Nothing Special   »   [go: up one dir, main page]

JPS60135814A - Azimuth detecting apparatus - Google Patents

Azimuth detecting apparatus

Info

Publication number
JPS60135814A
JPS60135814A JP24918783A JP24918783A JPS60135814A JP S60135814 A JPS60135814 A JP S60135814A JP 24918783 A JP24918783 A JP 24918783A JP 24918783 A JP24918783 A JP 24918783A JP S60135814 A JPS60135814 A JP S60135814A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
detection means
vector
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24918783A
Other languages
Japanese (ja)
Inventor
Yukihiko Sano
佐野 幸彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP24918783A priority Critical patent/JPS60135814A/en
Publication of JPS60135814A publication Critical patent/JPS60135814A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses
    • G01C17/28Electromagnetic compasses
    • G01C17/30Earth-inductor compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Electromagnetism (AREA)
  • Navigation (AREA)

Abstract

PURPOSE:To make it possible to detect an azimuth angle with good accurcy by automatically detecting the change in residual magnetism disable to be foreknown during movement to correct the azimuth angle, by simple constitution such that two magnetic detection means for detecting the magnitude and direction of a magnetic field vector are used. CONSTITUTION:The difference of the amounts of two magnetic field vectors detected by two magnetic detection means 1, 2 is calculated by a subtraction means 3 and the detection value of either one of magnetic field detection means on the basis of said difference by a correction means 14 to detect an azimuth with good accuracy. In this apparatus, for example, magnetic sensors 1, 2 are arranged on the roof of a car in parallel in a vertical direction and the detected signal is converted to a digital signal which is, in turn, outputted to an operator 10. The operator 10 has functions of the vector subtraction means 3 and the correction means 4, and performs vector subtraction and correction operation on the basis of the digital signal to calculate the advance direction of a vehicle. The corrected advance azimuth angle is transmitted to a display apparatus 6 through an interface 11.

Description

【発明の詳細な説明】 (技術分野) (従来技術) 従来この種の方位検出装置としては、方位磁石センサ、
あるいはフラックスゲート型磁気センサを用いた磁気方
位計が知られている。ところが車両、又は船舶等移動体
を構成する部品の多くは磁性体であるため、板金、溶接
等製造過程や、あるいは移動中に磁場を通過することに
より着磁され残留磁気を保有する。この残留磁気は移動
体に設置された磁気方位計に地磁気と合成された磁気量
として検出されるため、検出方位角に大きな誤差を生じ
てしまう。
[Detailed Description of the Invention] (Technical Field) (Prior Art) Conventionally, this type of direction detection device includes a direction magnet sensor,
Alternatively, a magnetic compass using a fluxgate type magnetic sensor is known. However, many of the parts that make up moving bodies such as vehicles and ships are magnetic, and therefore they are magnetized and retain residual magnetism during manufacturing processes such as sheet metal or welding, or when they pass through a magnetic field during movement. This residual magnetism is detected by a magnetic azimuth meter installed on the moving body as a magnetic amount combined with earth's magnetism, resulting in a large error in the detected azimuth.

従来この残留磁気をめるには、移動体を一旋回させるこ
とによシ、第1図に示すように7ラツクスゲート型磁気
センサの検出値Eの軌跡からOPとして検出する方法が
取られている。得られたOFを前記検出値Eから減算し
て、地磁気の水平成分Hsをめ、この地磁気の水平成分
Hsから現在の方位角0をめる。ここで第1図に示すu
、vは各々磁気検出手段で検出される磁気ベクトルの直
交成分を表わす。rは補正前の方位角を表わす。
Conventionally, to detect this residual magnetism, the moving object is rotated once, and the residual magnetism is detected as OP from the locus of the detection value E of the 7-lux gate type magnetic sensor, as shown in Fig. 1. . The obtained OF is subtracted from the detected value E to obtain the horizontal component Hs of the earth's magnetism, and the current azimuth angle 0 is calculated from the horizontal component Hs of the earth's magnetism. Here, u shown in Figure 1
, v represent orthogonal components of the magnetic vector detected by the magnetic detection means. r represents the azimuth before correction.

ところが、この残留磁気量は常に一定ではなく、直流架
線附近などの比較的強い磁場を通過することによシ変化
してしまうことがある。したがって残留磁気量の変化後
では、第2図に示すように補正後の方位角はθ“ とな
って誤差が生じてしまうという欠点があった。またこの
欠点の解決策として磁気センサを3つ垂直方向に並べ、
その3つの検出値によル補正を行なう方法があるが、構
成及び補正計算が複線となるという欠点があった。
However, this amount of residual magnetism is not always constant and may change when passing through a relatively strong magnetic field such as near a DC overhead wire. Therefore, after the amount of residual magnetism changes, the corrected azimuth angle becomes θ" as shown in Figure 2, which causes an error. In addition, as a solution to this drawback, three magnetic sensors were used. arranged vertically,
There is a method of performing correction based on the three detected values, but this method has the drawback that the configuration and correction calculations are double-tracked.

〔目的〕〔the purpose〕

本発明の目的は、移動中に予知出来ない残留磁気の変化
を比較的簡単な構成で自動的に検出し、方位角を補正出
来るようにした方位検出装置を提供することにある。
An object of the present invention is to provide an azimuth detection device that can automatically detect unpredictable changes in residual magnetism during movement with a relatively simple configuration and correct the azimuth angle.

〔発明の構成〕[Structure of the invention]

本発明によれば、磁界の方向、及び大きさを検出する磁
気検出手段を有し、前記磁気検出手段によシ検出される
2つの磁界ベクトル量の差をベクトル減算手段によ請求
め、この磁界ベクトル量の差によりいずれか一方の磁界
検出手段の検出値を補正手段で補正を行ない、精□度よ
い方位を検出するように構成された方位検出装置が得ら
れる。
According to the present invention, the magnetic detection means for detecting the direction and magnitude of a magnetic field is provided, and the difference between two magnetic field vector quantities detected by the magnetic detection means is calculated by the vector subtraction means. The correction means corrects the detected value of one of the magnetic field detection means based on the difference in the amount of magnetic field vectors, thereby obtaining an orientation detection device configured to detect the orientation with high accuracy.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第3図を参照すると、本発明の実施例においては、磁界
の方向、及び大きさを検出する磁気検出手段1,2を有
し、前記磁気検出手段1,2によ勺検出される2つの磁
界ベクトル量の差をベクトル減算手段3によ請求め、こ
の磁界ベクトル量の差によ勺いずれか一方の磁界検出手
段の検出値を補正手段4で補正を行ない、精度よい方位
を検出するように構成される。
Referring to FIG. 3, the embodiment of the present invention has magnetic detection means 1 and 2 for detecting the direction and magnitude of a magnetic field, and two magnetic fields detected by the magnetic detection means 1 and 2. The difference in the amount of magnetic field vectors is requested by the vector subtraction means 3, and the detected value of either one of the magnetic field detection means is corrected by the correction means 4 based on the difference in the amount of magnetic field vectors, so that the direction can be detected with high accuracy. It is composed of

第4図は本発明による方位検出装置を自動車に塔載した
場合の全体的な配置の一例を示す。磁気検出手段1,2
は、車体7の屋根の上に屋根に垂直な方向に並べて配置
されており、方位検出装置本体52表示装置6は車内に
配置されている。
FIG. 4 shows an example of the overall arrangement of the orientation detecting device according to the present invention mounted on an automobile. Magnetic detection means 1, 2
are arranged on the roof of the vehicle body 7 in a direction perpendicular to the roof, and the direction detection device main body 52 and the display device 6 are arranged inside the vehicle.

第5図によれば、本実施例の方位検出装置は第1の磁気
検出手段1と、第2の磁気検出手段2としては振動に強
く磁界に比例した電気出力が容易に得られるフラックス
ゲート型磁気センサを用いる。磁気検出手段1.2は共
に同一の性能を有し、磁界ベクトルの大きさと方向を検
出し、アナログ電気信号としてマルチプレクサ8に出力
する機能を有する。マルチプレクサ8は、磁気検出手段
l。
According to FIG. 5, the orientation detecting device of this embodiment has a first magnetic detecting means 1 and a second magnetic detecting means 2 of a flux gate type that is resistant to vibration and can easily obtain an electrical output proportional to the magnetic field. Uses a magnetic sensor. The magnetic detection means 1.2 both have the same performance and have the function of detecting the magnitude and direction of the magnetic field vector and outputting it to the multiplexer 8 as an analog electrical signal. The multiplexer 8 is a magnetic detection means l.

2よシ出力されるアナログ信号を選択し、そのアナログ
信号をA/D変換器9へ出力する機能を有する。A/D
変換器9は、マルチプレクサ8によ勺選択されたアナロ
グ信号をデジタル信号に変換し、そのデジタル信号を演
算器10へ出力する機能を有する。演算器10は、前記
ベクトル減算手段3によるベクトル減算機能と補正手段
4による補正演算機能とを有し、A/D変換器9から送
られたデジタル信号を基にベクトル減算、補正演算を行
ない、車両の進行方位角をめる。又、補正された車両の
進行方位角をインターフェイス11に伝達する機能を有
するマイクロプロセッサを中心に構成された電子回路で
ある。インターフェイス11は、演算器1Oによシ出力
された車両進行方位角を表示部6に伝達する機能を有し
、表示装置6は、インターフェイス11によシ伝達され
た車両進行方位角を表示する機能を有する。
It has a function of selecting an analog signal to be outputted from 2 and outputting the analog signal to the A/D converter 9. A/D
The converter 9 has a function of converting the analog signal selected by the multiplexer 8 into a digital signal and outputting the digital signal to the arithmetic unit 10. The arithmetic unit 10 has a vector subtraction function by the vector subtraction means 3 and a correction calculation function by the correction means 4, and performs vector subtraction and correction calculations based on the digital signal sent from the A/D converter 9. Determine the vehicle's heading angle. Further, it is an electronic circuit mainly composed of a microprocessor that has a function of transmitting the corrected traveling azimuth of the vehicle to the interface 11. The interface 11 has a function of transmitting the vehicle traveling azimuth outputted by the calculator 1O to the display unit 6, and the display device 6 has a function of displaying the vehicle traveling azimuth transmitted to the interface 11. has.

第6図、第7図によル本発明の方位検出装置、を第4図
に示すが如く車両に設置した時の方位角補正方法を説明
する。第6図に示すように、地磁気→ ′ の水平成分をHs、磁気検出手段1,2によシ検出され
る磁界ベクトルの水平成分をそれぞれEl。
6 and 7, a method of correcting the azimuth angle when the azimuth detecting device of the present invention is installed in a vehicle as shown in FIG. 4 will be explained. As shown in FIG. 6, the horizontal component of the earth's magnetism →' is Hs, and the horizontal component of the magnetic field vector detected by the magnetic detection means 1 and 2 is El.

Et+磁気検出手段1.2が残留磁気によって受けこで
磁気検出手段1が磁気検出手段2よシ車体7に近いため
残留磁気の影響を強く受けるの万1Ur1 l 、> 
1(Jr、l となる。OP、、OF2は車両を一旋回させた時のE1
+E2の軌跡によ請求まる。このとき が成シ立つ。
Et+ The magnetic detection means 1.2 is affected by residual magnetism, and since the magnetic detection means 1 is closer to the vehicle body 7 than the magnetic detection means 2, it is strongly influenced by the residual magnetism.
1 (Jr, l. OP,, OF2 is E1 when the vehicle makes one turn.
It depends on the trajectory of +E2. This is when it will happen.

また → ← → → → → E、−E2=(OP、十Hs)−(OP2+Hs)= 
o))、−op。
Also → ← → → → → E, −E2=(OP, 10Hs)−(OP2+Hs)=
o)), -op.

= P、P、 ・・・・・・(3) であるから第(1)式、第(3)式よりOF、 = k
(E、 −E、 ) ・・・・・・(4)したがって Hs = E、 −UP。
= P, P, ...(3) Therefore, from equation (1) and equation (3), OF, = k
(E, -E, ) ...... (4) Therefore, Hs = E, -UP.

−E+ −k(E+ −E2 ) ・・・・・・(5)
が成ル立つ。
-E+ -k(E+ -E2) ・・・・・・(5)
is established.

次に残留磁気量が変化すると、第7図に示すように磁気
検出手段1,2が車体7の残留磁気によ式と同様に となシ、残留磁気が変化しても、磁気検出手段1゜2に
よって検出される磁気ベクトルの水平成分E、。
Next, when the amount of residual magnetism changes, as shown in FIG. The horizontal component of the magnetic vector E, detected by °2.

E2から、演算器10によシ地磁気の水平成分Hs、及
び方位角θをめることが出来る。
From E2, the horizontal component Hs of the earth's magnetism and the azimuth angle θ can be determined by the calculator 10.

第8図は演算器10のソフトウェアを示すフローチャー
トである。ステップ12で磁気検出手段変換器9を通し
てデータ入力する。ステ・ツブ13で前記入力データを
基に車両が一旋回したかどうかを判断し、車両が一旋回
していない々らば再度ステップ12を繰返す。ステップ
14では前記ステップ12で入力データを基に車体7の
残留磁気によって受ける磁気ベクトルの水平成分尋、。
FIG. 8 is a flow chart showing the software of the computing unit 10. In step 12, data is input through the magnetic detection means transducer 9. Step 13 determines whether the vehicle has made one turn based on the input data, and if the vehicle has not made one turn, step 12 is repeated again. In step 14, the horizontal component of the magnetic vector received by the residual magnetism of the vehicle body 7 is determined based on the input data in step 12.

OP、を計算する。ステップ15で前記ステップ14で
めたOFl、 OP、を基に第(2)式によシ比例定数
kを計算する。ステップ16ではステップ12と同様に
、磁気検出手段1.2の出力E、 、 E、をマルチプ
レクサ8.A/D変換器9を通してデータ入力する。ス
テップ17でステップ16での入力データEI + E
2とステップ15でめた比例定数kを第(5)式に代入
し、地磁気の水平成分Hsを計算する。ステップ18で
ステップ17で計算したHsを基に車両進行方位角θを
計算する。ステ・ツブ19でステップ18で計算した車
両進行方位角θを、インターンエイス回路11を通して
表示装置6に送シ、車両進行方位角θ表示を行なう。
Calculate OP. In step 15, a proportionality constant k is calculated based on OFl and OP determined in step 14 according to equation (2). In step 16, similarly to step 12, the outputs E, , E, of the magnetic detection means 1.2 are sent to the multiplexer 8. Data is input through the A/D converter 9. In step 17, input data EI + E in step 16
2 and the proportionality constant k determined in step 15 are substituted into equation (5) to calculate the horizontal component Hs of geomagnetism. In step 18, the vehicle heading angle θ is calculated based on Hs calculated in step 17. In step 19, the vehicle traveling azimuth θ calculated in step 18 is sent to the display device 6 through the intern eight circuit 11, and the vehicle traveling azimuth θ is displayed.

以上では本発明の磁気方位検出器を自動車に装着する場
合を例にして説明したが、これを他の移動体例えば船舶
や航空機にも適用できることは明らかである。
Although the case where the magnetic direction detector of the present invention is installed in a car has been described above, it is clear that this can also be applied to other moving objects such as ships and aircraft.

又車両の進行方位角と走行距離とに基づいて車両の位置
を検出する装置に本発明の方位検出装置を用いることに
より精度のよい車両位置検出装置を得ることが出来る。
Further, by using the azimuth detecting device of the present invention in a device that detects the position of a vehicle based on the traveling azimuth angle and travel distance of the vehicle, a highly accurate vehicle position detecting device can be obtained.

以上説明したように、本発明によれば磁気検出手段を2
つ用いるという比較的簡単な構成で、磁気検出手段近傍
の磁性体の残留磁気による影響を自動的に補正でき、精
度よく方位の検出が出来るという効果を有する。
As explained above, according to the present invention, the magnetic detection means is
With a relatively simple configuration in which only two magnets are used, it is possible to automatically correct the influence of the residual magnetism of the magnetic body near the magnetic detection means, and it has the effect that the orientation can be detected with high accuracy.

【図面の簡単な説明】 第1図は従来の方式による方位補正を示す。第2図は残
留磁気が変化した時の方位計の出力の軌跡を示す。第3
図は本発明の構成を示すブロック図である。第4図は本
発明の方位検出装置の一実施例の全体的な配置を示す。 第5図は第4図の実施例の構成を示すブロック図である
。第6図、第7図は方位角補正方法の説明図である。第
8図は演算器10のソフトウェアを示すフローチャート
である。 l・・・・・・磁気検出手段1.2・・・・・・磁気検
出手段23・・・・・・ベクトル減算手段、4・・・・
・・補正手段、5・・・・・・方位検出装置本体、6・
・・・・・表示装置、7・・・・・・車体、8・・・・
・・マルチプレクサ、9・・・・・・A/D変換器、l
O・・・・・・演算器、11・・・・・・インタフェイ
ス。 第1閏 。 第5図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows orientation correction according to a conventional method. Figure 2 shows the locus of the compass output when the residual magnetism changes. Third
The figure is a block diagram showing the configuration of the present invention. FIG. 4 shows the overall arrangement of an embodiment of the orientation detecting device of the present invention. FIG. 5 is a block diagram showing the configuration of the embodiment shown in FIG. 4. FIGS. 6 and 7 are explanatory diagrams of the azimuth angle correction method. FIG. 8 is a flow chart showing the software of the computing unit 10. l...Magnetic detection means 1.2...Magnetic detection means 23...Vector subtraction means, 4...
...Correction means, 5... Orientation detection device main body, 6.
... Display device, 7 ... Car body, 8 ...
...Multiplexer, 9...A/D converter, l
O... Arithmetic unit, 11... Interface. 1st leap. Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)磁界ベクトルの大きさと方向とを検出する2個の
磁気検出手段と、該2個の磁気検出手段のそれぞれによ
シ検出された2つの磁界ベクトルの差を算出するベクト
ル減算出段と、該ベクトル減算手段によル算出された磁
界ベクトルの差によシ前記2個の磁気検出手段のそれぞ
れによシ検出された2つの磁界ベクトルのいずれか一方
を補正する補正手段とを備えたことを特徴とする磁気方
位検出装置。
(1) Two magnetic detection means for detecting the magnitude and direction of the magnetic field vector, and a vector subtraction stage for calculating the difference between the two magnetic field vectors detected by each of the two magnetic detection means. , correction means for correcting either one of the two magnetic field vectors detected by each of the two magnetic detection means based on the difference between the magnetic field vectors calculated by the vector subtraction means. A magnetic direction detection device characterized by:
(2)前記補正手段が前記ベクトル減算手段によシ算出
された磁界ベクトルに係数を乗じたベクトルを前記2個
の磁気検出手段のそれぞれよシ検出された2つの磁界ベ
クトルのいずれか一方から減する演算を行なうことを特
徴とする特許請求の範囲第(1)項記載の磁気方位検出
装置。
(2) The correction means subtracts a vector obtained by multiplying the magnetic field vector calculated by the vector subtraction means by a coefficient from either one of the two magnetic field vectors detected by each of the two magnetic detection means. A magnetic direction detecting device according to claim 1, characterized in that the magnetic direction detecting device performs calculations such as:
JP24918783A 1983-12-26 1983-12-26 Azimuth detecting apparatus Pending JPS60135814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24918783A JPS60135814A (en) 1983-12-26 1983-12-26 Azimuth detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24918783A JPS60135814A (en) 1983-12-26 1983-12-26 Azimuth detecting apparatus

Publications (1)

Publication Number Publication Date
JPS60135814A true JPS60135814A (en) 1985-07-19

Family

ID=17189190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24918783A Pending JPS60135814A (en) 1983-12-26 1983-12-26 Azimuth detecting apparatus

Country Status (1)

Country Link
JP (1) JPS60135814A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0230509A2 (en) * 1985-12-27 1987-08-05 Chrysler Corporation The multiplexing of a bandpass filter circuit to work with a flux-gate sensor output for an electronic compass
JPS63196811A (en) * 1987-02-10 1988-08-15 Sumitomo Electric Ind Ltd Magnetization correction method of earth magnetism azimuth sensor
JPS63148824U (en) * 1987-03-20 1988-09-30
JPS63190911U (en) * 1987-05-29 1988-12-08
US5253424A (en) * 1991-12-27 1993-10-19 Chrysler Corporation Flux-gate sensor mounting and method
US5297063A (en) * 1991-12-27 1994-03-22 Chrysler Corporation Method for selecting calibration data for an auto-calibrating compass
US5297065A (en) * 1991-12-27 1994-03-22 Chrysler Corporation Magnetic transient detection and calibration technique for an auto-calibrating compass
US5323336A (en) * 1991-12-27 1994-06-21 Chrysler Corporation Noise removal method for an electronic compass
US5333110A (en) * 1991-12-27 1994-07-26 Chrysler Corporation Electronic magnetic compass system and method for interpreting directions of a vehicle
US5351204A (en) * 1991-12-27 1994-09-27 Chrysler Corporation Scaling system and method for an electronic compass
US5353241A (en) * 1991-12-27 1994-10-04 Al Attar Rafi A Shifting system and method for an electronic compass system
WO1998035205A1 (en) * 1997-02-10 1998-08-13 Leica Geosystems Ag Geomagnetic field direction measuring system
US5828984A (en) * 1991-12-27 1998-10-27 Chrysler Corporation Data processing method for an electronic compass system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0230509A2 (en) * 1985-12-27 1987-08-05 Chrysler Corporation The multiplexing of a bandpass filter circuit to work with a flux-gate sensor output for an electronic compass
JPS63196811A (en) * 1987-02-10 1988-08-15 Sumitomo Electric Ind Ltd Magnetization correction method of earth magnetism azimuth sensor
JPS63148824U (en) * 1987-03-20 1988-09-30
JPS63190911U (en) * 1987-05-29 1988-12-08
US5297065A (en) * 1991-12-27 1994-03-22 Chrysler Corporation Magnetic transient detection and calibration technique for an auto-calibrating compass
US5297063A (en) * 1991-12-27 1994-03-22 Chrysler Corporation Method for selecting calibration data for an auto-calibrating compass
US5253424A (en) * 1991-12-27 1993-10-19 Chrysler Corporation Flux-gate sensor mounting and method
US5323336A (en) * 1991-12-27 1994-06-21 Chrysler Corporation Noise removal method for an electronic compass
US5333110A (en) * 1991-12-27 1994-07-26 Chrysler Corporation Electronic magnetic compass system and method for interpreting directions of a vehicle
US5351204A (en) * 1991-12-27 1994-09-27 Chrysler Corporation Scaling system and method for an electronic compass
US5353241A (en) * 1991-12-27 1994-10-04 Al Attar Rafi A Shifting system and method for an electronic compass system
US5828984A (en) * 1991-12-27 1998-10-27 Chrysler Corporation Data processing method for an electronic compass system
WO1998035205A1 (en) * 1997-02-10 1998-08-13 Leica Geosystems Ag Geomagnetic field direction measuring system

Similar Documents

Publication Publication Date Title
US4416067A (en) Correction method and device for a magnetic field probe
JPS60135814A (en) Azimuth detecting apparatus
JPS5991311A (en) Electronic compass for transport means
JPS6352683B2 (en)
JPH051914A (en) Compensating magnetized vector
JPS6394109A (en) Azimuth detector for moving body
JP2514254B2 (en) Vehicle compass
US5828984A (en) Data processing method for an electronic compass system
JPH03285110A (en) Measuring apparatus of angular velocity
JPS6244207B2 (en)
JPH1194573A (en) Position attitude measuring device for mobile body
JPS6049914B2 (en) Vehicle travel guidance device
JPH0319928B2 (en)
JPH0749960B2 (en) Geomagnetic azimuth measuring device
RU2307356C1 (en) Device for measurement of objective speed
JPH0588406B2 (en)
JP2000180170A (en) Earth magnetism detecting device
JPH0319929B2 (en)
JPH0319927B2 (en)
JPS5827009A (en) Device for guiding running of vehicle
JPS63191017A (en) Vehicle position detector
JPH0749232A (en) Bearing detection device for vehicle
SU1434258A1 (en) Method of measuring semicircular deviation
JPS58190711A (en) Magnetic azimuth finder
JPH0640009B2 (en) Course guidance device