Nothing Special   »   [go: up one dir, main page]

JPS60114564A - Surface treatment - Google Patents

Surface treatment

Info

Publication number
JPS60114564A
JPS60114564A JP22142183A JP22142183A JPS60114564A JP S60114564 A JPS60114564 A JP S60114564A JP 22142183 A JP22142183 A JP 22142183A JP 22142183 A JP22142183 A JP 22142183A JP S60114564 A JPS60114564 A JP S60114564A
Authority
JP
Japan
Prior art keywords
coil
layer
treated
metal
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22142183A
Other languages
Japanese (ja)
Inventor
Ryoji Kobayashi
良治 小林
Akihiko Tomiguchi
明彦 冨口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP22142183A priority Critical patent/JPS60114564A/en
Publication of JPS60114564A publication Critical patent/JPS60114564A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To obtain a surface treated body having good diffusion struction in a short time at an extremely high rate of diffusion in the case of performing a surface treatment by, for example, diffusion penetration, by subjecting a base metal to the prescribed surface treatment in the molten state of the extreme surface layer of the surface to be treated or while melting said layer. CONSTITUTION:The cylindrical surface of a base metal (S9CK round bar) 1 is subjected to a blasting treatment and is then fixed to a fixing means 3 in the bottom of a carburization vessel 2. A vertically movable high-frequency heating coil 4 is disposed to enclose the cylindrical surface of the metal 1 and a carburizing material 5 is packed in the vessel 2. The coil 4 is lowered down to the bottom end of the metal 1, then high-frequency current is supplied from a high- frequency power source to the coil 4 to start heating and while the surface layer of the metal 1 in the coil 4 is melted, the coil 4 is at the same time moved upward at a prescribed speed. A carburizing layer of 0.4-0.8%C is thus easily formed to, for example, about 1mm. on the surface layer by the carburizing material 5 provided between the coil 4 and the metal 1.

Description

【発明の詳細な説明】 本発明は金属等の表面処理方法に関する。[Detailed description of the invention] The present invention relates to a method for surface treatment of metals, etc.

従来より金層材料等に表面処理を施し、耐食性、耐熱性
、耐摩耗性、表面硬化等を付与し、種々の用途に使用す
ることが広く知られており、それに伴って数多くの表面
処理方法が開発されてきた。
It has been widely known that gold layer materials are surface-treated to give them corrosion resistance, heat resistance, abrasion resistance, surface hardening, etc., and are used for various purposes. has been developed.

以下にその主要なものを例示する。The main ones are illustrated below.

(1)表面処理されるべき材料(以下単に母材という)
に処理材を粉末、液体、気体等の形態で供給し、加熱す
ることによって拡散、浸透させ表面層を形成させる方法
(七メンテージョン法)。
(1) Material to be surface treated (hereinafter simply referred to as base material)
A method in which a treatment material is supplied in the form of powder, liquid, gas, etc., and heated to cause it to diffuse and permeate to form a surface layer (7-mentation method).

(2)母材に処理材の蒸気を付着させ、凝固させて被覆
する方法(気相メッキ法)。
(2) A method in which the vapor of the treated material is applied to the base material and coated by solidifying it (vapor phase plating method).

(3)母材を溶融金属浴中に所要時間浸漬した後取り出
し溶融金属を凝固させて被覆する方法(溶融メッキ法)
(3) A method in which the base material is immersed in a molten metal bath for the required time and then taken out and coated with solidified molten metal (hot-dip plating method)
.

(4)母材に溶融した処理材を高速で吹きつり被覆する
方法(溶射法)。
(4) A method of coating a base material by blowing a molten treated material at high speed (thermal spraying method).

(5)母材を電解液中に浸漬し、TIE気的に母料表向
に金mイオンを析出させて被覆する方法(iifl気メ
ッキ法)。
(5) A method in which the base material is immersed in an electrolytic solution and gold m ions are deposited and coated on the surface of the base material using TIE gas (IIFL gas plating method).

これらのうち、セメンチージョン法における表面処理は
浸炭、窒化、拡散浸透メッキ等であり、処Pt(材を母
材表1raへ拡散浸透させ合金層や金属間化合物層を形
成するものであるが、その拡散速度は極めて遅く、表面
処理に極めて長時間を要する欠点があった。例えば、代
表的なセメンチージョンである浸炭を例にとると、第1
図に示すように9()0℃加熱で浸炭層1關を得るのに
約4時間も必要であった。表10丁処理時間を短縮する
には温度を+げれば、しいが、母材温度を上げすぎると
母材の変形や術撃値の低下等が起こる為実用的でなく、
温度の制限があり、結局処理時間を短縮できながった。
Among these, the surface treatments in the cementation method include carburizing, nitriding, diffusion plating, etc., and the treatment Pt (material is diffused and infiltrated into the base material surface 1ra to form an alloy layer and an intermetallic compound layer). However, its diffusion rate was extremely slow and the surface treatment required an extremely long time.For example, taking carburization, which is a typical cementation process, the first
As shown in the figure, it took about 4 hours to obtain one carburized layer by heating at 9()0°C. Table 10 In order to shorten the processing time, it is possible to increase the temperature, but raising the base material temperature too much will cause deformation of the base material and decrease in the attack value, so it is not practical.
Due to temperature limitations, it was not possible to shorten the processing time.

他の表面処理方法(気相メッキ法、溶融メッキ法、溶射
法、電気メツキ法)においては、処理材の層が母材表面
をおおう形となる。その場合処理材の層が1す打金F4
と強く密着している事が必要である。処理材の層とけ第
4金属との密着には、溶射の様に母材表面につけた粗い
アンカーパターンに処理材が深くかみ合う機械的な密着
もあるが、密着力を強くするには両者の間に反応組繊、
拡9511組織や、複雑に入り組んだ混合組織(以下1
1:に混合組織という)を形成させる事が必要である。
In other surface treatment methods (vapor phase plating, hot-dip plating, thermal spraying, electroplating), a layer of treatment material covers the surface of the base material. In that case, the layer of treated material is 1 plated metal F4
It is necessary to have a strong connection with the The adhesion of the treated material to the fourth metal is achieved through mechanical adhesion, in which the treated material is deeply engaged with a rough anchor pattern applied to the surface of the base metal, such as by thermal spraying, but in order to strengthen the adhesion, it is necessary to Reactive knitted fibers,
Expanded 9511 tissue and complex mixed tissue (hereinafter 1)
1: It is necessary to form a mixed tissue.

これらの反応層や拡散層、混合組織層は母材と処理材と
の熱膨張、差から生じる応力渇を緩和さぜる働きをした
り、外力が加わった時に両者のずれを吸収する作用をす
る為接合面の剥離や亀裂の発生を防止する働きをする。
These reaction layers, diffusion layers, and mixed structure layers function to alleviate the stress caused by the thermal expansion and difference between the base material and the treated material, and to absorb the deviation between the two when external force is applied. Therefore, it works to prevent peeling and cracking of the joint surface.

また、反応層や拡散層がj9い程密着力があがる傾向に
あるため、拡散層の形成は密着に不可欠であると言える
。しかしながら、上記した従来の方法(気相、溶融、電
気メツキ法、溶射法等)では、〜利と処理材との間の拡
If’(組織浸透を促進させる為には母材を高温に長時
間加熱することが有効であるが、そうすると母材に熱影
響を与え、変形や歪の発生、組織変化等を起こす為、大
きな制限を受1−]ていた。
Furthermore, since the adhesion tends to increase as the reaction layer and diffusion layer become j9, it can be said that the formation of the diffusion layer is essential for adhesion. However, in the conventional methods mentioned above (vapor phase, melting, electroplating, thermal spraying, etc.), the expansion If' between the material and the treated material (to promote tissue penetration, the base material is heated to a high temperature for a long time). Although it is effective to heat the material for a certain period of time, this has a large thermal effect on the base material, causing deformation, distortion, and structural changes, which has been a major limitation.

本発明は以上に述べた従来技術の問題点を解決せんとす
るもので、被処理面に処理材を拡散、浸透させる表面処
理を行う場合には、極めて短時間での表面処理を可能と
し、また、被処理面上に処理材の被膜を形成させる表面
処理を行う場合には、被膜と母材との間に拡散層や反応
層、混合組織層を確実に厚く、一様に形成でき密着力の
優れた表面処理体を得ることのできる表面処理方法を提
供することを目的とする。
The present invention aims to solve the problems of the prior art described above, and when performing surface treatment in which a treatment material is diffused and penetrated into the surface to be treated, it is possible to perform surface treatment in an extremely short time. In addition, when performing surface treatment to form a coating of treated material on the surface to be treated, it is possible to reliably form a thick and uniform diffusion layer, reaction layer, or mixed structure layer between the coating and the base material, allowing for close contact. It is an object of the present invention to provide a surface treatment method capable of obtaining a surface treated body with excellent strength.

上記目的を達成すべくなされた本発明の表面処理方法は
、母材の被処理面の極表面層を溶融状態で、或いは溶融
させながら、所定の表面処理を行うことを特徴とする。
The surface treatment method of the present invention, which has been made to achieve the above object, is characterized by performing a predetermined surface treatment on the extreme surface layer of the surface to be treated of the base material in a molten state or while being molten.

本発明を適用しつる液面処理形態としては、浸炭、窒化
、拡iiaメッキ等のセメンチージョン、セラミックス
、金属等の溶射による被膜形成、溶融表面に粉体金属を
供給し溶融させることによる被膜形成、溶融金属供給に
よる被膜形成等がある。
Forms of liquid surface treatment to which the present invention is applied include coating formation by thermal spraying of cementation, ceramics, metals, etc. such as carburizing, nitriding, and expanded IIA plating, and coating formation by supplying powder metal to the molten surface and melting it. formation, film formation by supplying molten metal, etc.

いずれの場合においても、溶融状態とする極表面層の厚
さは、母材本体への熱影響を最小にする為、所望厚さの
拡散組織等を形成するに必要な最小限の深さとすること
が望ましく、概して1關未満である0 被処理面の極表面層を溶融状態に保つ時間は極めて短く
てよい。極表面層の加熱溶融の時期は被処理面に処理材
を供給する前後あるいは処理材を供給しながら等、処理
方法に応じて適宜選択できるが、少くとも処理材が被処
理面に接触した状態で、被処理面の極表面層が溶融状態
となるか或いは極表面層が溶融状態にある間に処理材を
被処理面に接触させることが必要である。但し、被処理
面全域の極表面層を同時に溶融する必要はなく、小面積
ずつ溶融し、溶融位置を移動させればよい。
In either case, the thickness of the extreme surface layer in the molten state should be the minimum depth necessary to form a diffusion structure of the desired thickness, in order to minimize the thermal effect on the base material body. It is desirable that the very surface layer of the surface to be treated be kept in a molten state for a very short time, which is generally less than 1 hour. The timing of heating and melting the extreme surface layer can be selected as appropriate depending on the treatment method, such as before or after supplying the treatment material to the surface to be treated, or while supplying the treatment material, but at least when the treatment material is in contact with the surface to be treated. Therefore, it is necessary to bring the treatment material into contact with the surface to be treated while the extreme surface layer of the surface to be treated is in a molten state or while the extreme surface layer is in a molten state. However, it is not necessary to melt the extreme surface layer over the entire surface to be processed at the same time, and it is sufficient to melt small areas at a time and move the melting position.

例えば、セメンチージョンに本発明を適用する場合は、
被処理面全面に処理材を接触させておき、被処理面を小
面積ずつ溶融すればよく、また本発明を溶射法に適用す
る場合は、溶射部位より少し広い範囲を加熱溶融し、か
つ溶射部位の移動に追随して加熱部位を移動させればよ
い。
For example, when applying the present invention to cementition,
It is sufficient to keep the treatment material in contact with the entire surface to be treated and melt the surface one by one in small areas. Also, when applying the present invention to thermal spraying, heat and melt an area slightly wider than the thermal spraying area, and then What is necessary is just to move a heating part following the movement of a part.

被処理面の極表面層を溶融させるだめの加熱方法は、高
周波による@導加熱、プラズマジェット、アーク、電子
ビーム、レーザービーム、或いはパ−ナー等による加熱
を単独又は組み合せて用いればよく、表面処理の形態に
より適宜選択すればよい。このうちでは高周波による誘
導加熱が比較的広い面積を同時に加熱できること、周波
数の調整により加熱深さを調整できること、電流の調整
により加熱量を調整できること、被処理面に処理材を供
給した状態で処理材の上から被処理面の極表面層を加熱
溶融できること等の利点を有しているので好適である。
As a heating method for melting the extreme surface layer of the surface to be treated, induction heating using high frequency waves, plasma jet, arc, electron beam, laser beam, or heating using a parner may be used alone or in combination. It may be selected as appropriate depending on the type of processing. Among these, induction heating using high frequency can heat a relatively wide area at the same time, the heating depth can be adjusted by adjusting the frequency, the heating amount can be adjusted by adjusting the current, and the treatment can be performed while the treatment material is supplied to the surface to be treated. This method is suitable because it has the advantage of being able to heat and melt the extreme surface layer of the surface to be treated from above the material.

また、極表面層の溶融を容易にするため、母材を適宜予
熱しておいてもよい。被処理面に供給される処理材を予
熱しておいてもよい。なお、被処理面は必ずしも外部か
らの熱源のみによって溶融される必要はなく、外部から
の熱と被処理面に供給される処理材の熱によって溶融さ
れてもよい。例えば、溶射の場合には被処理面を外部の
熱源で溶融点近くまで加熱しておき、その加熱面に高温
度で溶融した溶射材を溶射し、溶射利の熱鼠で被処理面
の極表面層を溶融状態としてもよい。
Further, in order to facilitate melting of the extreme surface layer, the base material may be preheated as appropriate. The treatment material supplied to the surface to be treated may be preheated. Note that the surface to be processed does not necessarily need to be melted only by an external heat source, and may be melted by heat from the outside and heat of a processing material supplied to the surface to be processed. For example, in the case of thermal spraying, the surface to be treated is heated with an external heat source close to its melting point, and then the heated surface is sprayed with a thermal spray material molten at a high temperature. The surface layer may be in a molten state.

表面処理を行う雰囲気は、特に限定されず、大気中であ
っても減圧下、不活性ガス中であってもよく、母材、処
理材及び表面処理の形態に応じて適宜選択すればよい。
The atmosphere in which the surface treatment is performed is not particularly limited, and may be in the air, under reduced pressure, or in an inert gas, and may be appropriately selected depending on the base material, the treatment material, and the form of the surface treatment.

本発明を適用しうる母材は炭素鋼1合金鋼、1鉄、ステ
ンレス鋼、ブ四ンズ、チタン、インコネル、銅、アルミ
ニウム、セラミックス材、無機利料等及びそれらに種々
の表面処理を施した物等適宜選択できる。また、表面処
理料も同様であり、各種添加剤と混合した組成でも良く
、形態としては溶融物、粉体或いは蒸気等いずれの形態
でもよい。
The base materials to which the present invention can be applied include carbon steel, 1-alloy steel, 1-iron, stainless steel, aluminum, titanium, Inconel, copper, aluminum, ceramic materials, inorganic materials, etc., and those subjected to various surface treatments. You can select items as appropriate. The same applies to the surface treatment agent, and it may be mixed with various additives and may be in any form such as melt, powder, or steam.

本発明は以上に述べたように、被処理面の極表面層を溶
融状態で、若しくは溶融しながら表面処理するものであ
るので、拡散浸透による表面処理を行う場合には拡散浸
透速度が極めて早く、短時間で、良好な拡散組織を持つ
表面処理体を得ることができ、また、処理材の被膜を形
成する場合には該被膜が溶融状態の表面層に接合される
ことにより、被膜と母材との間に厚い拡散層や混合組織
が形成された密着力の強い表面処理体を得ることができ
るという優れた効果を奏する。また、加熱は極表面層の
みにとどまる為母材の変形はなく、組織変化もない為、
極めて精密な表面処理面を得ることができる。更には、
加熱時間が少なくて済む為作業効率が良く、極表面層の
加熱だけで行える為、加熱炉等が不要であり、大型物に
対しても施行が容易に行える等の効果も有している。
As described above, the present invention treats the extreme surface layer of the surface to be treated in a molten state or while being molten, so when surface treatment is performed by diffusion and osmosis, the rate of diffusion and osmosis is extremely fast. , a surface-treated body with a good diffusion structure can be obtained in a short time, and when forming a coating of the treated material, the coating is bonded to the molten surface layer, so that the coating and the matrix are bonded. This has the excellent effect of producing a surface-treated body with strong adhesion in which a thick diffusion layer and mixed structure are formed between the material and the material. In addition, since the heating is limited to only the extreme surface layer, there is no deformation of the base material, and there is no change in structure.
An extremely precise surface treatment can be obtained. Furthermore,
Work efficiency is good because heating time is short, and heating can be done by heating only the extreme surface layer, so there is no need for a heating furnace, and it also has the advantage of being easy to apply even to large objects.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

実施例1 第2図において、直径401m+、長さ100iucの
母材1(S9CK丸欅)の円筒部r表面をプラスト処理
した後、浸炭槽2底部の固定具3に固定する。
Example 1 In FIG. 2, after the surface of the cylindrical part r of the base material 1 (S9CK round keyaki) having a diameter of 401 m+ and a length of 100 iuc is subjected to a blast treatment, it is fixed to a fixture 3 at the bottom of a carburizing tank 2.

次いで、上下動可能な高周波加熱フィル4を、母材1の
円筒部表面を取り囲むように配置し、浸炭槽2に浸炭t
45を充満させる。次にコイル4を母材1の下端にまで
降下させた後、コイル4に高周波電諒(図示せず)がら
5MH2の高周波電流を供給して加熱を開始し、コイル
4内側の母材1の表面層を溶融しながら、同時にコイル
4を0.5wrra/l’1:の早さで」−向きに移動
させたところ、コイルと母材との間にある浸炭材によっ
て表面層約1 mmニ0.4〜0.8%Cの浸炭層が形
成された。
Next, a high-frequency heating filter 4 that can move up and down is placed so as to surround the surface of the cylindrical part of the base material 1, and a carburizing tank 2 is placed in the carburizing tank 2.
45. Next, after the coil 4 is lowered to the lower end of the base material 1, a high frequency current of 5MH2 is supplied to the coil 4 using a high frequency electric current (not shown) to start heating the base material 1 inside the coil 4. While melting the surface layer, the coil 4 was moved at a speed of 0.5 wrra/l'1 in the - direction, and the surface layer was approximately 1 mm thick due to the carburized material between the coil and the base metal. A carburized layer of 0.4 to 0.8% C was formed.

本実施例における浸炭と従来法における浸炭との比較を
次表に示す。
The following table shows a comparison between carburizing in this example and carburizing in the conventional method.

実施例2 第3図において、直径40m+1、長さ1100oの母
材6 (SS材丸棒)の表面をブラスト処理した後溶射
用回転台7に取付け、母1fI6を回転させながら、5
 MHz の高周波電流を供給されている高周波加熱コ
イル8を母材6に沿って左から右方向に移動させ、母材
表面を次々と溶融さゼた。同1「3に、減圧下にて、加
熱コイル8の中央部9にA7!203をプラズマガンで
溶射し、がっ溶射位1??を加熱コイル8の移動に同調
さゼて移動させた。
Example 2 In Fig. 3, after blasting the surface of the base material 6 (SS material round bar) with a diameter of 40 m + 1 and a length of 1100 o, it was attached to a rotary table 7 for thermal spraying, and while rotating the base material 1fI6, 5
A high-frequency heating coil 8 supplied with a high-frequency current of MHz was moved from left to right along the base material 6, and the surface of the base material was melted one after another. In step 1 and 3, A7!203 was sprayed on the central part 9 of the heating coil 8 with a plasma gun under reduced pressure, and the spraying position 1 was moved in synchronization with the movement of the heating coil 8. .

かくして、母材6の表面の溶融部分にA # 203が
溶射され、母材6の円筒部にA720.、の被IB’j
が形成された。この被膜は母材に極めて強く接合されて
おり、接合強度は12.3kg/m♂であった。なお、
比較のため、通常の溶射による被膜接合強度を測定した
ところ5.4 kl? / ram’であった。
In this way, A#203 is sprayed onto the molten portion of the surface of the base material 6, and A720. , the subject of IB'j
was formed. This coating was extremely strongly bonded to the base material, and the bonding strength was 12.3 kg/m♂. In addition,
For comparison, we measured the bonding strength of the coating by ordinary thermal spraying and found it to be 5.4 kl? / ram'.

実施例3 100朋X10MmX10關の炭素鋼の母材の100朋
Xl0mmの平面をブラスト処理した後2MI]zの高
周波コイルによって加熱し、表面の約0.3問を約80
0℃に昇温させた状態で、加熱部分ニ同時に減圧下にお
いてプラズマジェットガンでタングステンカーバイドを
溶射したところ、第4図に示すように溶射材10と母材
11の間に約0.2關の複雑に入り組んだ混合組織と化
学組織の中間層12を持つ表面処理体が得られた。なお
、従来の溶射法による表面処理体はflS5図に示すよ
うに、溶射材10と母材11の間に中間層をほとんど持
っていなかった。
Example 3 After blasting a 100mm x 10mm flat surface of a carbon steel base material measuring 100mm x 10mm
When tungsten carbide was thermally sprayed with a plasma jet gun under reduced pressure on the heated part at the same time as the temperature was raised to 0°C, as shown in Fig. A surface-treated body having an intermediate layer 12 of a complicated mixed structure and a chemical structure was obtained. Note that the surface-treated body obtained by the conventional thermal spraying method had almost no intermediate layer between the thermal spraying material 10 and the base material 11, as shown in Fig. flS5.

実施例4 第6図において、直径40i扉、長さ200mmのSS
利九棒の母材13をアルミ溶融槽14上方に吊り下げ、
アルミ溶融槽上に設置された高周波加熱コイル15を通
過させて、徐々にアルミ溶融液中に浸漬させた。高周波
加熱コイル15の電源周波数を5MH2とし、母材送り
速度を5朋/ Secとして、母材表面に約100μの
接合力の強いアルミの表面層を得た。
Example 4 In Fig. 6, an SS with a diameter of 40i door and a length of 200mm is shown.
The base material 13 of the Rikyu bar is suspended above the aluminum melting tank 14,
It passed through a high frequency heating coil 15 installed on the aluminum melting tank and was gradually immersed in the aluminum melt. The power supply frequency of the high-frequency heating coil 15 was set to 5 MH2, and the base material feed rate was set to 5 ho/sec to obtain a surface layer of aluminum with a strong bonding force of about 100 μm on the surface of the base material.

実施例5 第7図、第8図において、幅20朋、厚さ9 mms長
さ100朋のSS材の母材16の表面をブラスト処理し
た後、母材の表面にスズ合金の粉末17を約0.3〜0
.4朋厚に散布した後、架台18にセットし、左方より
左右移動可能な高周波加熱コイA/19を設置し、高周
波電源により5 M H2の高周波電源を供給し、減圧
にて加熱を開始し、2*w/秒の早さで右方に移動させ
たところ、母イ°イ表面に強く結合した約100μのス
ズ合金の表面層が形成された。
Example 5 In FIGS. 7 and 8, after blasting the surface of an SS material base material 16 with a width of 20 mm, a thickness of 9 mm, and a length of 100 mm, tin alloy powder 17 was applied to the surface of the base material. Approximately 0.3~0
.. After spraying to a thickness of 4 mm, set it on the stand 18, install the high frequency heating coil A/19 that can be moved left and right from the left, supply a high frequency power of 5 MH2 from the high frequency power supply, and start heating under reduced pressure. When it was moved to the right at a rate of 2*w/sec, a surface layer of about 100 microns of tin alloy was formed which was strongly bonded to the surface of the mother metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の浸炭法における特性を示1グラフ 、 第2図は本発明の実施例1の表面処理方法を実施する装
置を概略的に示す断面図、 第3図は本発明の実施例2の表面処理方法を実施する装
置を概略的に示す側面図、 第4図は本発明の実施例3により得た表面処理体の拡大
断面図、 第5図は従来の溶射法により得た表面処理体の拡大断面
図、 第6図は本発明の実施例4の表面処理方法を実施する装
置を概略的に示す断面図、 第7図は本発明の実施例5の表面処理方法を実施する装
置を概略的に示す斜視図、 第8図は第7図のA−A矢視断面図で・ある。 1.6.13.16・・・母材 4.8.15.19・・・高周波加熱コイル5・・・浸
炭拐 14・・・アルミ溶融槽1T・・・スズ合金粉末 第1 図 牙2(71 片3図 第4図 第5図
Fig. 1 is a graph showing the characteristics of a conventional carburizing method, Fig. 2 is a cross-sectional view schematically showing an apparatus for carrying out the surface treatment method of Example 1 of the present invention, and Fig. 3 is an embodiment of the present invention. FIG. 4 is an enlarged sectional view of a surface-treated body obtained according to Example 3 of the present invention; FIG. 5 is a side view schematically showing an apparatus for carrying out the surface treatment method of 2. FIG. 5 is a surface obtained by a conventional thermal spraying method. FIG. 6 is an enlarged cross-sectional view of a treatment body; FIG. 6 is a cross-sectional view schematically showing an apparatus for implementing the surface treatment method of Example 4 of the present invention; FIG. 7 is a cross-sectional view for implementing the surface treatment method of Example 5 of the present invention. FIG. 8 is a perspective view schematically showing the device; FIG. 8 is a sectional view taken along the line A-A in FIG. 7; 1.6.13.16... Base material 4.8.15.19... High frequency heating coil 5... Carburizing 14... Aluminum melting tank 1T... Tin alloy powder No. 1 Fig. 2 (71 piece 3 figure 4 figure 5

Claims (1)

【特許請求の範囲】 (11母料の被処理面の極表面層を溶融状態で、或いは
溶融しながら所定の表面処理を行うことを特徴とする表
面処理方法。 (2)前記所定の表面処理がセメンチージョンであるこ
とを特徴とする特許請求の範囲第1項記載の表面処理方
法。 (3)前記所定の表面処理が溶射による被膜形成である
ことを特徴とする特許請求の範囲第1項記載の表面処理
方法。 (4)前記所定の表面処理が、前記被処理面への粉体金
属供給による被膜形成であることを特徴とする特許請求
の範囲第1項記載の表面処理方法。 (5)前記所定の表面処理が、前記被処理面への溶融金
に11供給による被膜形成であることを特徴とする特許
請求の範囲第1項記載の表面処理方法。
[Claims] (11. A surface treatment method characterized by performing a predetermined surface treatment on the extreme surface layer of the surface to be treated of the base material in a molten state or while being molten. (2) The predetermined surface treatment. (3) The surface treatment method according to claim 1, wherein the predetermined surface treatment is a coating formed by thermal spraying. (4) The surface treatment method according to claim 1, wherein the predetermined surface treatment is film formation by supplying powder metal to the surface to be treated. (5) The surface treatment method according to claim 1, wherein the predetermined surface treatment is to form a film by supplying molten gold to the surface to be treated.
JP22142183A 1983-11-26 1983-11-26 Surface treatment Pending JPS60114564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22142183A JPS60114564A (en) 1983-11-26 1983-11-26 Surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22142183A JPS60114564A (en) 1983-11-26 1983-11-26 Surface treatment

Publications (1)

Publication Number Publication Date
JPS60114564A true JPS60114564A (en) 1985-06-21

Family

ID=16766472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22142183A Pending JPS60114564A (en) 1983-11-26 1983-11-26 Surface treatment

Country Status (1)

Country Link
JP (1) JPS60114564A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593255A (en) * 1991-10-01 1993-04-16 Nippon Koshuha Kk Method for plasma spraying on substrate
RU2709563C2 (en) * 2017-05-23 2019-12-18 Иван Михайлович Щигарцов Method of combined chemical-thermal treatment of parts from metals or alloys

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190940A (en) * 1975-02-07 1976-08-10
JPS5224945A (en) * 1975-08-22 1977-02-24 Nippon Steel Corp Process for producing highhquality surface steel by high frequency induction heating
JPS56112458A (en) * 1980-02-13 1981-09-04 Permelec Electrode Ltd Formation of corrosion-preventive coating on metallic substrate
JPS57155363A (en) * 1981-03-18 1982-09-25 Koji Hashimoto Method of forming surface covering metal layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190940A (en) * 1975-02-07 1976-08-10
JPS5224945A (en) * 1975-08-22 1977-02-24 Nippon Steel Corp Process for producing highhquality surface steel by high frequency induction heating
JPS56112458A (en) * 1980-02-13 1981-09-04 Permelec Electrode Ltd Formation of corrosion-preventive coating on metallic substrate
JPS57155363A (en) * 1981-03-18 1982-09-25 Koji Hashimoto Method of forming surface covering metal layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593255A (en) * 1991-10-01 1993-04-16 Nippon Koshuha Kk Method for plasma spraying on substrate
RU2709563C2 (en) * 2017-05-23 2019-12-18 Иван Михайлович Щигарцов Method of combined chemical-thermal treatment of parts from metals or alloys

Similar Documents

Publication Publication Date Title
US4434189A (en) Method and apparatus for coating substrates using a laser
JP2009249741A (en) Method and apparatus for coating and surface treatment of substrate by means of plasma beam
JP2013174014A (en) Method for constructing thermal barrier coating
JPH10204601A (en) Method for coating carbon base material of carbon-containing nonmetallic base material
US3339271A (en) Method of hot working titanium and titanium base alloys
US3400010A (en) Method of making a composite metal article
TWI677589B (en) A preparation method of sputtering target
US2618578A (en) Blackening stainless steel
JPS60114564A (en) Surface treatment
JPS6117912B2 (en)
RU2145981C1 (en) Method of protection of surface of ingots
JPS61113755A (en) Manufacture of metallic material with thermal sprayed ceramic film having high corrosion and heat resistance
JPH08319557A (en) Method for modifying surface of steel utilizing diffusing dilution of aluminum
JPH0577737B2 (en)
CN114934247A (en) Surface high-frequency induction treatment hardening method suitable for regular-profile TC4 titanium alloy
JP2728254B2 (en) Method of manufacturing conductor roll
RU2427666C1 (en) Procedure for strengthening surface of items of titanium alloys
JPH062102A (en) Method for controlling carburization
CN115786912B (en) Method for preparing composite modified layer by combining laser two-step method and chemical plating process
RU2215821C2 (en) Metal coating formation method
RU1822449C (en) Method of production of the coating
JPS61288060A (en) Plasma arc thermal spraying method under reduced pressure
RU2677906C1 (en) Method of combined strengthening of parts surface
RU2112815C1 (en) Method of forming coatings from self-fluxing powdered materials on iron-carbon alloy articles
JPS61206604A (en) Manufacture of ceramic pipe