JPS6011250A - Fiber for optical transmission and its manufacture - Google Patents
Fiber for optical transmission and its manufactureInfo
- Publication number
- JPS6011250A JPS6011250A JP58117796A JP11779683A JPS6011250A JP S6011250 A JPS6011250 A JP S6011250A JP 58117796 A JP58117796 A JP 58117796A JP 11779683 A JP11779683 A JP 11779683A JP S6011250 A JPS6011250 A JP S6011250A
- Authority
- JP
- Japan
- Prior art keywords
- core
- base material
- fiber
- clad
- sio2
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01211—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/12—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/31—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/50—Multiple burner arrangements
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明はVAD法による単一モード光伝送用ファイバな
らびにその製造方法に係わる。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a fiber for single mode optical transmission using the VAD method and a method for manufacturing the same.
従来のVAD法による単一モード光伝送用ファイバは、
第1図に示すように、複数のバーナー1.2により、コ
ア3、クラッド4からなる微粒子集合体(多孔質母材)
を同時に回転する軸方向に堆積させ、その後これを塩素
系ガスを含むHe雰囲気中で透明ガラス化させ、これを
延伸し、石英パイプを被ぶせた上、線引するような工程
で作らとGeC14を原料として、クラッド用に5rC
14を原料とし、その結果、得られたガラス組成は、コ
アがS+C12GeO2・クラッドがS+02 となり
、屈折率分布が第2図に示すような特性のものが得られ
る。一方、近年単一モード光伝送用ファイバの新しい屈
折率分布構造として、第3図に示すような構造のもが提
案されている。(The Be1l SystemTe
chnicalJournal VoC61,A2.
P262〜266、1982参照)
この提案によるファイバのガラス組成は、第4図に示す
ように、コアがGeO3−S i02、クラッド、がS
102−F−P2O5となっており、製造方法はM
CV D法によるものである。The single mode optical transmission fiber using the conventional VAD method is
As shown in Fig. 1, a fine particle aggregate (porous base material) consisting of a core 3 and a cladding 4 is formed by a plurality of burners 1.2.
GeC14 is made by a process of simultaneously depositing GeC14 in the rotating axial direction, then turning it into transparent vitrification in a He atmosphere containing chlorine gas, stretching it, covering it with a quartz pipe, and drawing it. as raw material, 5rC for cladding
As a result, the resulting glass composition has a core of S+C12GeO2 and a cladding of S+02, with a refractive index distribution as shown in FIG. On the other hand, in recent years, a structure as shown in FIG. 3 has been proposed as a new refractive index distribution structure for a fiber for single mode optical transmission. (The Be1l SystemTe
chnicalJournal VoC61, A2.
(See pages 262-266, 1982) As shown in Figure 4, the glass composition of the fiber according to this proposal is that the core is GeO3-S i02 and the cladding is S.
102-F-P2O5, and the manufacturing method is M
It is based on the CVD method.
前記の第4図に示す構造のものは、コア用ガラス組成が
5i02 GeO2で形成されているが、このガラス組
成はガラス構造的に不安定であることが、紫外線吸収ス
ペクトルに現われる欠陥に基づく吸収ピークや放射線、
による着色などで明らかであ、る。In the structure shown in Fig. 4, the core glass composition is made of 5i02GeO2, but this glass composition is unstable in terms of glass structure, which causes absorption due to defects appearing in the ultraviolet absorption spectrum. peaks and radiation,
It is clear from the coloring etc.
とのガラス構造の欠陥は光伝送用ファイバの使用される
近赤外域の波長帯においても悪影響を与えることはいう
徒でもない。It goes without saying that defects in the glass structure have a negative effect even in the near-infrared wavelength band in which optical transmission fibers are used.
次にクラッドの組成でP2O5の添加の有無について述
べる。従来法のMCVD法では高温による石英管の収縮
という作製上の困難性を回避するため、低粘度の物性を
もたらすP2O,の添加が必須であった。Next, the presence or absence of addition of P2O5 in the composition of the cladding will be described. In the conventional MCVD method, in order to avoid manufacturing difficulties such as shrinkage of quartz tubes due to high temperatures, it was essential to add P2O, which provides physical properties of low viscosity.
しかしながら、P2O5は光学的の観点からは不必要な
ものであって、むしろ配位数5のP原子はガラス構造中
では不安定なものであって、光学的には好しくないとい
いえる。However, P2O5 is unnecessary from an optical point of view, and on the contrary, a P atom with a coordination number of 5 is unstable in a glass structure and is said to be unfavorable optically.
以上説明した観点にたち、本発明は第3図に示す屈折率
分布をコアにG e O2とFを含有し、クラッドには
P2O5を添加せず、Fのみ含有する新規構造の光伝送
用単一モードファイバとその製造方法を提供しようとす
るものであり、第5図に本発明の単一モードファイバ用
母材の実施例に示すように、コアの組成はGeO2F
SiO3、クラッドの組成はS+02 F となってお
シ、コア、クラッドともにFが含有されていることが一
つの特徴である。Based on the viewpoints explained above, the present invention is an optical transmission unit with a novel structure in which the core contains G e O2 and F and the cladding contains only F without adding P2O5, with the refractive index distribution shown in FIG. The purpose is to provide a one-mode fiber and a method for manufacturing the same, and as shown in FIG.
One of the characteristics is that the composition of SiO3 and cladding is S+02F, and F is contained in the SiO3, core, and cladding.
単一モードファイバの特性として、損失のほかに分散が
あるが、紫外吸収端が短かくなることは、分散特性にも
好ましい結果をもたらす傾向にある。In addition to loss, a single mode fiber has dispersion as a characteristic, and shortening the ultraviolet absorption edge tends to bring about favorable results in dispersion characteristics as well.
現在光通信システムで最もよく使用されている波長は1
.3μmで、この波長での単一モードファイバの全分散
は、第2図、第3図に示す屈折率分布 。Currently, the most commonly used wavelength in optical communication systems is 1.
.. At 3 μm, the total dispersion of a single mode fiber at this wavelength is the refractive index profile shown in Figures 2 and 3.
の場合、有限の値となるととが知られておシ、全分散が
零となる波長は1.3μmよシ長くなっている。In the case of , it is known that the value is finite, and the wavelength at which the total dispersion becomes zero is longer than 1.3 μm.
単一モードファイバの全分散は材料分散と構造分散との
和によって決り、材料分散は屈折率1の波λd2n
長依存性、つまりτ−1戸−により・ガラス組成に固有
なものとなる。Fを含有させて紫外吸収端を短かくする
ことにより、−!−!!−i!l!−−0なる波長が短
かくcdλ2
なることは、吸収と屈折率の波長依存性′が互いに独立
ではなく、クラマース・クロニッヒ(数学的にはヒルベ
ルト変換)により結びつけられるという理論的根拠に基
づいている。従ってFをコアに含有式せることにより、
全分散が零となる波長が、実際の使用波長である1、3
μmにより近くなり、1.3μ77Zの全分散が少なく
なる。このような理由により、コア組成にGeO□とと
もに、Fを含有させることは、損失、分散ともに有利に
働くことになる。The total dispersion of a single mode fiber is determined by the sum of the material dispersion and the structural dispersion, and the material dispersion is unique to the glass composition due to the wavelength dependence of the refractive index of 1, that is, τ. By incorporating F to shorten the ultraviolet absorption edge, -! -! ! -i! l! The reason why the wavelength of -0 becomes shorter than cdλ2 is based on the theoretical basis that the wavelength dependence of absorption and refractive index' are not independent of each other, but are linked by Kramers-Kronig (mathematically known as Hilbert transform). . Therefore, by incorporating F into the core,
The wavelength at which the total dispersion is zero is the actual wavelength used 1, 3
It is closer to μm and the total dispersion of 1.3μ77Z is less. For these reasons, including F together with GeO□ in the core composition is advantageous for both loss and dispersion.
次にクラッドの組成についてであるが、これはすでに述
べた理由により、P2O5は含有せず、5io2にFの
み含有されている。Next, regarding the composition of the cladding, for the reason already mentioned, it does not contain P2O5 and only F is contained in 5io2.
次に本発明の製造方法について説明する。Next, the manufacturing method of the present invention will be explained.
一般的に云って、Fの導入1siO□合成と同じ工程で
実施すれば、揮発性の高い弗化物ガスのHFやS+F4
の発生により、51o2の核生成が抑制され、ガラス生
成速度が低下し、きわめて生産性が低い方法となる。そ
こで本発明では第1図に示すような方法によシ、コアが
5i02 、GeO2系ガラスからなり、クラッドが5
i02からなる多孔質母材を火炎加水分解法により作製
し、これを電気炉中で\He + C12+ SF6の
雰囲気中、但しHe : 101 / min。Generally speaking, if F is introduced in the same process as 1siO□ synthesis, highly volatile fluoride gases such as HF and S+F4
The generation of 51o2 suppresses the nucleation of 51o2, reducing the glass formation rate, resulting in a method with extremely low productivity. Therefore, in the present invention, the core is made of 5i02 and GeO2 glass, and the cladding is made of 5i02 and
A porous base material made of i02 was prepared by a flame hydrolysis method, and it was heated in an electric furnace in an atmosphere of \He + C12 + SF6, where He: 101/min.
C12: 50cc/min、 SF6 (100c1
00cc7 T透明カラス化した。この際温度は約15
00’Cとし、母材の寸法は約45φX 200 mm
であった。このような多孔質母材の状態でhクラッドお
よびコアに十分Fを浸透線引きし、外径125μ77Z
のファイバとした。C12: 50cc/min, SF6 (100c1
00cc7 T transparent glass. At this time, the temperature is about 15
00'C, and the dimensions of the base material are approximately 45φX 200 mm.
Met. In such a porous base material state, the cladding and core were thoroughly infiltrated with F, and the outer diameter was 125μ77Z.
fiber.
以上によシ試作した光ファイバにつき、コアがFを含有
しないガラス組成5i02 GeO2よりなる(
ものと本発明の5i02 F GeO2よりなるものの
紫外吸収スペクトル試験を行った。その結果は第6図に
示されるように、本発明によるものが一吸収が小濾いこ
とが明らかである。For the optical fibers prototyped above, an ultraviolet absorption spectrum test was conducted on the optical fibers whose cores were made of glass composition 5i02GeO2 containing no F and those made of 5i02F GeO2 of the present invention.The results are shown in Figure 6. As can be seen, it is clear that the product according to the present invention has a low absorption rate.
Fを添加し、含有することによるガラス構造の安定化に
ついてのミクロ的な機構については、い捷だに明解には
なっていないが、SiO2やGeO2などの酸化物がガ
ラス中において、MOxでX〈2となりやすいこととF
が酸素のかわりにアニオンとしてガラス中に入ることな
どが原因となっていることなどが原因となっていると思
われる。The microscopic mechanism of the stabilization of the glass structure by adding and containing F is not yet clear, but oxides such as SiO2 and GeO2 react with MOx in the glass. 〈It is easy to become 2 and F
This is thought to be caused by the fact that the gas enters the glass as anions instead of oxygen.
またG e O2による欠陥を生じやすさは耐放射線特
性とも相関あり、Fを含有させた方が耐放射線特性の向
上が期待できる。Furthermore, the ease with which defects occur due to G e O 2 is also correlated with the radiation resistance characteristics, and it is expected that the radiation resistance characteristics will be improved by incorporating F.
また第7図に示すように、屈折率分布はコア。Also, as shown in Figure 7, the refractive index distribution is core.
クラッドとも比屈折率差にして0.2%の低下が認めら
れた。′fX、おこの光ファイバの損失は0.45 d
B/ IAm(1,3μm)で零分散波長は1.30
5μynであった。A decrease of 0.2% in the relative refractive index difference was observed for both the cladding and the cladding. 'fX, the loss of this optical fiber is 0.45 d
B/IAm (1.3μm) and zero dispersion wavelength is 1.30
It was 5 μyn.
以上説明したように、コアにG e O2とFを含有さ
せることにより、またクラッドにP2O5ヲ含有させる
ことなく、Fのみ含有させることによシ、吸収損失のす
くない光伝送用単一モードファイバを得ることができ、
透明ガラス化工程を弗素雰囲気とすることにより、コア
、クラッドを形成する母材に均一にFを含有させること
ができる。As explained above, by containing G e O2 and F in the core, and by containing only F in the cladding without P2O5, it is possible to create a single mode fiber for optical transmission with low absorption loss. you can get
By performing the transparent vitrification step in a fluorine atmosphere, F can be uniformly contained in the base material forming the core and cladding.
VAD法による多孔質母材の形成については従来の工程
によるものとかわるところがなく、透明化工程を弗素雰
囲気とすればよいだけであるから、従来のこの種光ファ
イバ用母材製造技術により、新しい光伝送用単一モード
ファイバを製造することができる。The formation of a porous base material by the VAD method is no different from the conventional process, and only requires a fluorine atmosphere for the transparentization process. Single mode fibers for optical transmission can be manufactured.
第1図は従来のVAD法による光伝送幣単−モードファ
イバ用多孔質母材の製造方法の説明図である。
第2図は従来の光フアイバ屈折率分布図である。
第3図は新たに提案された屈折率分布図である。
第4図は第3図分布図に対応する光フアイバ構造のガラ
ス組成図である。
第5図は本発明のガラス組成図である。
第6図はFを含有したガラスとしないガラスの紫外吸収
スペクトルを示す。
第7図゛は本発明実施例の屈折率分布図である。
I・・コア用バーナー、2・・・クラッド用バーナー、
3・・・多孔質コア部分ガラス、4・・・多孔質クラッ
ド部分ガラス。
295
図面の浄は(内YFに変更なし5
官1図
季
72図
ムΔ
す3図
4Δ
1
片6図
三
液t (nm)
許7図
手続補正書(1K)
昭和58年7月3ρ日
特 許
昭和58年卓、新緊發蔭頴第 117796 号2 発
明奔南の名称
光伝送用ファイバならびにその製造方法3、補正をする
者
事件との関係 特許出願人
住所 大阪市東区北浜5丁目15番地
名称(218)住友電気工業株式会社
6、補正の対象
願 書
明細書
7、補正の内容
別紙のとおシ、願書、全文明細書(タイプによるもの)
全提出する。
7 。
特許庁長官 若 杉 和 夫 殿
1、事件の表示
昭和58年 特 許 願 第117798号2、発明の
名称
光伝送用ファイバならびにその製造方法3、補正をする
者
事件との関係 特許出願人
住 所 大阪市東区北浜5丁目15番地名 称(213
) 住友電気工業株式会社代表者社長川上哲 部
4、代理人
住 所 大阪市淀用区西中島1丁目9番20号新中島ビ
ル7階(電話大阪304−8803)氏 名(7085
) 弁理士 青 木 秀 實図面
補正の内容
第1図〜第7図企図を別紙で提出する。FIG. 1 is an explanatory diagram of a method of manufacturing a porous preform for an optical transmission single-mode fiber using the conventional VAD method. FIG. 2 is a refractive index distribution diagram of a conventional optical fiber. FIG. 3 is a newly proposed refractive index distribution diagram. FIG. 4 is a glass composition diagram of an optical fiber structure corresponding to the distribution diagram of FIG. 3. FIG. 5 is a diagram of the glass composition of the present invention. FIG. 6 shows the ultraviolet absorption spectra of glasses with and without F. FIG. 7 is a refractive index distribution diagram of an embodiment of the present invention. I... Burner for core, 2... Burner for cladding,
3... Porous core part glass, 4... Porous clad part glass. 295 The purity of the drawings (no change in YF) 5 Government 1 drawing 72 drawings Δ Su 3 drawings 4 Δ 1 Sheet 6 drawings 3 liquids t (nm) Procedural amendment for drawing 7 (1K) July 3rd, 1982 Patent issued in 1982, Shinkin Paperback No. 117796 2 Name of Invention Kennan Optical transmission fiber and its manufacturing method 3 Relationship with the person making the amendment Case Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Address name (218) Sumitomo Electric Industries, Ltd. 6, Specification of the application subject to amendment 7, Attachment to the contents of the amendment, Application, Full text (by type)
Submit all. 7. Commissioner of the Japan Patent Office Kazuo Wakasugi1, Indication of the case, 1982 Patent Application No. 1177982, Name of the invention, Optical transmission fiber and its manufacturing method3, Person making the amendment, Relationship with the case, Address of the patent applicant. 5-15 Kitahama, Higashi-ku, Osaka Name (213)
) Sumitomo Electric Industries, Ltd. Representative President Satoshi Kawakami Department 4, Agent address 7th floor, Shin-Nakajima Building, 1-9-20 Nishinakajima, Yodoyo-ku, Osaka (Telephone: Osaka 304-8803) Name (7085)
) Patent Attorney Hide Aoki Submit the contents of the revised drawings (Figures 1 to 7) on separate sheets.
Claims (1)
2 ガラスからなり、クラッドがFを含む5i02 ガ
ラスからな9、更に前記クラッドの外側に純石英ガラス
のジャケラトラ有することを特徴とする光伝送用ファイ
バ。 (2) コアがGeO2′f!c含む5102 ガラス
よシなり、クラッドが5i02 ガラスよシなる多孔質
微粒子集合体を作成し、前記多孔質微粒子集合体をFを
含む雰囲気中で加熱し、コア々らびにクラッドにFを含
有せしめ、最終的に線引きすることを特徴とする光伝送
用ファイバの製造方法。[Claims] (+) 5i0 whose core contains both F and G e 02
2. A fiber for optical transmission, characterized in that the cladding is made of 5i02 glass containing F, and further has a jacket of pure silica glass on the outside of the cladding. (2) The core is GeO2'f! A porous fine particle aggregate made of 5102 glass containing c and a cladding made of 5i02 glass is prepared, and the porous fine particle aggregate is heated in an atmosphere containing F to cause the core and cladding to contain F. A method of manufacturing an optical transmission fiber, which comprises finally drawing the fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58117796A JPS6011250A (en) | 1983-06-28 | 1983-06-28 | Fiber for optical transmission and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58117796A JPS6011250A (en) | 1983-06-28 | 1983-06-28 | Fiber for optical transmission and its manufacture |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1112636A Division JPH0220805A (en) | 1989-05-01 | 1989-05-01 | Fiber for light transmission |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6011250A true JPS6011250A (en) | 1985-01-21 |
JPS6313946B2 JPS6313946B2 (en) | 1988-03-28 |
Family
ID=14720499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58117796A Granted JPS6011250A (en) | 1983-06-28 | 1983-06-28 | Fiber for optical transmission and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6011250A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6051630A (en) * | 1983-08-31 | 1985-03-23 | Furukawa Electric Co Ltd:The | Preparation of optical fiber |
JPS6060938A (en) * | 1983-09-10 | 1985-04-08 | Furukawa Electric Co Ltd:The | Manufacture of quartz base material for optical fiber |
JPS6096545A (en) * | 1983-10-28 | 1985-05-30 | Nippon Telegr & Teleph Corp <Ntt> | Optical fiber |
JPS61222940A (en) * | 1985-03-29 | 1986-10-03 | Furukawa Electric Co Ltd:The | Optical fiber |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52139447A (en) * | 1976-05-17 | 1977-11-21 | Sumitomo Electric Ind Ltd | Preparation of optical glass fiber |
JPS5567533A (en) * | 1978-11-07 | 1980-05-21 | Nippon Telegr & Teleph Corp <Ntt> | Production of glass base material for light transmission |
JPS5678441A (en) * | 1979-10-29 | 1981-06-27 | Int Standard Electric Corp | Manufacture of single mode optical fiber |
JPS57135744A (en) * | 1980-12-16 | 1982-08-21 | Karuto E Shirisu Sa | Optical waveguide cable |
-
1983
- 1983-06-28 JP JP58117796A patent/JPS6011250A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52139447A (en) * | 1976-05-17 | 1977-11-21 | Sumitomo Electric Ind Ltd | Preparation of optical glass fiber |
JPS5567533A (en) * | 1978-11-07 | 1980-05-21 | Nippon Telegr & Teleph Corp <Ntt> | Production of glass base material for light transmission |
JPS5678441A (en) * | 1979-10-29 | 1981-06-27 | Int Standard Electric Corp | Manufacture of single mode optical fiber |
JPS57135744A (en) * | 1980-12-16 | 1982-08-21 | Karuto E Shirisu Sa | Optical waveguide cable |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6051630A (en) * | 1983-08-31 | 1985-03-23 | Furukawa Electric Co Ltd:The | Preparation of optical fiber |
JPS6060938A (en) * | 1983-09-10 | 1985-04-08 | Furukawa Electric Co Ltd:The | Manufacture of quartz base material for optical fiber |
JPS6096545A (en) * | 1983-10-28 | 1985-05-30 | Nippon Telegr & Teleph Corp <Ntt> | Optical fiber |
JPS61222940A (en) * | 1985-03-29 | 1986-10-03 | Furukawa Electric Co Ltd:The | Optical fiber |
Also Published As
Publication number | Publication date |
---|---|
JPS6313946B2 (en) | 1988-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4339173A (en) | Optical waveguide containing P2 O5 and GeO2 | |
JP5636151B2 (en) | Multi-wavelength, multimode optical fiber | |
Blankenship et al. | The outside vapor deposition method of fabricating optical waveguide fibers | |
JPS5843336B2 (en) | Manufacturing method of clad type optical glass fiber | |
JP2959877B2 (en) | Optical fiber manufacturing method | |
CN101861537A (en) | Optical fiber and method for producing the same | |
JPS6011250A (en) | Fiber for optical transmission and its manufacture | |
JPS61191543A (en) | Quartz base optical fiber | |
JPS61262708A (en) | Single mode optical fiber for 1.5 micron band | |
JPS61219009A (en) | Single mode light waveguide comprising quartz glass and manufacture thereof | |
JP3106564B2 (en) | Manufacturing method of optical fiber and silica-based optical fiber | |
CA1122079A (en) | Manufacture of monomode fibers | |
JPS61191544A (en) | Quartz base optical fiber | |
JPS5838368B2 (en) | Optical fiber manufacturing method | |
WO2023219116A1 (en) | Optical fiber preform and method for producing optical fiber preform | |
JPH0220805A (en) | Fiber for light transmission | |
JPS6140843A (en) | Optical fiber | |
JPH068185B2 (en) | Manufacturing method of optical fiber preform | |
JPH0718963B2 (en) | Quartz optical fiber | |
JP2645710B2 (en) | Preform for optical fiber and method of manufacturing the same | |
JPS59141438A (en) | Manufacture of optical fiber preform | |
JPS6360123A (en) | Production for porous base material for single mode type optical fiber | |
JPH0133629Y2 (en) | ||
JPS5828211B2 (en) | Manufacturing method of rod-shaped base material for optical fiber | |
JPS63281106A (en) | Dispersion plat type optical fiber |