JP2697250B2 (en) Thermal CVD equipment
CN100413036C (en) Silicon nitride film production method and silicon nitride film production device
JPS61232612A (en) Gaseous phase reaction device
JPH03145123A (en) Semiconductor manufacturing device
US4956046A (en) Semiconductor substrate treating method
JP4231589B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus
JP2003041365A (en) Substrate treatment apparatus
JPH0533524U (en) Heater for single-wafer CVD equipment
JP5052206B2 (en) CVD equipment
JP2961224B2 (en) Thin film formation method
JP2005032883A (en) Substrate treatment equipment
JP3886320B2 (en) Semiconductor processing apparatus and wafer heating control method
JPH09306860A (en) Heat treating furnace
JP2509817B2 (en) Processing equipment
JPH07283159A (en) Heat treatment device