Nothing Special   »   [go: up one dir, main page]

JPS60127283A - Manufacture of heat resistant part - Google Patents

Manufacture of heat resistant part

Info

Publication number
JPS60127283A
JPS60127283A JP23590783A JP23590783A JPS60127283A JP S60127283 A JPS60127283 A JP S60127283A JP 23590783 A JP23590783 A JP 23590783A JP 23590783 A JP23590783 A JP 23590783A JP S60127283 A JPS60127283 A JP S60127283A
Authority
JP
Japan
Prior art keywords
ceramic
carrier
resistant component
base material
coated heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23590783A
Other languages
Japanese (ja)
Other versions
JPH0479990B2 (en
Inventor
岩田 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP23590783A priority Critical patent/JPS60127283A/en
Publication of JPS60127283A publication Critical patent/JPS60127283A/en
Publication of JPH0479990B2 publication Critical patent/JPH0479990B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Insulated Conductors (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)技術分野 この発明は基材の特性を失うことなく、該基材の表面に
耐食性、耐酸化性および耐薬品性にすぐれた硬質のセラ
ミックス被覆を形成させた耐熱部品の製造方法に関する
ものである。
[Detailed description of the invention] (a) Technical field The present invention forms a hard ceramic coating with excellent corrosion resistance, oxidation resistance, and chemical resistance on the surface of the base material without losing the characteristics of the base material. The present invention relates to a method for manufacturing heat-resistant parts.

(ロ)技術背景 セラミックスは硬質であって、かつすぐれた耐熱性、化
学的安定性、高温耐酸化性などの特性を有しているため
、被覆材料として有用である。
(b) Technical background Ceramics are hard and have properties such as excellent heat resistance, chemical stability, and high-temperature oxidation resistance, so they are useful as coating materials.

例えば炭素焼結体あるいは炭素繊維強化複合材料などの
炭素材料(以下これらを総称して炭素材料という)は高
温強度にすぐれているが、耐高温酸化性や耐摩耗性に劣
ることが欠点とされている。
For example, carbon materials such as carbon sintered bodies or carbon fiber-reinforced composite materials (hereinafter collectively referred to as carbon materials) have excellent high-temperature strength, but their drawbacks are poor high-temperature oxidation resistance and wear resistance. ing.

従って、この欠点を解消するために炭素材料の表面を硬
質のけラミプレスで被覆してやればよいということは容
易に着想しうるところである。
Therefore, it is easy to imagine that in order to eliminate this drawback, the surface of the carbon material should be coated with a hard laminate press.

しかしながら、セラミックスを均一に、しかも所望の厚
さに被覆することは容易ではない。
However, it is not easy to coat ceramics uniformly and to a desired thickness.

従来セラミックス粉末を被覆する方法としては(1) 
セラミックスの粉末をスラリー状とし、被覆したい部品
の浸漬して引き上げる方法。
Conventional methods for coating ceramic powder include (1)
A method in which ceramic powder is made into a slurry and the parts to be coated are immersed and pulled up.

(n) 気相反応を用いて被覆したい部品上にセラミッ
クス相を析出させる方法。
(n) A method of depositing a ceramic phase on the part to be coated using a gas phase reaction.

が行なわれている。しかしくDの方法では簡便ではある
が、均一な被覆を行ないにくいこと、また(Ii)の方
法では密着性の良い被覆が可能である反面、析出速度が
おそく、コスト高になる、などこの何れの方法も好まし
いものではない。
is being carried out. However, although method D is simple, it is difficult to coat uniformly, and method (Ii), although it is possible to coat with good adhesion, has a slow deposition rate and high cost. This method is also not preferable.

従って、均一で所望の厚さのセラミックス層を迅速に析
出しうる方法の開発が要望されているのである。
Therefore, there is a need for the development of a method that can rapidly deposit a ceramic layer of uniform and desired thickness.

(ハ)発明の開示 この発明は従来技術にお【プる上述の欠点を補い、密着
性にすぐれたセラミックス被覆を所望の厚さに迅速に形
成させる新規な方法を提供しようとするものである。
(C) Disclosure of the Invention The present invention aims to compensate for the above-mentioned drawbacks of the prior art and provide a novel method for rapidly forming a ceramic coating with excellent adhesion to a desired thickness. .

即ち、この発明はセラミックス被覆を行いたい基材上に
均一で安定な、しかも所望の厚さのセラミックス被覆層
を形成させるべく検討した結果、単なる物理的なスラリ
ーの付着でなく、電気泳動3− 沈着の原理を応用して、不可逆的にセラミックス粉体層
を基材上に形成させる方法を見出したものである。
That is, as a result of studies aimed at forming a uniform, stable, and desired thickness of a ceramic coating layer on a substrate to which ceramic coating is desired, the present invention was developed by using electrophoresis instead of mere physical slurry deposition. We have discovered a method of irreversibly forming a ceramic powder layer on a substrate by applying the principle of deposition.

以下この発明の詳細な説明する。This invention will be explained in detail below.

まず、この発明の方法は電気泳動にて基板上にセラミッ
クス粉体粒子を沈着させるものであるか和 ら、基材としてはその自体導電性を有するか、または表
面に導電性処理を施したものが必要である。
First, the method of the present invention involves depositing ceramic powder particles on a substrate by electrophoresis, and the base material itself is conductive or the surface thereof is subjected to conductive treatment. is necessary.

粒子を液体中で電気泳動させるためには、それが液体中
で荷電しなければならない。
In order for a particle to be electrophoresed in a liquid, it must become electrically charged in the liquid.

セラミックス粉末はそれ自体イオン化しないので荷電す
る担体をセラミックス粉末に付着させて、その担体の電
気泳動によってセラミックス粉末をも同時に泳動させ基
材上に沈着させるものである。
Since ceramic powder itself does not ionize, a charged carrier is attached to the ceramic powder, and by electrophoresis of the carrier, the ceramic powder is simultaneously migrated and deposited on the base material.

この時に使用する担体としては、セラミックス粉末に付
着し、かつ液体中でイオン化させ得るものであればよい
。しかし、電気泳動によって基材上に沈着後、セラミッ
クスの焼結を妨げるものは好ましくない。
The carrier used at this time may be any carrier that can adhere to the ceramic powder and be ionized in the liquid. However, it is undesirable to prevent sintering of the ceramic after electrophoretic deposition on the substrate.

そのような担体としては通常の電着塗装に使用4− されているポリカルボン酸系樹脂〈アニオン系)、ポリ
アミン系樹脂(カチオン系)などが使用できる。
As such carriers, polycarboxylic acid resins (anionic) and polyamine resins (cationic), which are commonly used in electrodeposition coatings, can be used.

この担体はセラミックス粉末層の形状を保持する、いわ
ゆる−次バインダーとしての機能を兼ねさせることがで
きるが、担体中に別に一次バインダー成分を添加してや
ってもよい。
This carrier can also function as a so-called secondary binder that maintains the shape of the ceramic powder layer, but a primary binder component may be separately added to the carrier.

この発明で原料粉末の主体となるセラミックス粉末は、
液体中に安定に分散させ、電気泳動を容易にするために
十分に微粉砕化する必要があり、実用的には40μm以
下の粒径としたものが好ましい。そしてセラミックス粉
末は1種類でも、また2種類以上の混合粉末として用い
てもよく、ざらに必要に応じて焼結助剤、潤滑剤等の添
加物を用いればよい。
The ceramic powder that is the main raw material powder in this invention is
In order to stably disperse it in a liquid and facilitate electrophoresis, it is necessary to sufficiently pulverize it, and for practical purposes, it is preferable to have a particle size of 40 μm or less. One type of ceramic powder may be used, or a mixed powder of two or more types may be used, and additives such as a sintering aid and a lubricant may be used as necessary.

なおセラミックス粉末は、これを担体、焼結助剤、結合
剤などと十分に混合し、水等の液体中に分散させること
により、電着塗料の状態とするものである。
The ceramic powder is prepared into an electrodeposition coating by sufficiently mixing it with a carrier, a sintering aid, a binder, etc., and dispersing it in a liquid such as water.

但し、通常の電着塗料と根本的に異なる点は、通常の電
着塗料は沈着する固形分のうち大部分が樹脂であり、顔
料等の無機成分は5重量%以下が適当である。これはピ
ンホールのない丈夫な塗膜を得る目的から当然のことで
あるが、この発明においては沈着する固形分の大部分は
セラミックス粉末であり、担体等の樹脂成分は安定な粉
体層を形成させるに十分であれば、できる限り少ない方
がよく、ピンホールの存在等は問題にならない。
However, the fundamental difference from ordinary electrodeposition paints is that most of the deposited solid content in ordinary electrodeposition paints is resin, and the appropriate amount of inorganic components such as pigments is 5% by weight or less. This is natural for the purpose of obtaining a durable paint film without pinholes, but in this invention, most of the deposited solid content is ceramic powder, and the resin components such as the carrier form a stable powder layer. As long as it is sufficient to form pinholes, it is better to have as few as possible, and the presence of pinholes is not a problem.

また基材上に薄くて均一なセラミックス−担体よりなる
沈着層を得るには通常の電着塗料のように沈着層の導電
性は低いことが望ましいが、100μm1以上のやや厚
い沈着層を得たい場合には、電気泳動にて得た基材上の
沈着層に、導電性の物質を添加するなどの方法で沈着層
を導電性としたのち、さらに電気泳動によりその上にセ
ラミックス−担体の沈着層を析出させればよい。
In addition, in order to obtain a thin and uniform deposited layer made of a ceramic carrier on a substrate, it is desirable that the conductivity of the deposited layer is low like that of ordinary electrodeposition paints, but it is desirable to obtain a slightly thick deposited layer of 100 μm or more. In some cases, the deposited layer on the base material obtained by electrophoresis is made conductive by adding a conductive substance, and then a ceramic carrier is deposited on top of it by electrophoresis. It is sufficient to deposit a layer.

上記のようにして調整したセラミックス−担体の分散液
中に被覆を行なう基材と対向電極を浸漬し、直流電圧を
印加することにより、基材上にセラミックス−担体層を
被覆する。
A base material to be coated and a counter electrode are immersed in the ceramic carrier dispersion prepared as described above, and a DC voltage is applied to coat the ceramic carrier layer on the base material.

このようにして被覆層を形成した基材を乾燥したのち、
300〜1000℃に加熱し、被覆層中の担体成分を分
解または揮散させる。この加熱の際は雰囲気は基材、担
体およびセラミックスの性質により空気、酸素、化合物
ガス、不活性ガス等を選択すればよい。
After drying the base material on which the coating layer was formed in this way,
It is heated to 300 to 1000°C to decompose or volatilize the carrier component in the coating layer. During this heating, the atmosphere may be selected from air, oxygen, compound gas, inert gas, etc. depending on the properties of the base material, carrier, and ceramics.

このように担体は加熱によって分解または揮散させるの
であるから、分解残有のない物質あるいは残有があって
もこれが最終焼結体に悪影響を与えないような物質を選
択使用することが好ましい。
Since the carrier is thus decomposed or volatilized by heating, it is preferable to select and use a substance that does not leave any decomposition residue or a substance that does not adversely affect the final sintered body even if it remains.

この発明の方法は上記のようにして加熱によって担体を
分解または揮散せしめたのち、セラミックス粉末の性質
に応じた焼結条件に従い、常圧、減圧あるいは加圧の条
件下で焼結を行なうのである。
In the method of this invention, after the carrier is decomposed or volatilized by heating as described above, sintering is performed under normal pressure, reduced pressure, or pressurized conditions according to the sintering conditions depending on the properties of the ceramic powder. .

焼結温度はセラミックスの種類により異なるが、通常1
000〜2000℃の範囲が適当である。
The sintering temperature varies depending on the type of ceramic, but is usually 1
A range of 000 to 2000°C is suitable.

そして基材とセラミックス被覆層との熱膨張率はできる
だけ近いものを選ぶことが望ましい。
It is desirable that the coefficients of thermal expansion of the base material and the ceramic coating layer be as similar as possible.

上記したこの発明の方法を採用できる例とじて 1− は、 (1)先にのべたように、炭素材料の表面を炭化けい素
で被覆することにより耐高温酸化を向上させる。
Examples in which the above-mentioned method of the present invention can be applied are as follows: (1) As mentioned above, the surface of the carbon material is coated with silicon carbide to improve high-temperature oxidation resistance.

(2)金属をセラミックスで被覆することにより、化学
的安定性、表面硬度の増大をはかる。
(2) Chemical stability and surface hardness are increased by coating metal with ceramics.

(3) セラミックスを異種のセラミックスで被覆し、
表面親和性および表面活性を改善する。
(3) Covering ceramics with different types of ceramics,
Improves surface affinity and surface activity.

などがあるが、このほかセラミックス同志、あるいはセ
ラミックスと他の材料との接合等にも応用することがで
きる。
In addition, it can also be applied to bonding ceramics together or bonding ceramics and other materials.

なおこの電気泳動沈着は基材上の導電性の部分にのみ起
るものであるから、基材の一部分を意図的に絶縁皮膜で
覆っておけば、その部分には被覆層が得られない。この
ことを利用して基材に任意のパターンの絶縁皮膜を施し
てパターン化されたセラミックス被覆あるいは一種のセ
ラミックスを部分的に被覆したあと、絶縁皮膜を除去し
、次に他の種類のセラミックスを被覆することで段階的
に被覆成分の異なる被覆を施すことができる。
Note that this electrophoretic deposition occurs only on conductive parts of the base material, so if a part of the base material is intentionally covered with an insulating film, no coating layer will be obtained on that part. Utilizing this fact, after applying an insulating film in an arbitrary pattern to the base material and partially covering it with a patterned ceramic coating or a type of ceramic, the insulating film is removed, and then another type of ceramic is applied. By coating, coatings with different coating components can be applied in stages.

8− 以上、この発明はセラミックス被覆に関するものである
が、このほか、金属、炭素および無機粉末等粉体物質の
全てにも応用することが可能である。
8- Although the present invention relates to ceramic coatings as described above, it can also be applied to all powder substances such as metals, carbon, and inorganic powders.

以下この発明を実施例により詳細に説明する。The present invention will be explained in detail below with reference to Examples.

実施例1 炭化けい素粉末を微粉砕して平均粒径2μmとし、これ
に同じように微粉砕したアルミナ粉末を5重量%の重量
比になるように加えて均一に混合した。
Example 1 Silicon carbide powder was finely pulverized to an average particle size of 2 μm, and alumina powder, which had been pulverized in the same way, was added thereto at a weight ratio of 5% by weight and mixed uniformly.

この混合粉末を担体としてのアクリルアマイド系樹脂と
よく混練したのち、欲液中に分散させ、いわゆるカチオ
ン系塗料の状態とした。
This mixed powder was thoroughly kneaded with an acrylamide resin as a carrier, and then dispersed in the liquid to form a so-called cationic paint.

次に表面を清浄にした炭素板の被塗物と対極のステンレ
ス板を前記欲液中に浸漬し、炭素板を陰極として約20
0Vの直流電圧を浴液をよく撹拌混合しながら約10分
間印加して、炭素板上に約100μmのセラミックス−
担体層を形成させた。このあと充分水洗し、乾燥してか
ら空気中で170℃、20分間加熱し、沈着層を安定化
させた。
Next, the surface-cleaned carbon plate to be coated and a stainless steel plate as a counter electrode were immersed in the desiring liquid, and the carbon plate was used as a cathode for about 20 minutes.
A DC voltage of 0V was applied for about 10 minutes while thoroughly stirring and mixing the bath liquid, and a ceramic layer of about 100 μm was deposited on the carbon plate.
A carrier layer was formed. Thereafter, the layer was thoroughly washed with water, dried, and heated in air at 170° C. for 20 minutes to stabilize the deposited layer.

その後ざらに600℃で1時間焼成して担体の樹脂分を
除去したのち、アルゴン中で2000℃で焼結して炭化
けい素セラミックスを被覆した炭素板を1? /こ 。
After that, it was roughly fired at 600°C for 1 hour to remove the resin content of the carrier, and then sintered at 2000°C in argon to form a carbon plate coated with silicon carbide ceramics. /child .

かくして得られた被覆炭素板を空気中で800℃にて1
時間加熱したところ、はとんど重量損失は見られなかっ
た。
The thus obtained coated carbon plate was heated in air at 800°C for 1
When heated for hours, almost no weight loss was observed.

一方被覆を施さない炭素板を同様の加熱処理したところ
、はぼ全量が焼失した。
On the other hand, when an uncoated carbon plate was subjected to the same heat treatment, almost the entire amount was burnt out.

実施例2 微粉砕したアルミナ粉末中にマグネシア粉末を1重量%
加え、実施例1と同様にして分散液を調整した。
Example 2 1% by weight of magnesia powder in finely ground alumina powder
In addition, a dispersion liquid was prepared in the same manner as in Example 1.

一方被覆を施す基材として、窒化チタンを加えることに
より導電性を付与した窒化けい素−マグネシア焼結体を
用い、実施例1ど同様の方法でセラミックス−担体層を
基材上に約100μmの厚さに形成させた。
On the other hand, as a base material to be coated, a silicon nitride-magnesia sintered body made conductive by adding titanium nitride was used, and a ceramic carrier layer of about 100 μm was applied to the base material in the same manner as in Example 1. It was formed to a thickness.

そして水洗、乾燥のあと空気雰囲気中170℃で20分
間加熱して安定な沈着層を得た。
After washing with water and drying, it was heated in an air atmosphere at 170° C. for 20 minutes to obtain a stable deposited layer.

この後さらに空気中で600℃まで加熱し、担体樹脂を
分解揮散させた。そののち空気中で1600℃まで加熱
し、アルミナ被覆層を焼結した。
Thereafter, the carrier resin was further heated to 600° C. in air to decompose and volatilize the carrier resin. Thereafter, the alumina coating layer was sintered by heating to 1600° C. in air.

特許出願人 住友電気工業株式会社 代 理 人 弁理士 和 1) 昭Patent applicant: Sumitomo Electric Industries, Ltd. Representative Patent Attorney Kazu 1) Akira

Claims (1)

【特許請求の範囲】 (1)1種もしくは2種以上のセラミックス粉末を主成
分とし、これに焼結助剤、結合剤等を混合した原料粉末
に液体中にてイオン化し得る担体を混線付着せしめたの
ち、これを液体中に分散させ、該液体中に浸漬した導電
性基材と対向電極との間に直流電圧を印加して電気泳動
により該導電性基材上に担体付着した原料粉末を沈着せ
しめ、次いで加熱によって沈着物中の担体を分散もしく
は揮散せしめたのち、焼成することを特徴とるセラミッ
ク被覆耐熱部品の製造方法。 (2基材が炭素焼結体または炭素IIIIt強化炭素複
合材料であることを特徴とする特許請求の範囲第1項記
載のセラミックス被覆耐熱部品の製造方法。 (3)基材が比抵抗10’Qan以下の導電性を有する
ことを特徴とする特許請求の範囲第1項または第2項都
載のセラミックス被覆耐熱部品の製造方法。 (4)基材が比抵抗100α以下の導電性を有するよう
に表面導電処理を施したセラミックス焼結体であること
を特徴とする特許請求の範囲第1項記載のセラミックス
被覆耐熱部品の製造方法。 (5)担体が液体中にてイオン化しうる水溶性または水
分散性合成樹脂であることを特徴とする特許請求の範囲
第1項記載のセラミックス被覆耐熱部品の製造方法。 (6) 導電性基材としてその一部分を絶縁被覆したも
のを用いて沈着物の形成を部分的に行い、所望の模様の
沈着物層とすることを特徴とする特許請求に範囲第1項
記載のセラミックス被覆耐熱部品の製造方法。 (7) 沈着物層が比抵抗10″Qc+n以下の導電性
を有することを特徴とする特許請求の範囲第1項記載の
セラミックス被覆耐熱部品の製造方法。
[Scope of Claims] (1) A carrier that can be ionized in a liquid is cross-wire-attached to a raw material powder that is mainly composed of one or more types of ceramic powder and mixed with a sintering aid, a binder, etc. After this, the raw material powder is dispersed in a liquid, and a DC voltage is applied between the conductive base material immersed in the liquid and a counter electrode to form a raw material powder that is adhered to the carrier on the conductive base material by electrophoresis. 1. A method for producing a ceramic-coated heat-resistant component, which comprises depositing a carrier, dispersing or volatilizing the carrier in the deposit by heating, and then firing. (2) A method for manufacturing a ceramic-coated heat-resistant component according to claim 1, characterized in that the base material is a carbon sintered body or a carbon IIIt-reinforced carbon composite material. (3) The base material has a specific resistance of 10' A method for manufacturing a ceramic-coated heat-resistant component according to claim 1 or 2, characterized in that it has an electrical conductivity of Qan or less. (4) The base material has electrical conductivity of a specific resistance of 100α or less A method for producing a ceramic-coated heat-resistant component according to claim 1, characterized in that the carrier is a ceramic sintered body subjected to a surface conductive treatment. (5) The carrier is a water-soluble or A method for producing a ceramic-coated heat-resistant component according to claim 1, characterized in that the component is made of a water-dispersible synthetic resin. A method for manufacturing a ceramic-coated heat-resistant component according to claim 1, characterized in that the deposit layer is formed partially to form a deposit layer with a desired pattern. (7) The deposit layer has a specific resistance of 10''Qc+n. The method for manufacturing a ceramic-coated heat-resistant component according to claim 1, characterized in that the ceramic-coated heat-resistant component has the following electrical conductivity.
JP23590783A 1983-12-13 1983-12-13 Manufacture of heat resistant part Granted JPS60127283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23590783A JPS60127283A (en) 1983-12-13 1983-12-13 Manufacture of heat resistant part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23590783A JPS60127283A (en) 1983-12-13 1983-12-13 Manufacture of heat resistant part

Publications (2)

Publication Number Publication Date
JPS60127283A true JPS60127283A (en) 1985-07-06
JPH0479990B2 JPH0479990B2 (en) 1992-12-17

Family

ID=16993000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23590783A Granted JPS60127283A (en) 1983-12-13 1983-12-13 Manufacture of heat resistant part

Country Status (1)

Country Link
JP (1) JPS60127283A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242809A (en) * 1975-09-30 1977-04-04 Union Carbide Corp Promoting catalytic production of polyhydric alcohol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242809A (en) * 1975-09-30 1977-04-04 Union Carbide Corp Promoting catalytic production of polyhydric alcohol

Also Published As

Publication number Publication date
JPH0479990B2 (en) 1992-12-17

Similar Documents

Publication Publication Date Title
IE892451L (en) Enzyme electrodes
JPS6119583B2 (en)
JPH0230797A (en) Production of thick film by electrophoretic method
IL137548A (en) Wear and thermal resistant material produced from super hard particles bound in a matrix of glassceramic by electrophoretic deposition
CA2021291C (en) Conductive heating unit
JPS60127283A (en) Manufacture of heat resistant part
JPS5991160A (en) Charged aqueous powdery slurry anode electrodeposition
JPS6153417B2 (en)
US4720419A (en) Substrates for electronic devices
EP0316452B1 (en) Process for preparing thin film of base metal and application of the same
JPH0445322B2 (en)
JP3032839B2 (en) Planar heating element
JPS60161467A (en) Electrically conductive electrodeposition coating material
JPS6054983A (en) Manufacture of fiber reinforced ceramics
JPS60127105A (en) Manufacture of ceramics part
JP3600279B2 (en) Alumina-based composite ceramics with controlled specific resistance and method for producing the same
JP2002309181A (en) Coating material and coating method
JPS6237397A (en) Composition of dispersion liquid for electrodeposition
JPS635349B2 (en)
JPH0896621A (en) Conductive ceramics
JP2704527B2 (en) Conductive iron oxide particle powder and method for producing the same
JPH0192397A (en) Production of membranous ceramic
JPH08259843A (en) Double coated inorganic powder and its production
JPH11335176A (en) Production of ceramic powder
CN115849900A (en) Zirconia ceramic coating and preparation method and application thereof