Nothing Special   »   [go: up one dir, main page]

JPS60117748A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60117748A
JPS60117748A JP58225657A JP22565783A JPS60117748A JP S60117748 A JPS60117748 A JP S60117748A JP 58225657 A JP58225657 A JP 58225657A JP 22565783 A JP22565783 A JP 22565783A JP S60117748 A JPS60117748 A JP S60117748A
Authority
JP
Japan
Prior art keywords
layer
groove
region
etching
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58225657A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kanbara
一博 神原
Osamu Hataishi
畑石 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58225657A priority Critical patent/JPS60117748A/en
Priority to KR1019840006940A priority patent/KR900001267B1/en
Priority to US06/675,613 priority patent/US4575925A/en
Priority to EP84308280A priority patent/EP0143662B1/en
Priority to DE8484308280T priority patent/DE3477447D1/en
Publication of JPS60117748A publication Critical patent/JPS60117748A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable contact with a buried diffused layer to be taken on an element surface by a method wherein a groove is formed in the side surface of an epitaxial grown layer on a single crystal layer of one conductivity type, its surface being then exposed; and a contact region is formed by burying a layer of one conductivity type in the groove. CONSTITUTION:The double-layer structure of an N<+> Si single crystal layer 15 and an Si epitaxial layer 16 is formed by being surrounded with an SiO2 film 12b in the element-forming region. Next, in order to form the groove taking contact with the layer 15, first a resist film is formed by coating over the entire surface and then patterned, thus forming an etching mask 17. After a contact groove 18 is formed by Si etching, the etching mask is removed, and this groove is formed vertically to the bottom of the layer 15. After formation of the groove, a phosphorus-doped poly Si layer 19 is grown. Successively, the poly Si layer on the SiO2 film is removed by polish-etching, and the base diffused region 20 and an emitter diffused region 21 are formed, resulting in the formation of a bi-polar transistor.

Description

【発明の詳細な説明】 +11発明の技術分野 本発明はエネルギービームを用いるアニールにより、絶
縁層で囲まれた島形成領域の多結晶シリコン(ポリシリ
コン)を単結晶化する501 (sili−con O
n In5ulator)技術を用いた半導体装置、特
にバイポーラトランジスタの製造において、高濃度埋没
層に達するコレクタコンタクトを素子の表面から形成す
る方法に関する。
Detailed Description of the Invention +11 Technical Field of the Invention The present invention is directed to monocrystallizing polycrystalline silicon (polysilicon) in an island forming region surrounded by an insulating layer by annealing using an energy beam.
The present invention relates to a method for forming a collector contact reaching a highly doped buried layer from the surface of a device in the manufacture of semiconductor devices, particularly bipolar transistors, using the In5ulator technology.

(2)技術の背景 底とまわりが絶縁物(二酸化シリコン、5iOz )で
分離されたシリコンを単結晶化して作られた島にトラン
ジスタの如き素子を形成する技術が開発されている。そ
れを第1図の断面図を参照して説明すると、シリコン基
板1上に0.5μmの厚さに5i02膜を形成し、それ
を選択的にエツチングしてSIO+の絶縁層2を作る(
第1図(8))。
(2) Background of the technology A technology has been developed to form elements such as transistors on an island made by single crystallizing silicon whose bottom and periphery are separated by an insulating material (silicon dioxide, 5 iOz). To explain this with reference to the cross-sectional view of FIG. 1, a 5i02 film is formed to a thickness of 0.5 μm on a silicon substrate 1, and it is selectively etched to form an SIO+ insulating layer 2 (
Figure 1 (8)).

次に同図(b)に示される如く全面に0.8〜1.0μ
mの膜厚にポリシリコンを成長してポリシリコン層3を
形成する。
Next, as shown in the same figure (b), 0.8 to 1.0μ is applied to the entire surface.
A polysilicon layer 3 is formed by growing polysilicon to a thickness of m.

次いで同図(C1に示される如く絶縁層2の作られてい
ない部分にレーザビーム4を照射するレーザアニールに
よってその部分のポリシリコンを溶融すると、溶融部分
はシリコン基板の単結晶を種にして図に白地で示す如く
単結晶化し、単結晶層5が作られる。レーザビームを図
に見て右に移動し、同図fd+に示される如(ポリシリ
コン層を単結晶層5に変える。
Next, as shown in FIG. The polysilicon layer is converted into a single crystal layer 5 as shown by the white background in FIG.

次いで選択酸化法(LOCO5法)で絶縁層2のまわり
を酸化して5iOz層6を形成すると、S+02で底と
まわりが分離された単結晶の島5aが作られ、この島5
aにトランジスタ等を形成すると特性に優れたものが得
られる。
Next, when the area around the insulating layer 2 is oxidized using a selective oxidation method (LOCO5 method) to form a 5iOz layer 6, a single-crystal island 5a whose bottom and surroundings are separated by S+02 is created, and this island 5
If a transistor or the like is formed in a, a device with excellent characteristics can be obtained.

(3)発明の目的 本発明の目的は上記SOI技術を用いて半導体素子、例
えばバイポーラトランジスタを形成するにおいて、埋没
拡散層(N+b 1it)とのコンタクトを素子表面で
とることができる半導体装置の製造方法の提供を目的と
するものである。
(3) Purpose of the Invention The purpose of the present invention is to manufacture a semiconductor device that can make contact with the buried diffusion layer (N+b 1it) at the surface of the device when forming a semiconductor device, such as a bipolar transistor, using the above-mentioned SOI technology. The purpose is to provide a method.

(4)発明の構成 そしてこの目的は本発明によれば、絶縁物上に多結晶シ
リコン層を設ける工程、この多結晶シリコン層の素子形
成領域以外の部分を選択酸化する工程、次いで素子形成
領域の多結晶シリコンを一導電型の不純物を含むガラス
膜をカバー膜としてエネルギービームを用いたアニール
により前記導電型単結晶層とする工程、全面にエピタキ
シャル層を成長し、素子形成領域以外のエピタキシャル
層を選択酸化する工程、素子形成領域の端部にエツチン
グにより前記絶縁物に達する溝を形成し当該溝をn型に
ドープした多結晶シリコンで埋める工程を含むことを特
徴とする半導体装置の製造方法を提供することによって
達成される。
(4) Structure and object of the invention According to the present invention, a step of providing a polycrystalline silicon layer on an insulator, a step of selectively oxidizing a portion of this polycrystalline silicon layer other than an element formation region, and then a step of selectively oxidizing a portion of the polycrystalline silicon layer other than an element formation region. The process of converting the polycrystalline silicon into the conductivity type single crystal layer by annealing using an energy beam using a glass film containing impurities of one conductivity type as a cover film, growing an epitaxial layer on the entire surface, and forming an epitaxial layer in areas other than the element formation area. A method for manufacturing a semiconductor device, comprising the steps of: selectively oxidizing the silicon; forming a groove reaching the insulator by etching at the end of the element forming region; and filling the groove with n-type doped polycrystalline silicon. This is achieved by providing

(5)発明の実施例 以下本発明実施例を図面によって詳述する。(5) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

一般にバイポーラトランジスタにおけるコレクタコンタ
クトは、エミッタおよびベース拡散領域を形成するエピ
タキシャル層が薄い場合はエミッタ拡散によってコレク
タコンタクト拡散を兼ねることができるので、コレクタ
コンタクトを深く形成する必要はなかった。本発明は、
n+型埋没層(n” b層)に達する深いコレクタコン
タクトをいかに形成するかにかかわる。
In general, when the epitaxial layer forming the emitter and base diffusion regions is thin, the collector contact in a bipolar transistor can double as the collector contact diffusion by emitter diffusion, so there is no need to form the collector contact deeply. The present invention
It concerns how to form a deep collector contact that reaches the n+ type buried layer (n''b layer).

本実施例はバイポーラ1ヘランジスタを例に、埋没層か
らコレクタコンタクトをとる方法を開示するもので、そ
の工程を第2図に示す半導体装置開部の断面図を参照し
て説明する。
This embodiment uses a bipolar 1-helangistor as an example to disclose a method of making a collector contact from a buried layer.The process will be explained with reference to a cross-sectional view of an opening of a semiconductor device shown in FIG.

先ず、第2図(alに示す如く、二酸化シリコン(S+
02)膜12の全面に多結晶シリコン(ポリシリコン)
膜13を例えば化学気相成長(CVD )法によって成
長する。その膜厚は形成されるべき N+b層の深さに
対応して設定する。
First, as shown in Figure 2 (al), silicon dioxide (S+
02) Polycrystalline silicon (polysilicon) on the entire surface of the film 12
The film 13 is grown by, for example, chemical vapor deposition (CVD). The film thickness is set corresponding to the depth of the N+b layer to be formed.

次いで全面に窒化膜(SiJN41!iりを被着し、そ
れを素子形成領域をマスクする如くにパターニングして
窒化膜19を作り、次いで熱酸化法によりポリシリコン
膜13を選択酸化する。かかる選択酸化により窒化膜1
9がない部分のポリシリコンは酸化されて5i02とな
るが、窒化膜19の下のポリシリコンは酸化されずその
まま残る。
Next, a nitride film (SiJN41!i) is deposited on the entire surface and patterned to mask the element formation region to form a nitride film 19. Next, the polysilicon film 13 is selectively oxidized by a thermal oxidation method. Nitride film 1 due to oxidation
The polysilicon in the area without 9 is oxidized to 5i02, but the polysilicon under the nitride film 19 is not oxidized and remains as it is.

次に第2図(b)に示す如く、上記窒化膜19を除去し
た後アンチモン・シリケート・ガラス(SbSG)のカ
バー膜14を塗布し、しかる後レーザアニールにより酸
化されずに残ったポリシリコン13aを単結晶化すると
同時にn+型にドープしてn+単結晶層15を形成する
Next, as shown in FIG. 2(b), after removing the nitride film 19, a cover film 14 of antimony silicate glass (SbSG) is applied, and then the remaining polysilicon 13a without being oxidized is subjected to laser annealing. is made into a single crystal, and at the same time it is doped to an n+ type to form an n+ single crystal layer 15.

次いで5bSGカバー膜14を除去し全面にシリコンエ
ピタキシャル層を成長した後、前記選択酸化と同様に素
子形成領域に窒化膜をパターニングして熱酸化する。か
くして第2図(C)に示す如く素子形成領域にはn+単
結晶層15とエピタキシャル層16との2層構造がSi
O2膜12bに囲まれて形成される。
Next, after removing the 5bSG cover film 14 and growing a silicon epitaxial layer on the entire surface, a nitride film is patterned and thermally oxidized in the element formation region in the same manner as the selective oxidation. Thus, as shown in FIG. 2(C), a two-layer structure of the n+ single crystal layer 15 and the epitaxial layer 16 is formed in the element formation region.
It is formed surrounded by an O2 film 12b.

次にn+単結晶層15とのコンタク1−をとる溝を形成
するため、先ず全面にレジスト膜を塗布形成し、それを
同図telに示す如くパターニングしてエツチングマス
ク17を形成する。当該エツチングマスク17の大きさ
はエピタキシャル層16より小さくし、このマスク17
の周囲にはみ出したエピタキシャル層16の部分が溝形
成領域となるよう設定する。
Next, in order to form a groove that makes contact 1- with the n+ single crystal layer 15, a resist film is first applied to the entire surface and patterned as shown in the figure tel to form an etching mask 17. The size of the etching mask 17 is made smaller than the epitaxial layer 16.
The portion of the epitaxial layer 16 protruding from the periphery is set to become a groove forming region.

第2図1dlはシリコンエツチングによりコンタクト溝
18を形成した後エツチングマスク17を除去した状態
を示し、溝18はn+型単結晶層15底部まで垂直に形
成される。なおシリコンエツチングにおいてはSi02
層12bがストッパーとなるため、単結晶層がエツチン
グされてSiO2層が露出したところでエツチングが止
る。また、横方向にもSiO2層で囲まれているのでサ
イドエツチングはほとんど進行することなく、溝形成の
ためのエツチングはきわめて容易になされ、僅かのオー
バーエツチングがあったとしてもそれが致命的なダメー
ジを与えることはない。
FIG. 2Dl shows a state in which the etching mask 17 is removed after a contact groove 18 is formed by silicon etching, and the groove 18 is formed vertically to the bottom of the n+ type single crystal layer 15. In addition, in silicon etching, Si02
Since layer 12b acts as a stopper, etching stops when the single crystal layer is etched and the SiO2 layer is exposed. In addition, since it is surrounded by the SiO2 layer in the lateral direction, side etching hardly progresses, and etching for forming grooves is extremely easy, and even if there is a slight overetching, it will cause fatal damage. will not be given.

上記溝18を形成した後は低温(最高800℃) CV
D法により燐ドープのポリシリコン層19を成長する(
同図(e))。このとき溝18は上記ポリシリコン層1
9によって埋められる。
After forming the groove 18, the temperature is low (maximum 800°C) CV
A phosphorus-doped polysilicon layer 19 is grown by method D (
Figure (e)). At this time, the groove 18 is formed in the polysilicon layer 1.
Filled in by 9.

続いてポリッシュによるエツチングでSS1021F’
12b上のポリシリコシ層19を除去し、通常の技術に
よってベース拡散領域20およびエミッタ拡散領域21
を形成しバイポーラトランジスタを形成する(同図(f
))。か(して溝18のポリシリコン層19aにより素
子表面からコレクタコンタクトをとることができる。
Next, SS1021F' was etched with polish.
The polysilicon layer 19 on 12b is removed and the base diffusion region 20 and emitter diffusion region 21 are formed using conventional techniques.
is formed to form a bipolar transistor (see (f) in the same figure).
)). (Thus, the polysilicon layer 19a in the groove 18 allows a collector contact to be made from the element surface.

上述した本発明の方法の特徴は、第1にSOI技術を用
いた素子形成方法であって、素子形成領域がシリコンエ
ツチングのストッパーとなるSiO2膜に囲まれている
ためエツチングの終・点制御が容易であること、第2は
ポリシリコン層19の成長およびポリッシュが低温処理
(ポリッシュは室温程度で行う)であるため、深いコレ
クタコンタクトの形成において高温状態がなく、従来高
温で起り易いn+単結晶層15のエピタキシャル層16
へのはい上がりが少なくなり、その結果エピタキシャル
層重6を薄くすることができ、従ってベースが浅くなり
素子の動作速度を速くすることができる。なお、エピタ
キシャル層I6を薄く形成するために、溝18の深さは
その分だけ小になり、そのことはポリシリコン層の成長
が容易になされる結果となる。
The characteristics of the method of the present invention described above are as follows: Firstly, it is an element forming method using SOI technology, and since the element forming region is surrounded by a SiO2 film that acts as a stopper for silicon etching, it is possible to control the end point of etching. The second reason is that the growth and polishing of the polysilicon layer 19 is performed at a low temperature (polishing is performed at about room temperature), so there is no high temperature condition during the formation of a deep collector contact, which conventionally tends to occur at high temperatures. Epitaxial layer 16 of layer 15
As a result, the epitaxial layer weight 6 can be made thinner, so that the base becomes shallower and the operating speed of the device can be increased. Note that in order to form the epitaxial layer I6 thinly, the depth of the groove 18 is reduced accordingly, which results in easier growth of the polysilicon layer.

また第3の特徴として、従来あったコレクタコンタクト
用のn+拡散層の形成が不必要となるため製造工程が短
縮できる利点がある。
A third feature is that the manufacturing process can be shortened because the formation of an n+ diffusion layer for a collector contact, which was conventionally required, is no longer necessary.

(6)発明の効果 以上詳細に説明した如く本発明によれば、SOI技術を
使ってn+単結晶層を埋没層とする半導体素子の形成に
おいて、上記埋没層とのコンタクトを素子表面でとるこ
とができるため、例えばバイポーラトランジスタにおい
てコレクタコンタクトをとることが容易となり、またか
かる素子におい (Q]て動作速度の向上、製造工程数
の短縮が達成されるため、半導体装置の製造歩留りと製
品の信頼性第1図は従来技術によるSOIの単結晶化の
工程を示す断面図、第2図は本発明の方法を実施するポ
リ・2シュ層、14−アンチモンシリケートガラス膜、
15−n+単結晶層、16−・エピタキシャルM、17
−エツチングマスク、 (d゛18、−溝、19. 1
9a−・−鱗ドープポリシリコン層、20−ベース拡散
領域、21−エミッタ拡散領域第1図 手給補正書(自発) 昭和 年 月 11 59.11.1 ’、) 1・I+ l′lの表示 昭和布と年↑、胃T願第22女乙≦−7号2発明の名称
 半導体装置の製造方法 3、 till止を′4る古 ’Bf’lとの関係 ↑寵′「出願人 住所 神仝用県用崎市中原区II[・(11中1015
番地(522)名称富士通株式会社 4 代 理 人 住所 神奈川県用崎市中原区II]・
]11中1015番地富士通株式会社内 (1) 本願明細書の特許請求の範囲を次のとおり補正
する。
(6) Effects of the Invention As explained in detail above, according to the present invention, in forming a semiconductor device using an n+ single crystal layer as a buried layer using SOI technology, contact with the buried layer can be made at the surface of the device. This makes it easy to make collector contact in bipolar transistors, for example, and improves the operating speed and shortens the number of manufacturing steps in such devices, improving the manufacturing yield of semiconductor devices and product reliability. Fig. 1 is a cross-sectional view showing the SOI single crystallization process according to the prior art, and Fig. 2 shows a polysilicon layer, a 14-antimony silicate glass film, and a 14-antimony silicate glass film for implementing the method of the present invention.
15-n+ single crystal layer, 16-・epitaxial M, 17
-Etching mask, (d゛18, -groove, 19.1
9a--Scale doped polysilicon layer, 20-Base diffusion region, 21-Emitter diffusion region Figure 1 Hand-supplied correction form (self-initiated) Showa month 11 59.11.1',) 1・I+ l'l Showa Cloth and year ↑, Stomach T Application No. 22 ≦ -7 No. 2 Name of the invention Method of manufacturing semiconductor devices 3, Relationship with old 'Bf'l that stops '4' ↑ 'Applicant's address Nakahara-ku II, Yozaki City, Kaminoyo Prefecture [・(1015 out of 11)
Address (522) Name Fujitsu Limited 4 Agent Address II Nakahara Ward, Yozaki City, Kanagawa Prefecture]
] 11-1015 Fujitsu Limited (1) The scope of claims in the specification of the present application is amended as follows.

ト 域を形成 る工程とを含むことを特徴とする半導体
装置の製造方法。」
A method for manufacturing a semiconductor device, comprising the step of forming a region. ”

Claims (1)

【特許請求の範囲】[Claims] 絶縁物上に多結晶シリコン層を設ける工程、この多結晶
シリコン層の素子形成領域以外の部分を選択酸化する工
程、次いで素子形成領域の多結晶シリコンを一導電型の
不純物を含むガラス膜をカバー膜としてエネルギービー
ムを用いたアニールにより前記導電型単結晶層とする工
程、全面にエピタキシャル層を成長し、素子形成領域以
外のエピタキシャル層を選択酸化する工程、素子形成領
域の端部にエツチングにより前記絶縁物に達する溝を形
成し当該溝をn型にドープした多結晶シリコンで埋める
工程を含むことを特徴とする半導体装置の製造方法。
A step of providing a polycrystalline silicon layer on the insulator, a step of selectively oxidizing the portions of this polycrystalline silicon layer other than the device formation region, and then a glass film containing impurities of one conductivity type covers the polycrystalline silicon in the device formation region. A step of forming the conductive single crystal layer by annealing using an energy beam as a film, a step of growing an epitaxial layer on the entire surface and selectively oxidizing the epitaxial layer other than the element forming region, and etching the above-mentioned layer at the end of the element forming region. 1. A method of manufacturing a semiconductor device, comprising the steps of forming a trench that reaches an insulator and filling the trench with n-type doped polycrystalline silicon.
JP58225657A 1983-11-30 1983-11-30 Manufacture of semiconductor device Pending JPS60117748A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58225657A JPS60117748A (en) 1983-11-30 1983-11-30 Manufacture of semiconductor device
KR1019840006940A KR900001267B1 (en) 1983-11-30 1984-11-06 Manufacture of semiconductor device
US06/675,613 US4575925A (en) 1983-11-30 1984-11-28 Method for fabricating a SOI type semiconductor device
EP84308280A EP0143662B1 (en) 1983-11-30 1984-11-29 Soi type semiconductor device
DE8484308280T DE3477447D1 (en) 1983-11-30 1984-11-29 Soi type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225657A JPS60117748A (en) 1983-11-30 1983-11-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60117748A true JPS60117748A (en) 1985-06-25

Family

ID=16832725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225657A Pending JPS60117748A (en) 1983-11-30 1983-11-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60117748A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897225A (en) * 1994-09-22 1996-04-12 Nec Corp Semiconductor device and its manufacture
US9629467B2 (en) 2008-07-25 2017-04-25 Herman Miller, Inc. Method for manufacturing a multi-layered support structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897225A (en) * 1994-09-22 1996-04-12 Nec Corp Semiconductor device and its manufacture
US9629467B2 (en) 2008-07-25 2017-04-25 Herman Miller, Inc. Method for manufacturing a multi-layered support structure

Similar Documents

Publication Publication Date Title
US5057450A (en) Method for fabricating silicon-on-insulator structures
JPS6015944A (en) Semiconductor device
JPH06232247A (en) Manufacturing of semiconductor layer isolated on insulation layer
JPH0427704B2 (en)
JPS60117748A (en) Manufacture of semiconductor device
JPH05849B2 (en)
JPS59182538A (en) Semiconductor device and manufacture thereof
JPS6359538B2 (en)
JP2000306989A (en) Fabrication of semiconductor device
JPS62202559A (en) Semiconductor device and its manufacture
JPH06163677A (en) Manufacture of semiconductor device
JPH0669430A (en) Manufacture of semiconductor device
KR950003900B1 (en) Semiconductor device manufacturing method for soi structure
JPS6234147B2 (en)
JPS5815944B2 (en) semiconductor equipment
JPH0373139B2 (en)
JPS595644A (en) Manufacture of semiconductor device
JPS5950540A (en) Manufacture of semiconductor device
KR100278997B1 (en) Manufacturing Method of Semiconductor Device
JPH03250750A (en) Manufacture of soi substrate and semiconductor device
JPS60753A (en) Manufacture of semiconductor device
JPH02138734A (en) Manufacture of semiconductor device
JPH0669066B2 (en) Method for manufacturing semiconductor device
JPH065693A (en) Manufacture of semiconductor device
JPS5910235A (en) Semiconductor device