Nothing Special   »   [go: up one dir, main page]

JPS60112620A - Mixed electrically-conductive zirconia and its nanufacture - Google Patents

Mixed electrically-conductive zirconia and its nanufacture

Info

Publication number
JPS60112620A
JPS60112620A JP58220195A JP22019583A JPS60112620A JP S60112620 A JPS60112620 A JP S60112620A JP 58220195 A JP58220195 A JP 58220195A JP 22019583 A JP22019583 A JP 22019583A JP S60112620 A JPS60112620 A JP S60112620A
Authority
JP
Japan
Prior art keywords
carbon
zirconia
sintered body
mixed
stabilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58220195A
Other languages
Japanese (ja)
Other versions
JPH0463017B2 (en
Inventor
Hiroshi Anzai
安斎 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nippon Oil Seal Industry Co Ltd
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Seal Industry Co Ltd, Nok Corp filed Critical Nippon Oil Seal Industry Co Ltd
Priority to JP58220195A priority Critical patent/JPS60112620A/en
Publication of JPS60112620A publication Critical patent/JPS60112620A/en
Publication of JPH0463017B2 publication Critical patent/JPH0463017B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To manufacture the titled zirconia having ion- and electron- electrical conductivities by heating a (partially) stabilized zirconia sintered body having an ion-electrical conductivity under the carbon atmosphere and diffusing the carbon to the sintered body. CONSTITUTION:The (partially) stabilized zirconia sintered body having an ion- electrical conductivity which is obtained by molding ZrO2 incorporated with >=2mol% stabilizer (e.g. MgO) to a deisred form and calcining it at >=1,500 deg.C is calcined at >=1,500 deg.C under the carbon atomsphere. Or, after 0.05-5wt% carbon powder having 0.01-0.5mum average grain size is added to ZrO2 incorporated with a stabilizer and molded to a desired form, it is calcined at >=1,500 deg.C under an inert gas atmosphere and the carbon is dispersed into the zirconia sintered body. By said method, a mixed electrically-conductive zirconia having an electron-electrical conductivity of <=10mOMEGA.cm specific resistance is obtained.

Description

【発明の詳細な説明】 本発明は、混合導電性ジルコニアおよびその製造法に関
する。更に詳しくは、イオン導電性および電子導電性を
示すジルコニアおよびその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to mixed conductive zirconia and methods of manufacturing the same. More specifically, the present invention relates to zirconia exhibiting ionic conductivity and electronic conductivity and a method for producing the same.

ジルコニア(酢化ジルコニウムZr02)は、無色の結
晶で、次のような相転移の起ることが知られている。
Zirconia (zirconium acetate Zr02) is a colorless crystal and is known to undergo the following phase transition.

1000’C1900℃ 単斜晶系←→正方晶系←→立方晶系 これを耐火物として利用する場合、上記の如き相転移に
基く熱膨張異常は望捷しくないので、これに3〜5%程
度の(7aO、MgO1Y203.0eO21!どの安
定化剤を添加して等軸型として安定化さセると、その焼
結体はj臂九y囲気中では2200℃程度迄、また酪化
雰囲気中では2300℃程度迄の使用に耐えるので、高
温で使用する理化学用や化学工業用器具材料として用い
られる他、発熱体、固体電解質材料どしても使用されて
いる。
1000'C1900℃ Monoclinic system←→tetragonal system←→cubic system When using this as a refractory, abnormal thermal expansion due to the above phase transition is undesirable, so add 3 to 5% to this. When stabilized as an equiaxed type by adding any stabilizer to the degree of Since it can withstand temperatures up to about 2300°C, it is used as a material for equipment used in physics and chemistry and the chemical industry that is used at high temperatures, as well as for heating elements and solid electrolyte materials.

このように全使用温度にわたり等軸晶糸を示すように改
良した、いわゆる安定化ジルコニア(立方晶系)または
部分安定化ジルコニア(立方晶系中に正方晶糸が混在)
は、ジルコニアが本来有するイオン導電性の故に、固体
電解質材料などとして使用されているが、これらのもの
、特に一般的に破壊靭性値の高い部分安定化ジルコニア
は、切削工具、ダイス、ノズル、梠1動部品などの構造
材料としても用いることができると考えられる。しかる
に、これらの構造材料に用いる場合、機械加工が不可能
なので、それに代って放電加工することがでされば複雑
7:仁形状の構造部品を切り出すことができるが、ジル
コニアの場合にあっても、それの放電加工を円滑に行な
うことができないという問題点がそこに存在する。
So-called stabilized zirconia (cubic crystal system) or partially stabilized zirconia (tetragonal crystal threads mixed in the cubic system) that have been improved to exhibit equiaxed crystal threads over all operating temperatures.
are used as solid electrolyte materials due to the inherent ionic conductivity of zirconia, but these materials, especially partially stabilized zirconia, which generally has a high fracture toughness value, are used in cutting tools, dies, nozzles, and It is thought that it can also be used as a structural material for moving parts and the like. However, when using these structural materials, machining is not possible, so if electric discharge machining is used instead, it is possible to cut out complex 7: round-shaped structural parts, but in the case of zirconia, However, there is a problem in that electrical discharge machining cannot be performed smoothly.

こうした問題点を解決ツ゛るためVこけ、イオン導電性
を有する安定化ジルコニア1fcは部分安定化ジルコニ
アに電子導電性を付加させればよく、このために例えば
(ZrO2)0.892 ”20+1 )0.047系
VC(OsO4)。、。4゜を添加して焼結し、混合導
電体とした例が知られている。しかしながら、ここで用
いられる0e02は高価であり、またそれの配合条件や
焼成条件が難しく、更にZr02−Y2O,系の特性に
添加0θ02が好捷しくない影−を与える可能性も存在
する。
In order to solve these problems, stabilized zirconia 1fc with V cracks and ionic conductivity can be made by adding electronic conductivity to partially stabilized zirconia.For example, (ZrO2)0.892''20+1)0 It is known that 047 series VC (OsO4) is added and sintered to make a mixed conductor.However, the 0e02 used here is expensive, and the compounding conditions and The firing conditions are difficult, and there is also the possibility that the addition of 0θ02 may have an unfavorable effect on the properties of the Zr02-Y2O system.

本発明者は、かかる畦点を有する0eO2などの添加に
よる電子導電性の付与方法に代る方法について柚々検削
の結果、安定比重たは部分安定化ジルコニアにカーボン
を拡散させることがきわめて有効であることを見出した
。従って、本発明は混合導電性ジルコニアに係り、この
混合導電性ジルコニアは、イオン導m件を示す安定化ま
たは部分安定化ジルコニアにカーボン全拡散させ、電子
導電性を付加させてTfる。本発明はまた、かかる混合
導電性ジルコニアの製造法に係り(混合導電性ジルコニ
アの製造は、イオン導電性を示す安定化またr/i部分
部分安定層ジルコニア焼結焼結俊才たは焼結と同時1/
こカーボン雰囲気中で熱処理し、ジルコニア焼結体11
こカーボンを拡散させ、そこに電子導電性を付加させる
方法、あるいはイオン導電性を示すジルコニア、その安
定化剤および電子導電性を示すカーボンの混合粉末を所
定形状に成形し、それを焼成する方法によって行われる
As a result of extensive testing, the present inventor found that it is extremely effective to diffuse carbon into stable specific gravity or partially stabilized zirconia as an alternative to the method of imparting electronic conductivity by adding 0eO2, etc., which has such ridge points. I found that. Accordingly, the present invention relates to mixed conductive zirconia, which is made by fully diffusing carbon into stabilized or partially stabilized zirconia exhibiting ionic conductivity to add electronic conductivity. The present invention also relates to a method for producing such mixed conductive zirconia (the production of mixed conductive zirconia may include stabilization or r/i partially stabilized zirconia sintering or sintering, which exhibits ionic conductivity). Simultaneous 1/
This heat treatment is performed in a carbon atmosphere to form a zirconia sintered body 11.
A method of diffusing this carbon and adding electronic conductivity to it, or a method of molding a mixed powder of zirconia exhibiting ionic conductivity, its stabilizer, and carbon exhibiting electronic conductivity into a predetermined shape and firing it. carried out by.

上記第一の混合L9 電性ジルコニアの製造法によれば
、ZrO2に前記の如き安定化剤が約2モル%以上添加
された混合粉末全所定形状に成形し、それを約1500
℃以上で焼成した後同温度範囲のカーボン雰囲気中で熱
処理する方法、あるいは約1500℃以上のカーボン雰
囲気中で焼成、熱処理する方法がとられ、カーボン雰囲
気はカーボン製ヒーター断熱材中、カーボン製容器中ま
たはカーボン粉末中などでの加熱によりそれが形成され
る。
According to the first mixed L9 method for producing electrically conductive zirconia, a mixed powder containing ZrO2 and about 2 mol% or more of the above-mentioned stabilizer is molded into a predetermined shape,
℃ or higher and then heat-treated in a carbon atmosphere within the same temperature range, or firing and heat-treating in a carbon atmosphere of approximately 1500℃ or higher. It is formed by heating, such as in or in carbon powder.

このような加熱カーボン雰囲気下での熱処理により、ジ
ルコニア焼結体の表面および内部にカーボンが拡散され
る。
By such heat treatment in a heated carbon atmosphere, carbon is diffused into the surface and inside of the zirconia sintered body.

4また、」−記第二の混合導電性ジルコニアの製造法に
よれば、上記配合のZ rO2−安定化側混合粉末にZ
 r O2に対して約0.05〜5重徂%程度のカーボ
ン(平y1粒径約001〜0.5μTn)を添加して所
定形状に成形し、それを不活性ガス雰囲気中で約150
0℃以上の湿度で焼成する方法がとられ、この場合にも
ジルコニア焼結体内に一様にカーボンが拡散される。
4. Also, according to the second mixed conductive zirconia manufacturing method, ZrO2-stabilized side mixed powder of the above formulation is added
About 0.05 to 5% of carbon (average particle size of about 001 to 0.5 μTn) is added to rO2, formed into a predetermined shape, and then heated to about 150% by weight in an inert gas atmosphere.
A method is used in which firing is performed at a humidity of 0° C. or higher, and in this case as well, carbon is uniformly diffused within the zirconia sintered body.

このようにして得られた安定比重たは部分安定化ジルコ
ニアは、それが本来有するZrO2焼結体としての特性
を失うことなく、カーボンと同程度の電子it性(比抵
抗10ffiΩ・α以下)を付加することができる。従
って、このような電子導電性を利用して、安定化または
部分安定化ジルコニア焼結体からなる構造材料を効果的
に放電加工することを可能とさせる。
The stable specific gravity or partially stabilized zirconia obtained in this way has the same electronic resistance as carbon (specific resistance 10ffiΩ・α or less) without losing its original properties as a ZrO2 sintered body. can be added. Therefore, by utilizing such electronic conductivity, it is possible to effectively perform electrical discharge machining of a structural material made of a stabilized or partially stabilized zirconia sintered body.

次に、実施例について本発明を説明する。Next, the present invention will be explained with reference to examples.

実施例1 安定化Z r O2に11モル%のMgOを添加し、こ
れをボールミルで湿式混合粉砕後乾燥した。乾燥混合粉
末を、1トン/Cl1l、30秒間の条件下で、48X
 60 X 4 runの寸法の成形体に加圧成形し、
これを1550℃で2時間焼成した。この焼結体を、カ
ーボンヒーターを備えたカーホン酌1熱材中のカーボン
試料台上に搭載し、真空または不活性ガス中で1700
℃で5時間熱処理すると、このカーボンヒーターなどか
らカーボン蒸気か発生し、焼結体の表面および内部にカ
ーボンが拡散される。このように〃1.処理された焼結
体については、比抵抗10mΩ・tyn以下の値が測定
された。
Example 1 11 mol % of MgO was added to stabilized Z r O2, which was wet mixed and ground in a ball mill and then dried. The dry mixed powder was heated at 48X under the conditions of 1 ton/Cl 1l for 30 seconds.
Pressure molded into a molded body with dimensions of 60 x 4 runs,
This was baked at 1550°C for 2 hours. This sintered body was mounted on a carbon sample stand in a carphone cup equipped with a carbon heater, and heated at 1700 m in vacuum or inert gas.
When the heat treatment is carried out at .degree. C. for 5 hours, carbon vapor is generated from the carbon heater and the like, and carbon is diffused into the surface and inside of the sintered body. In this way〃1. Regarding the treated sintered body, a specific resistance value of 10 mΩ·tyn or less was measured.

焼結体から3 X 4 X 38 +ttwtの寸法の
試験片を切り出し、それのカーボン雰囲気中での熱処理
前後における曲げ強さくσb)および破壊靭性(K工。
A test piece with dimensions of 3 x 4 x 38 + ttwt was cut from the sintered body, and its bending strength (σb) and fracture toughness (K-work) were measured before and after heat treatment in a carbon atmosphere.

)をそれぞれ測定した。得られた結果は、次の表に示さ
れる。
) were measured respectively. The results obtained are shown in the following table.

表 処理前 6012 処理後 507 実施例2 部分安定化Z rO2に3モル%のY2O3f添加し、
これをボールミルで湿式混合粉砕後乾燥した。この乾燥
混合粉末を、実施例1と同様に加圧成形し、■焼した後
実施例]と同様のカーボン雰囲気中で、1700℃で5
時間の焼成を行なったところ、比抵抗10mΩ・cm以
下の値を有する焼結体が得られた。
Before surface treatment 6012 After treatment 507 Example 2 3 mol% Y2O3f was added to partially stabilized Z rO2,
This was mixed and ground wet in a ball mill and then dried. This dry mixed powder was pressure-molded in the same manner as in Example 1, and after baking, it was heated to
When the sintered body was fired for several hours, a sintered body having a resistivity of 10 mΩ·cm or less was obtained.

実施例3 部分安定化Z rO2に3モル%のY2O,および1重
量%のカーボン(平均粒径0.03μm)を添加し、こ
れをボールミルで湿式混合粉砕した。それを乾燥した混
合粉末を、実施例1と同様に加圧成形し、窒素雰囲気中
、1550℃で5時間焼成したところ、比抵抗10mΩ
・釧以下の値を有する焼結体が得られた。
Example 3 3 mol% of Y2O and 1% by weight of carbon (average particle size: 0.03 μm) were added to partially stabilized ZrO2, and the mixture was wet mixed and ground in a ball mill. The dried mixed powder was pressure-molded in the same manner as in Example 1, and baked at 1550°C for 5 hours in a nitrogen atmosphere, resulting in a specific resistance of 10 mΩ.
・A sintered body having a value equal to or lower than that of Senshi was obtained.

代理人 弁理士 吉 1)俊 夫agent Patent Attorney Yoshi 1) Toshio

Claims (1)

【特許請求の範囲】 1、イオン導電性を示す安定化または部分安定化ジルコ
ニアにカーボン全拡散させ、電子導電性を付加させてな
る混合導電性ジルコニア。 2、イオン導電性を示す安定化また(d部分安定化ジル
コニア焼結体を、焼結後または焼結と同時にカーボン琢
囲気中で熱処理し、ジルコニア焼結体(Cカーボンを拡
散させ、そこにT4L子噂車性を付加させることヲ9・
〒徴とする混合導電性ジルコニアの製造法。 3、イオン導゛亀性を示すジルコニア、その安定化剤お
よび電子導電性を示すカーボンの混合粉末を所定形状に
成形し、それを焼成することを特徴とする混合導電性ジ
ルコニアの製造法。
[Claims] 1. Mixed conductive zirconia made by completely diffusing carbon into stabilized or partially stabilized zirconia exhibiting ionic conductivity to add electronic conductivity. 2. Stabilized or (d) partially stabilized zirconia sintered body exhibiting ionic conductivity is heat-treated in a carbon sintered atmosphere after or simultaneously with sintering to diffuse carbon into the zirconia sintered body (C). Adding T4L child rumor car characteristics 9.
〒Production method of mixed conductive zirconia. 3. A method for producing mixed conductive zirconia, which comprises molding a mixed powder of zirconia exhibiting ion conductivity, a stabilizer thereof, and carbon exhibiting electronic conductivity into a predetermined shape, and firing it.
JP58220195A 1983-11-22 1983-11-22 Mixed electrically-conductive zirconia and its nanufacture Granted JPS60112620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58220195A JPS60112620A (en) 1983-11-22 1983-11-22 Mixed electrically-conductive zirconia and its nanufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58220195A JPS60112620A (en) 1983-11-22 1983-11-22 Mixed electrically-conductive zirconia and its nanufacture

Publications (2)

Publication Number Publication Date
JPS60112620A true JPS60112620A (en) 1985-06-19
JPH0463017B2 JPH0463017B2 (en) 1992-10-08

Family

ID=16747374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58220195A Granted JPS60112620A (en) 1983-11-22 1983-11-22 Mixed electrically-conductive zirconia and its nanufacture

Country Status (1)

Country Link
JP (1) JPS60112620A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761980A1 (en) * 1997-04-15 1998-10-16 Suisse Electronique Microtech PROCESS FOR THE TREATMENT OF CERAMICS, ESPECIALLY BASED ON ZIRCONIUM OXIDE
DE102011116062A1 (en) * 2011-10-18 2013-04-18 Sintertechnik Gmbh Ceramic product for use as a target
CN116003125A (en) * 2022-12-06 2023-04-25 重庆文理学院 Preparation method of zirconia ceramic material for automobile exhaust sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181766A (en) * 1982-04-14 1983-10-24 東レ株式会社 Zirconia sintered body
JPS59232967A (en) * 1983-06-17 1984-12-27 東芝タンガロイ株式会社 Zirconia base sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181766A (en) * 1982-04-14 1983-10-24 東レ株式会社 Zirconia sintered body
JPS59232967A (en) * 1983-06-17 1984-12-27 東芝タンガロイ株式会社 Zirconia base sintered body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761980A1 (en) * 1997-04-15 1998-10-16 Suisse Electronique Microtech PROCESS FOR THE TREATMENT OF CERAMICS, ESPECIALLY BASED ON ZIRCONIUM OXIDE
EP0872460A1 (en) * 1997-04-15 1998-10-21 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Process for processing ceramic materials, in particular ceramics based on zirconia
DE102011116062A1 (en) * 2011-10-18 2013-04-18 Sintertechnik Gmbh Ceramic product for use as a target
CN116003125A (en) * 2022-12-06 2023-04-25 重庆文理学院 Preparation method of zirconia ceramic material for automobile exhaust sensor

Also Published As

Publication number Publication date
JPH0463017B2 (en) 1992-10-08

Similar Documents

Publication Publication Date Title
Nauer et al. An evaluation of Ce-Pr oxides and Ce-Pr-Nb oxides mixed conductors for cathodes of solid oxide fuel cells: structure, thermal expansion and electrical conductivity
Xiao et al. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide
CN1118834C (en) Rare earth metal-containing high-temperature thermistor
JPS60112620A (en) Mixed electrically-conductive zirconia and its nanufacture
JP7365947B2 (en) Method for manufacturing garnet-type solid electrolyte sintered body for all-solid-state lithium-ion battery and method for manufacturing all-solid-state lithium-ion battery
KR101545763B1 (en) Process for producing semiconductor porcelain composition and heater employing semiconductor porcelain composition
Hu et al. The preparation and electrical properties of La doped Er0. 2Ce0. 8O1. 9 based solid electrolyte
JP2008260673A (en) Ceria sintered body doped with rare earth element and manufacturing method thereof
JP3034132B2 (en) Zirconia solid electrolyte
JP4235114B2 (en) Sintered body and sputtering target comprising the same
JP2007311060A (en) Nickel oxide powder composition for solid oxide fuel cell, its manufacturing method, and fuel electrode material using it
JPH07277825A (en) Electric conductive ceramic
CN115872741A (en) High stability thermistor material suitable for temperature measurement in high temperature and wide temperature range and preparation method thereof
JP2004323324A (en) Silicon monoxide sintered compact and sputtering target
JPH0437646A (en) Production of zirconia ceramics film and its calcination method as well as zirconia conductive ceramics produced by this method and solid electrolyte fuel battery utilizing this ceramics
KR101933130B1 (en) Oxide based solid electrolytes and method for manufacturing the same
Mallahi et al. Synthesis of yttria-doped Bi2O3 nanopowders via sol gel used in electrolyte of solid oxide fuel cell
KR101925215B1 (en) Polycrystal zirconia compounds and preparing method of the same
JP3077054B2 (en) Heat-resistant conductive ceramics
JPH01317158A (en) Production of varister material
JP3354655B2 (en) Method for producing fuel electrode of solid electrolyte type electrolytic cell
JP3210208B2 (en) Method for manufacturing silicon carbide ceramic heater
KR101857618B1 (en) Method for manufacturing Fully Stabilized Zirconia(FSZ) having cubic structure
JPH06206727A (en) Zirconia thin film
CN100409374C (en) Method for making porous ceramics positive temperature coefficient thermistor