Nothing Special   »   [go: up one dir, main page]

JPS60117711A - Forming apparatus of thin film - Google Patents

Forming apparatus of thin film

Info

Publication number
JPS60117711A
JPS60117711A JP58225756A JP22575683A JPS60117711A JP S60117711 A JPS60117711 A JP S60117711A JP 58225756 A JP58225756 A JP 58225756A JP 22575683 A JP22575683 A JP 22575683A JP S60117711 A JPS60117711 A JP S60117711A
Authority
JP
Japan
Prior art keywords
reaction chamber
gas
thin film
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58225756A
Other languages
Japanese (ja)
Inventor
Genichi Adachi
元一 安達
Masahiko Hirose
広瀬 昌彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58225756A priority Critical patent/JPS60117711A/en
Publication of JPS60117711A publication Critical patent/JPS60117711A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable the high-speed formation of a thin film excellent in film characteristics on a substrate set in a reaction chamber, by introducing rays of light into the reaction chamber together with an ECR plasma flow so as to decompose a material gas. CONSTITUTION:A reaction chamber 1 and a plasma generating chamber 4 are evacuated, and a substrate 3 is heated by a heater. Next, valves 9 and 11 being opened, a disilane gas is introduced into the reaction chamber 1 and an Ar gas into the plasma generating chamber 4. A microwave is generated by turning a microwave generator on, and simultaneously an Ar gas plasma is generated by forming a magnetic field by means of a magnetic coil 7. Next, a mercury lamp 13 being lighted, ultraviolet rays are introduced into the reaction chamber 1. In the reaction chamber 1, disilane molecules are brought into photochemical reaction by the ultraviolet rays, so that part of them is decomposed. This decomposition is further facilitated through the reaction thereof to Ar ions, Ar radical molecules or the decomposition product thereof taken out of the plasma generating chamber 4, and these decomposition products are transferred onto the substrate 3 and deposited as an a-Si film thereon.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、所望の薄膜を高速に成膜するに有効な薄膜形
成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a thin film forming apparatus that is effective in forming a desired thin film at high speed.

C発明の技術的背景とその問題点j 従来、シリコン酸化膜、シリコン窒化膜、アモルファス
シリコン(a−8i )膜などの薄膜形成には、CVD
法やプラズマCVD法が用いられてきた。しかし、CV
D法では高い基板温度(500〜1000℃)を必要と
するためぞの1m[Rに耐えられない基板を用いること
ができない。プラズマCVD法では基板温度を200〜
/100℃に下げられるが、膜形成速度が数10〜10
00人/分と小さいため、例えば10〜数10μの膜厚
を得るには、非常に長い堆積時間を要するという欠点が
ある。
C Technical background of the invention and its problemsj Conventionally, CVD has been used to form thin films such as silicon oxide films, silicon nitride films, and amorphous silicon (a-8i) films.
method and plasma CVD method have been used. However, C.V.
Since method D requires a high substrate temperature (500 to 1000° C.), a substrate that cannot withstand 1 m [R] cannot be used. In plasma CVD method, the substrate temperature is 200~
/100℃, but the film formation rate is several 10 to 10
00 people/min, it has the disadvantage that a very long deposition time is required to obtain a film thickness of, for example, 10 to several tens of microns.

このため、低温でかつ高速に膜形成ができる装買の研究
がなさ程で来た。そのなかの一つに、マイクロ波と磁場
による電子サイクロ1ヘロン共鳴(ECR)ににって生
成したプラス゛マを利用する薄膜形成方法がある。これ
は例えば、2.45G)−17のマイクロ波を矩形導波
管を用いてプラズマ生成室に導入し、このプラズマ生成
室に導入された所定のカスをプラズマ化して引出し窓か
らプラズマ流どして反応室内に引出し、反応室に導入し
た原料ガスと相互作用させる事により基板上に薄膜を形
成づるものである。この方法によれば、基板を加熱する
ことなくシリコン酸化膜・1″)シリコン窒化膜を形成
することがてきるが、その膜形成速度は高々数100人
/分程度であり、またa−31膜では光導電性などの特
性が必ずしも良くないという問題があった。
For this reason, there has been little research into equipment that can form films at low temperatures and at high speeds. One of them is a thin film forming method that utilizes plasma generated by electron cyclo-1 Heron resonance (ECR) using microwaves and a magnetic field. For example, a microwave of 2.45G)-17 is introduced into a plasma generation chamber using a rectangular waveguide, and a certain amount of scum introduced into the plasma generation chamber is turned into plasma, and then the plasma is discharged through a drawer window. A thin film is formed on the substrate by drawing the gas into the reaction chamber and interacting with the raw material gas introduced into the reaction chamber. According to this method, it is possible to form a silicon oxide film or a silicon nitride film without heating the substrate, but the film formation rate is at most several hundred people/minute, and a-31 The problem with films is that they do not necessarily have good properties such as photoconductivity.

[発明の目的] 本発明は、膜特性の良好な薄膜を高速で形成することを
可能どした薄膜形成装置を提供することを目的とする。
[Object of the Invention] An object of the present invention is to provide a thin film forming apparatus capable of forming a thin film with good film characteristics at high speed.

[発明の概要] 本発明は、ECRプラズマによる原石ガスの分解と光照
射による原料ガスの分解とを利用する。
[Summary of the Invention] The present invention utilizes decomposition of raw gas by ECR plasma and decomposition of source gas by light irradiation.

即ち、反応室に連通してECRプラズマ生成室を設ける
とともに、紫外光を含む光源を設け、ECRプラズマ流
と同時に光を反応室に導入して原料ガスを分解して反応
室にもうけられた基板上に所望の薄膜を形成する。
That is, an ECR plasma generation chamber is provided in communication with the reaction chamber, and a light source containing ultraviolet light is provided, and light is introduced into the reaction chamber at the same time as the ECR plasma flow to decompose the source gas and produce a substrate in the reaction chamber. A desired thin film is formed on top.

[発明の効果] 本発明によれば、ECRプラズマによる励起と光照射に
よる励起の相乗効果により原料ガスは効率良く分解され
、良質の薄膜を高速に成膜することができる。
[Effects of the Invention] According to the present invention, the raw material gas is efficiently decomposed due to the synergistic effect of excitation by ECR plasma and excitation by light irradiation, and a high-quality thin film can be formed at high speed.

例えばジシランガスを用いた通常のグロー放電分解法に
よって得られるa−8t膜の形成速度が10〜20人/
秒であるのに対し、本発明の装置では30〜40人/秒
の速度が得られる。しがちそのa−81膜の光導電特性
を初めとづる特性はグロー放電による膜と比べて何等劣
るところがない。
For example, the formation rate of the a-8t film obtained by the usual glow discharge decomposition method using disilane gas is 10 to 20 people/
seconds, whereas with the device of the invention a speed of 30-40 people/second can be obtained. However, the photoconductive properties and other properties of the A-81 film are in no way inferior to those produced by glow discharge.

[発明の実施例] 以下に本発明の詳細な説明する。第1図は一実施例の装
置を示す断面図である。1は所定の圧力に減圧される反
応室であり、内部に加熱ヒータNの基板載置台2が設け
られこの上に基板3が設置される。反応室1の上部には
これと連通してECRプラズマ生成室4が設けられてい
る。このプラズマ生成室4には石英製のマイクロ波導入
窓5を介して矩形導波管6が接続され、またその周囲に
は磁気コイル7が設置されている。8は原料ガスの導入
管、9はバルブ、10はプラズマ生成用ガス導入管、1
1はバルブである。また反応室1の側壁には石英製の光
導入窓12が設けられ、その外に2600Å以下の波長
成分を含む光源として500 Wの低圧水銀ランプ13
が設けられている。ランプ容器14には紫外光によるオ
ゾン発生防止どランプの温度上昇防止のため窒素やアル
ゴンなどの不活性ガスを流すようになっている。
[Embodiments of the Invention] The present invention will be described in detail below. FIG. 1 is a sectional view showing an embodiment of the apparatus. Reference numeral 1 denotes a reaction chamber that is reduced to a predetermined pressure, and a substrate mounting table 2 with a heater N is provided inside thereof, and a substrate 3 is placed on this. An ECR plasma generation chamber 4 is provided in the upper part of the reaction chamber 1 in communication with the reaction chamber 1 . A rectangular waveguide 6 is connected to the plasma generation chamber 4 through a microwave introduction window 5 made of quartz, and a magnetic coil 7 is installed around the rectangular waveguide 6. 8 is a raw material gas introduction pipe, 9 is a valve, 10 is a plasma generation gas introduction pipe, 1
1 is a valve. A light introduction window 12 made of quartz is provided on the side wall of the reaction chamber 1, and a 500 W low-pressure mercury lamp 13 is installed as a light source containing wavelength components of 2600 Å or less.
is provided. An inert gas such as nitrogen or argon is flowed into the lamp container 14 to prevent ozone generation due to ultraviolet light and to prevent a rise in temperature of the lamp.

なお、プラズマ生成室4内で満たずべきECR条件は、
導波管6に接続されたマイクロ波発生器によって発生し
たマイクロ波の周波数をωとすると、 ω−(e−B)/ (m−c) で与えられる。m、eはそれぞれ電子の質量と電荷、C
は光速、Bは磁束密度である。
The ECR conditions that must be met in the plasma generation chamber 4 are as follows:
When the frequency of the microwave generated by the microwave generator connected to the waveguide 6 is ω, it is given by ω−(e−B)/(m−c). m and e are the mass and charge of the electron, respectively, and C
is the speed of light, and B is the magnetic flux density.

この装置によって、−例としてa−S+Sを形成する場
合を具体的に説明する。
A case in which a-S+S is formed using this apparatus will be specifically described as an example.

まず拡散ポンプおよび油回転ポンプを用いて反応室1お
よびプラズマ生成室4内を2X10− ”Torr程度
まで排気する。このとき加熱ヒータにより基板3は20
0℃となっている。次にバルブ9および11を開き、反
応室1内に濃度100%のジシランガスを、プラズマ生
成室4内に99゜999%の純度のArガスをそれぞれ
導入すると同時に、排気系を拡散ポンプ、油回転ポンプ
系からメカニカルブースター・ポンプ、油回転ポンプ系
に切替える。そしてマス70−コン1〜〇−ラによって
Arガスの流量を508CCM、ジシランガスの流量を
20SCCMとし、スロットルバルブにより反応室1の
圧力を0.05Torrに設定する。
First, the inside of the reaction chamber 1 and the plasma generation chamber 4 are evacuated to about 2×10-” Torr using a diffusion pump and an oil rotary pump. At this time, the substrate 3 is
The temperature is 0℃. Next, valves 9 and 11 are opened, and disilane gas with a concentration of 100% is introduced into the reaction chamber 1, and Ar gas with a purity of 99°999% is introduced into the plasma generation chamber 4. At the same time, the exhaust system is connected to a diffusion pump and an oil rotor. Switch from pump system to mechanical booster pump and oil rotary pump system. Then, the flow rate of Ar gas is set to 508 CCM and the flow rate of disilane gas is set to 20 SCCM using the mass 70-controllers 1 to 0, and the pressure of the reaction chamber 1 is set to 0.05 Torr using the throttle valve.

この状態でマイクロ波発生器をオンどして周波数2.4
5GHzのマイクロ波300ワツトを発生させ、同時に
磁気コイル7により磁束密度875Gaussの磁場を
形成してArガスプラズマを発生させる。次に水銀ラン
プ13を点灯して、1850人、2537人の波長の紫
外光を反応室1に導入する。
In this state, turn on the microwave generator and set the frequency to 2.4.
A 5 GHz microwave of 300 watts is generated, and at the same time a magnetic field with a magnetic flux density of 875 Gauss is generated by the magnetic coil 7 to generate Ar gas plasma. Next, the mercury lamp 13 is turned on, and ultraviolet light having wavelengths of 1,850 and 2,537 people is introduced into the reaction chamber 1.

これにより、反応室1においてはジシラン分子が紫外光
によって光化学反応を起こしてその一部が分解し、また
プラズマ生成室4から引出されたへrイオンまたはAr
ラジノJルとジシラン分子またはその分解物とが反応し
て更に分解が促進され、それらが基板3上に輸送されて
a−3i膜として堆(iすることになる。
As a result, in the reaction chamber 1, the disilane molecules undergo a photochemical reaction due to the ultraviolet light, and a part of them is decomposed, and the disilane molecules drawn out from the plasma generation chamber 4 are exposed to r ions or Ar.
Radinol and disilane molecules or their decomposition products react to further promote decomposition, and they are transported onto the substrate 3 and deposited as an a-3i film.

本実施例ではこの状態で1時間の膜形成を行なつ Iこ
 。
In this example, film formation was performed for 1 hour in this state.

そしてバルブ9および11を閉じてガス導入を停止し、
反応室1およびプラズマ生成室4内を1Q’Torr台
まで排気し、加熱ヒータをオフとして基板3がioo’
cになるのを持ってこれを取出す。
Then, close valves 9 and 11 to stop gas introduction.
The reaction chamber 1 and plasma generation chamber 4 are evacuated to 1Q' Torr level, the heater is turned off, and the substrate 3 is heated to ioo'
Take out this by holding it.

こうして形成されたa−8t膜の膜厚は12μであった
。またこの膜の光導電特性を測定したところ、暗比抵抗
が1011Ω・口、また633nmの単色光(1015
7Aトン/ ci・秒)の照射に対して107Ω・cm
の比抵抗を示した。このように本実施例によれば、EC
Rプラズマと光照射の相乗効果により、速い膜形成速度
をもって良好な特性の薄膜を得ることができる。
The thickness of the a-8t film thus formed was 12μ. In addition, when the photoconductive properties of this film were measured, the dark specific resistance was 1011Ω.
107Ω・cm for irradiation of 7A tons/ci・sec)
showed a specific resistance of As described above, according to this embodiment, EC
Due to the synergistic effect of R plasma and light irradiation, a thin film with good properties can be obtained at a fast film formation rate.

またこの実施例の装置によれば、次のような附随的な効
果が冑られる。光導入窓12がプラズマ流の流れる領域
から離れた反応室1の側壁を更に突出させた位置に設け
られているため、この光導入窓12への膜形成が非常に
少ない。a−3を膜は通常その照射光に対する透過率が
低く、光導入窓に製膜されると不都合を生じるが、本実
施例の装置ではこれが効果的に防止される。特に本実施
例の場合、光導入窓12が側壁を外部に突出させた位置
に設けられているため、この光導入窓12の反応室側に
不活性ガスを流してエアカーテンをつくることにより、
一層効果的に光導入窓12への製膜を防止することがで
きる。またこの実施例では、照射光は基板3と平行であ
り基板3には直接照射されないため、基板3が照射光に
よりダメージを受けることがない。このことは特に、光
源にエネルギー密度の高いレーザを用いた場合に大きな
意味を持つ。
Further, according to the apparatus of this embodiment, the following incidental effects can be achieved. Since the light introduction window 12 is provided at a position further protruding from the side wall of the reaction chamber 1 away from the region through which the plasma flow flows, film formation on the light introduction window 12 is extremely small. The a-3 film usually has a low transmittance to irradiated light, which causes problems when it is formed on the light introduction window, but this can be effectively prevented in the apparatus of this embodiment. In particular, in the case of this embodiment, since the light introduction window 12 is provided at a position where the side wall protrudes to the outside, an air curtain is created by flowing an inert gas to the reaction chamber side of the light introduction window 12.
Film formation on the light introduction window 12 can be more effectively prevented. Furthermore, in this embodiment, the irradiated light is parallel to the substrate 3 and is not directly irradiated onto the substrate 3, so that the substrate 3 is not damaged by the irradiated light. This is particularly significant when a laser with high energy density is used as the light source.

なお本発明は上記実施例に限られるものではない。例え
ば、実施例では一つの光源を用いているが、反応室1の
周囲に少数個の光源を設けてもよい。第2図は反応室1
の周囲に120度間隔で3個の光導入窓12a〜12C
を設け、3個の水銀ランプ138〜13C@設けた例で
ある。このようにすれば、基板面積が大きい場合や複数
の基板に同時に成膜する場合に、基板内又は基板間の膜
特性のばらつきを少なくすることができる。またa−8
iIl!を形成するための原料ガスとしての81化合物
ガスはジシランに限らず、他の高次シランガスでもよい
し、モノシランガスでもよい。またこれらの原料ガスは
不活性ガスや水素ガスで希釈したものであってもよい。
Note that the present invention is not limited to the above embodiments. For example, although one light source is used in the embodiment, a small number of light sources may be provided around the reaction chamber 1. Figure 2 shows reaction chamber 1.
Three light introduction windows 12a to 12C at 120 degree intervals around the
This is an example in which three mercury lamps 138 to 13C@ are provided. In this way, when the substrate area is large or when films are formed on multiple substrates at the same time, variations in film characteristics within a substrate or between substrates can be reduced. Also a-8
iIl! The 81 compound gas as a raw material gas for forming is not limited to disilane, but may be other higher order silane gas or monosilane gas. Further, these raw material gases may be diluted with inert gas or hydrogen gas.

またプラズマ生成用ガスも、Arの他He、Ne、 X
eなどの不活性ガスあるいは水素ガスを用いることがで
きる。またシリコン酸化膜を形成する場合には酸素ガス
や酸化窒素ガスでもよく、シリコン窒化膜を形成する場
合には窒素ガスやアンモニアガスを用いることができる
In addition to Ar, gases for plasma generation include He, Ne, and X.
An inert gas such as e or hydrogen gas can be used. Further, when forming a silicon oxide film, oxygen gas or nitrogen oxide gas may be used, and when forming a silicon nitride film, nitrogen gas or ammonia gas may be used.

更に紫外光による光化学反応の効果を一層上げるために
は水銀増感法を用いることも有効である。
Furthermore, it is also effective to use a mercury sensitization method in order to further increase the effect of photochemical reactions using ultraviolet light.

この場合には導入ガスに水銀蒸気を混合するだけでよい
In this case, it is sufficient to simply mix mercury vapor with the introduced gas.

また、a−8i膜を形成する場合には価電子制御された
膜を必要とすることも多いが、この場合には原料ガスに
ジボランやホスフィンなどのドーピングガスを混合すれ
ばよい。
Further, when forming an a-8i film, a film with controlled valence electrons is often required, but in this case, a doping gas such as diborane or phosphine may be mixed with the raw material gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の薄膜形成装置を示す断面図
、第2図は他の実施例の薄膜形成装置の光源配置を示す
図である。 1・・・反応室、2・・・基板載置台、3・・・基板、
4・・・ブラスマ生成至、訃・・マイクロ波導入窓、6
・・・矩形導波管、7・・・磁気コイル、8・・・原料
ガス導入管、10・・・プラズマ生成用ガス導入管、9
,11・・・バルブ、12,12a〜12c・・・光導
入窓、13゜13a〜13c・・・低圧水銀ランプ、1
4・・・ランプ容器。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a sectional view showing a thin film forming apparatus according to one embodiment of the present invention, and FIG. 2 is a diagram showing a light source arrangement of a thin film forming apparatus according to another embodiment. 1... Reaction chamber, 2... Substrate mounting table, 3... Substrate,
4... Blasma generation, death... microwave introduction window, 6
... Rectangular waveguide, 7... Magnetic coil, 8... Raw material gas introduction pipe, 10... Gas introduction pipe for plasma generation, 9
, 11... Bulb, 12, 12a-12c... Light introduction window, 13° 13a-13c... Low-pressure mercury lamp, 1
4...Lamp container. Applicant's agent Patent attorney Takehiko Suzue

Claims (4)

【特許請求の範囲】[Claims] (1) 基板が配置され所定圧に減圧される反応室と、
この反応室と連通して設けられ、−マイクロ波と磁場に
よる電子サイクロトロン共鳴によるプラズマを生成する
プラズマ生成室と、紫外光成分を含む光源とを備え、前
記反応室に、原料ガスを導入するとともに前記プラズマ
生成室がらのプラズマ流と前記光源からの光を導入して
、前記基板上に薄膜を形成することを特徴とする薄膜形
成装−置。
(1) a reaction chamber in which the substrate is placed and the pressure is reduced to a predetermined pressure;
A plasma generation chamber is provided in communication with the reaction chamber, and includes a plasma generation chamber that generates plasma by electron cyclotron resonance using microwaves and a magnetic field, and a light source containing an ultraviolet light component, and a source gas is introduced into the reaction chamber. A thin film forming apparatus characterized in that a thin film is formed on the substrate by introducing a plasma flow from the plasma generation chamber and light from the light source.
(2) 前記光源からの光は、2600Å以下の波長成
分を含む11T請求の範囲第1項記載の薄膜形成装置。
(2) The thin film forming apparatus according to claim 1, wherein the light from the light source is 11T including a wavelength component of 2600 Å or less.
(3) 前記光源は、前記反応室の外部に設置され、そ
の照割光は反応室の側壁に設けられた石英製の窓を通し
て反応室に導入される特許請求の範囲第1項記載の薄膜
形成装置。
(3) The thin film according to claim 1, wherein the light source is installed outside the reaction chamber, and the illumination light is introduced into the reaction chamber through a quartz window provided on a side wall of the reaction chamber. Forming device.
(4) 前記光源は、前記反応室の外部に複数側設置さ
れる特許請求の範囲第1項記載の薄膜形成装置。
(4) The thin film forming apparatus according to claim 1, wherein the light source is installed on multiple sides outside the reaction chamber.
JP58225756A 1983-11-30 1983-11-30 Forming apparatus of thin film Pending JPS60117711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58225756A JPS60117711A (en) 1983-11-30 1983-11-30 Forming apparatus of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225756A JPS60117711A (en) 1983-11-30 1983-11-30 Forming apparatus of thin film

Publications (1)

Publication Number Publication Date
JPS60117711A true JPS60117711A (en) 1985-06-25

Family

ID=16834325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225756A Pending JPS60117711A (en) 1983-11-30 1983-11-30 Forming apparatus of thin film

Country Status (1)

Country Link
JP (1) JPS60117711A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214414A (en) * 1985-07-12 1987-01-23 Mitsui Toatsu Chem Inc Semiconductor thin film
JPS6222424A (en) * 1985-07-23 1987-01-30 Canon Inc Forming device for deposited film
JPS6222420A (en) * 1985-07-23 1987-01-30 Canon Inc Formation device for deposited film
JPS62142372A (en) * 1985-12-17 1987-06-25 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric converter
EP0244842A2 (en) * 1986-05-09 1987-11-11 Mitsubishi Jukogyo Kabushiki Kaisha Apparatus for forming thin film
JPS6450574A (en) * 1987-08-21 1989-02-27 Matsushita Electric Ind Co Ltd Manufacture of hetero-junction element
JPS6467823A (en) * 1987-09-07 1989-03-14 Semiconductor Energy Lab Formation of oxide superconducting film
JPS6467824A (en) * 1987-09-07 1989-03-14 Semiconductor Energy Lab Forming device for oxide superconducting material
JPS6476903A (en) * 1987-09-16 1989-03-23 Semiconductor Energy Lab Apparatus for producing oxide superconducting material
US4847215A (en) * 1987-10-31 1989-07-11 Nippon Soken, Inc. Method for forming silicon carbide semiconductor film
US5021103A (en) * 1987-08-22 1991-06-04 Nippon Soken, Inc. Method of forming microcrystalline silicon-containing silicon carbide film
KR100577909B1 (en) * 2003-11-20 2006-05-10 주식회사 에버테크 Universal thin film deposit device
JP2019523695A (en) * 2016-05-13 2019-08-29 インスティツト スーペリア テクニコ Process, reactor and system for the fabrication of free-standing two-dimensional nanostructures using plasma technology

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214414A (en) * 1985-07-12 1987-01-23 Mitsui Toatsu Chem Inc Semiconductor thin film
JPS6222424A (en) * 1985-07-23 1987-01-30 Canon Inc Forming device for deposited film
JPS6222420A (en) * 1985-07-23 1987-01-30 Canon Inc Formation device for deposited film
JPS62142372A (en) * 1985-12-17 1987-06-25 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric converter
EP0244842A2 (en) * 1986-05-09 1987-11-11 Mitsubishi Jukogyo Kabushiki Kaisha Apparatus for forming thin film
JPS6450574A (en) * 1987-08-21 1989-02-27 Matsushita Electric Ind Co Ltd Manufacture of hetero-junction element
US5021103A (en) * 1987-08-22 1991-06-04 Nippon Soken, Inc. Method of forming microcrystalline silicon-containing silicon carbide film
JPH0556281B2 (en) * 1987-09-07 1993-08-19 Handotai Energy Kenkyusho
JPS6467824A (en) * 1987-09-07 1989-03-14 Semiconductor Energy Lab Forming device for oxide superconducting material
JPH0556282B2 (en) * 1987-09-07 1993-08-19 Handotai Energy Kenkyusho
JPS6467823A (en) * 1987-09-07 1989-03-14 Semiconductor Energy Lab Formation of oxide superconducting film
JPS6476903A (en) * 1987-09-16 1989-03-23 Semiconductor Energy Lab Apparatus for producing oxide superconducting material
JPH0556283B2 (en) * 1987-09-16 1993-08-19 Handotai Energy Kenkyusho
US4847215A (en) * 1987-10-31 1989-07-11 Nippon Soken, Inc. Method for forming silicon carbide semiconductor film
KR100577909B1 (en) * 2003-11-20 2006-05-10 주식회사 에버테크 Universal thin film deposit device
JP2019523695A (en) * 2016-05-13 2019-08-29 インスティツト スーペリア テクニコ Process, reactor and system for the fabrication of free-standing two-dimensional nanostructures using plasma technology

Similar Documents

Publication Publication Date Title
US4371587A (en) Low temperature process for depositing oxide layers by photochemical vapor deposition
JPS60117711A (en) Forming apparatus of thin film
JPS6324923B2 (en)
JPS60117712A (en) Forming method of thin film
US4910044A (en) Ultraviolet light emitting device and application thereof
JPS5982732A (en) Manufacture for semiconductor device
JP3084395B2 (en) Semiconductor thin film deposition method
JPS59207621A (en) Formation of thin film
JPH03139824A (en) Depositing method for semiconductor device
JPH07221026A (en) Method for forming quality semiconductor thin film
JPS63317675A (en) Plasma vapor growth device
JPS60190566A (en) Preparation of silicon nitride
JP2629773B2 (en) Method of forming multilayer thin film
JPS60202928A (en) Optical pumping reaction device
JPS63258016A (en) Manufacture of amorphous thin film
JPS61230326A (en) Vapor growth apparatus
JPS58119334A (en) Apparatus for vapor deposition by photochemical reaction
JPH0364019A (en) Semiconductor thin film
JPH0645258A (en) Manufacture of amorphous semiconductor thin film
JPS61281872A (en) Formation for amorphous silicon germanium film
JPS62149116A (en) Manufacture of thin-film layered superlattice structure
JPS60182127A (en) Photoexcitation reactor
JPS59131515A (en) Formation of film of amorphous silicon
JPS6153734A (en) Formation of silicon nitride thin film and apparatus for the same
JPH0590157A (en) N-type semiconductor thin film