JPS6411083B2 - - Google Patents
Info
- Publication number
- JPS6411083B2 JPS6411083B2 JP1119785A JP1119785A JPS6411083B2 JP S6411083 B2 JPS6411083 B2 JP S6411083B2 JP 1119785 A JP1119785 A JP 1119785A JP 1119785 A JP1119785 A JP 1119785A JP S6411083 B2 JPS6411083 B2 JP S6411083B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- rolling
- temperature
- forging
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 81
- 239000010959 steel Substances 0.000 claims description 81
- 238000005242 forging Methods 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 12
- 238000005098 hot rolling Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 238000005096 rolling process Methods 0.000 description 29
- 229910000859 α-Fe Inorganic materials 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 14
- 229910000954 Medium-carbon steel Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000004881 precipitation hardening Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910001563 bainite Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Description
(産業上の利用分野)
本発明は高強度非調質棒鋼の製造方法に関す
る。
(従来の技術)
従来、高強度棒鋼は、一般に中炭素鋼又は低合
金鋼の素材鋼を熱間圧延又は熱間鍛造した後、再
加熱し、焼入れ―焼戻し、即ち、調質処理を施
し、目的、用途に応じた強度特性を付与して、使
用に供されている。しかし、上記調質処理には多
大の熱エネルギー費用を要すると共に、処理工程
の増加、仕掛り品の増大等のために製造費用が高
くならざるを得ない。
そこで、近年、高強度棒鋼の製造において、製
造工程を簡略化、特に、焼入れ―焼戻し工程を省
略するために、中炭素鋼の微量のV,Nb,Ti等
の所謂析出硬化型合金元素を添加した所謂非調質
型鋼を素材とし、熱間加工時の加熱と、加工及び
その後の冷却工程を利用して、熱間加工後放冷の
ままで所要の特性を得る高強度非調質棒鋼が注目
されている。
例えば、特公昭58―2243号公報には、中炭素鋼
に微量のVを添加し、これを1100℃以上の温度に
加熱して型打鍛造し、この後、500℃まで10〜100
℃/分の冷却速度で空冷することにより、フエラ
イト中に微細なV炭窒化物を析出させたフエライ
ト・パーライト組織からなる非調質鍛造品の製造
方法が記載されている。しかし、このような方法
によれば、所要の強度を得ることはできても、強
度の上昇に伴う靭性及び延性の低下が避けられな
い。特に、衝撃値は、通常の調質鋼に比べてほぼ
半減し、例えば、引張強さ80Kg/mm2級調質鋼は、
常温シヤルピー値14Kgm/cm2を有するが、引張強
さ80Kg/mm2級の非調質鋼の場合は7Kgm/cm2以下
である。
(発明の目的)
本発明者らは、高強度非調質棒鋼の製造におけ
る上記した問題を解決するために鋭意研究した結
果、中炭素鋼に微量のVと共に比較的多量のSを
添加して素材鋼となし、この素材鋼の熱間圧延及
びその後の熱間鍛造に関して、熱間圧延及び熱間
鍛造の開始温度及び終了温度を従来の方法に比べ
てそれぞれ低温側に規定することにより、得られ
る棒鋼におけるフエライト粒を微細化すると共
に、これら熱間加工過程においてMnS介在物を
加工方向に伸長させ、更に、熱間鍛造後の冷却速
度を制御することにより、熱間鍛造ままで高強度
で靭性、延性にすぐれた高強度非調質棒鋼を得る
ことができることを見出して本発明に至つたもの
である。
(発明の構成)
本発明による高強度非調質棒鋼の製造方法は、
重量%で
C 0.30〜0.50%、
Si 0.15〜0.50%、
Mn 1.0〜1.65%、
S 0.04〜0.1%、
V 0.08〜0.2%、
Al 0.015〜0.05%、
残部が実質的に鉄及び不可避的不純物よりなる
鋼材を850〜1000℃の温度に加熱し、800〜950℃
の仕上温度にて熱間圧延を行なつた後、この圧延
棒鋼を850〜1000℃の温度に再加熱し、800〜950
℃の仕上温度にて熱間鍛造を行ない、次いで、
A3変態点から550℃の間を0.3〜10℃/秒の冷却速
度にて冷却することを特徴とする。
先ず、本発明の方法における素材鋼の化学成分
の限定理由を説明する。
Cは非調質棒鋼における強度を確保し、また、
Vにその炭化物を形成させ、その析出硬化による
強化作用を発揮させるために必要不可欠の元素と
して添加されるが、その含有量が0.35%未満では
かかる強化効果に乏しく、一方、0.50%を越える
ときは、V炭化物の生成が過剰となつて、靭性が
低下する。従つて、Cの含有量範囲は0.35〜0.50
%とする。
Siは脱酸のほか、圧延及び鍛造冷却後の鋼のフ
エライト組織を強化するうえで有効な元素である
が、0.15%未満では強度が不足し、0.50%を越え
る場合は、冷間加工性と靭性とを劣化させる。従
つて、Siの含有量範囲は0.15〜0.50%とする。
MnはCと同様に鋼の強度を上昇させるために
必須の元素であり、上に限定したC含有量の範囲
で鋼の圧延鍛造後の引張強さを80Kg/mm2以上とす
るために、Mnは1.0%以上を添加する必要があ
る。しかし、Mnを過多に添加するときは、圧延
鍛造後にベイナイト組織を生じ、鋼の靭性を劣化
させるので、上限は1.65%とする。
Sは本発明の方法において、鋼の衝撃値を増大
させるために必須の元素である。一般に、Sは鋼
の被削性を改善するために添加され、この場合、
Sは圧延中に変形し難いMnSにする必要がある
ところから、鋼における酸素量を多くして1100〜
950℃のような高温で圧延することが行なわれて
いる。また、そのために、一般に鋼におけるS含
有量を多くするときは、衝撃値を低下させること
も知られている。
しかしながら、本発明の方法によれば、鋼にS
を比較的多量に含有させると共に、後述するよう
に、熱間圧延及び鍛造を低い温度で行なうことに
よつて、得られる非調質棒鋼の常温衝撃値を著し
く改善することができる。即ち、本発明において
は、Sを0.04〜0.1%の範囲で添加すると共に、
Alにて鋼を十分に脱酸し、更に、これを1000℃
以下の低温で圧延鍛造することにより、MnS介
在物の圧延鍛造方向への伸長を容易にし、かくし
て、圧延鍛造方向への常温衝撃値を改善するので
ある。このようにして、鋼の衝撃値を改善するに
は、Sは少なくとも0.04%の添加を必要とする。
一方、過多に添加するときは、MnS介在物の増
加による衝撃値への悪影響が現れるので、その添
加量は0.1%以下とする。
Vは、本発明の方法において、V炭化物の析出
硬化を利用して、得られる非調質棒鋼に80Kg/mm2
以上の強度を与えるために必須の元素であり、十
分な析出硬化を得るために、少なくとも0.08%の
添加を必要とするが、過多に添加するときは、強
度上昇に伴つて却つて靭性を劣化させるので、添
加量は0.2%以下とする。
Alは脱酸と結晶粒度の微細化のために添加さ
れ、これらの効果を有効に発揮させるためには、
少なくとも0.015%を添加する必要がある。しか
し、0.05%を越えて多量に含有させても効果の増
大が僅かであるので、その含有量範囲は0.015〜
0.05%とする。
尚、酸素O2は圧延中にMnSを変形しやすいよ
うにするために、含有量を低く抑える必要があ
り、本発明においては、0.004%以下とするのが
好ましい。
本発明の方法においては、上記のような組成を
有する鋼を素材鋼とし、これをオーステナイト領
域の低温で熱間圧延し、その後、再加熱し、再び
低温で熱間鍛造することにより、衝撃値を向上さ
せる。即ち、本発明によれば、圧延及び鍛造に際
して低温に加熱することによつて、加熱時のオー
ステナイト結晶粒を細粒化し、これを圧延及び鍛
造において微細化することによつて、圧延及び鍛
造後のフエライト粒を微細化すると共に、前記し
たように、MnS介在物の圧延鍛造方向への伸長
を容易にして、常温での衝撃値を改善する。
MnS介在物は、鋼加熱温度が1000℃以下の低温
であるときは、鋼自体よりも相対的に柔らかく、
変形しやすいので、圧延及び鍛造方向の衝撃値を
向上させる。
鋼加熱温度が1000℃を越える高温である場合
は、Vが十分に固溶するので、得られる棒鋼は、
強度的には特に問題はないが、結晶粒が粗くなる
ために靭性が低下し、また、MnS介在物が鋼自
体よりも硬くなつて、熱間圧延及び鍛造の過程に
おいて変形し難い。一方、加熱温度を850℃以下
とするときは、Vの固溶量が少ないために、所要
の強度を得ることができないと共に、変形抵抗が
増大し、圧延及び鍛造が困難となる。従つて、本
発明の方法においては、圧延及び鍛造の加熱温度
をそれぞれ850〜1000℃の範囲とする。
また、圧延及び鍛造の仕上温度はそれぞれ800
〜950℃の範囲の温度である。仕上温度が800℃よ
りも低いときは、未再結晶組織が残存するので、
得られる圧延鍛造棒鋼に所要の強度を与えること
ができない。他方、950℃よりも高い場合は、結
晶粒が粗いために、靭性が低いからである。
上記のようにして熱間鍛造した棒鋼は、次い
で、A3変態点から550℃の間を0.3〜10℃/秒の冷
却速度にて冷却する。この冷却速度が0.3℃/秒
よりも遅いときは、結晶粒が粗くなるので、十分
な強度を得ることができず、また、靭性も改善さ
れない。しかし、10℃/秒よりも早い場合は、ベ
イナイト等の過冷組織が生じて、靭性が低下す
る。
本発明においては、素材鋼を上記のような条件
下で熱間圧延することによつて、十分に高速度高
靭延性である圧延まま棒鋼を得ることができる
が、しかし、本発明の方法に従つて、この圧延棒
鋼を更に上記のようにして、熱間鍛造し、更に、
所定の冷却速度にて冷却することによつて、得ら
れる棒鋼の衝撃値を一層向上させることができる
のである。
(発明の効果)
以上のように、本発明によれば、中炭素鋼への
微量のV添加によつて、その析出硬化による強化
を利用して鋼を高強度化すると共に、一方におい
て、比較的多量のSを添加し、この素材鋼を低温
にて熱間圧延鍛造し、この加工過程において
MnS介在物の圧延鍛造方向への伸長を容易にし、
更に、鍛造後の冷却速度を制御することによつ
て、一層、その衝撃値を改善し得、かくして、80
Kg/mm2以上の高強度に加えて、常温での衝撃値が
10Kgm/cm2以上である高靭性高延性の高強度非調
質棒鋼を得ることができるのである。
(実施例)
以下に本発明の実施例を挙げる。
実施例
第1表に示す化学組成を有する素材鋼を第2表
に示すように種々の温度に加熱し、第2表に示す
温度で圧延を開始し、終了して、径40mmの圧延棒
鋼を得た。その機械的性質及びフエライト粒度を
第2表に示す。第1表において、鋼イ及びロは本
発明で規定する化学組成を有し、鋼ハ及びニは比
較鋼であり、また、衝撃値は、JIS3号試験片を用
いて測定した。
第2表において、鋼A,B,C及びDは、鋼イ
についての圧延条件が異なり、Aは圧延加熱温度
が高いためにフエライト粒度が小さく、衝撃値が
低い。Dは圧延加熱温度が低すぎるために圧延で
きない。B及びCは本発明で規定する温度範囲内
に加熱して圧延したものであり、フエライト粒度
が大きく、衝撃値が改善されている。Eは本発明
で規定する範囲内において、鋼イよりもC量が少
なく、Mn量が多い鋼ロを素材鋼とし、本発明の
条件に従つて圧延したものであり、B及びCと同
様にフエライト粒度が大きく、衝撃値が改善され
ている。
一方、Fは圧延加熱温度及び圧延温度は上記E
とほぼ同じであるが、素材鋼におけるC量が本発
明で規定する範囲を越えて多く、また、Mn量が
本発明で規定するよりも少ないために、引張強さ
は80Kg/mm2を保持しているが、C量が過多である
ために衝撃値が著しく小さい。Gは素材鋼ニが低
S鋼であることと、圧延加熱温度が高いことのた
めに、フエライト粒度が小さく、従つて、衝撃値
も小さい。Hは素材鋼ニを本発明で規定する条件
の範囲で圧延したものであり、フエライト粒は微
細であるが、鋼ニが低S鋼であるために衝撃値に
劣る。
次に、上で得た熱間圧延棒鋼を第3表に示す鍛
造加熱温度に再加熱し、第3表に示す仕上温度に
て鍛造を終了し、その後、1.0℃/秒の速度で冷
却して、径30mmの鍛造棒鋼を得た。このようにし
て得た鍛造棒鋼についての機械的性質及びフエラ
イト粒度を第3表に示す。
鋼I及びJは、本発明で規定する化学組成を有
する鋼イからの前記圧延棒鋼A及びBをそれぞれ
再加熱し、鍛造したものであるが、鍛造加熱温度
及び鍛造仕上温度が本発明で規定する温度条件よ
りも高いために、引張強さは大きいがフエライト
粒度が大きく、従つて、衝撃値が小さい。これに
対して、鋼K及びLは、本発明の方法に従つて鍛
造した製品であり、フエライト粒が微細であつ
て、80Kg/mm2級の引張強さを保持しつつ、衝撃値
が著しく改善されている。
鋼Mは、素材鋼におけるS含有量が小さく、且
つ、仕上温度が高いために、フエライト粒度が小
さく、衝撃値も低い。鋼Nは、本発明で規定する
温度条件で鍛造したものであり、フエライト粒は
微細であるが、素材鋼におけるS含有量が本発明
で規定するよりも少ないために、衝撃値が改善さ
れていない。
本発明の方法によつて、素材鋼が比較的多量の
Sを含有しながら、これを低温で熱間圧延又は鍛
造することによつて衝撃値を改善し得るのは、第
1図に、例えば、鋼Bの場合について示すよう
に、衝撃遷移温度が低温側に移行し、一方、低S
鋼の場合は、例えば、鋼Hについて示すように、
低温での圧延又は鍛造によつても、衝撃遷移温度
が高いことによるものである。
次に、第4表に圧延棒鋼Bを950℃に加熱し、
鍛造開始及び終了温度をそれぞれ920℃及び850℃
として鍛造した後、種々の速度で冷却して
(Industrial Application Field) The present invention relates to a method for manufacturing a high-strength non-tempered steel bar. (Prior art) Conventionally, high-strength steel bars are generally produced by hot rolling or hot forging raw material steel, such as medium carbon steel or low alloy steel, and then reheating, quenching and tempering, that is, refining treatment. It is provided with strength characteristics depending on the purpose and use. However, the thermal refining treatment requires a large amount of thermal energy, and the manufacturing cost inevitably increases due to an increase in the number of processing steps, an increase in the number of products in progress, and the like. Therefore, in recent years, in the production of high-strength steel bars, small amounts of so-called precipitation-hardening alloying elements such as V, Nb, and Ti are added to medium carbon steel in order to simplify the production process, and in particular to omit the quenching-tempering process. Using the so-called non-tempered steel as a raw material, we can produce high-strength non-tempered steel bars that achieve the desired properties even when left to cool after hot working by using heating during hot working, processing, and subsequent cooling steps. Attention has been paid. For example, in Japanese Patent Publication No. 58-2243, a small amount of V is added to medium carbon steel, which is then heated to a temperature of 1100°C or higher and die-forged, and then heated to 500°C for 10-100°C.
A method for manufacturing a non-thermal forged product having a ferrite-pearlite structure in which fine V carbonitrides are precipitated in ferrite by air cooling at a cooling rate of .degree. C./min is described. However, according to such a method, although the required strength can be obtained, a decrease in toughness and ductility is inevitable as the strength increases. In particular, the impact value is almost half that of ordinary tempered steel. For example, class 2 tempered steel with a tensile strength of 80Kg/mm,
It has a charpy value of 14 Kgm/cm 2 at room temperature, but it is 7 Kgm/cm 2 or less in the case of non-heat treated steel with a tensile strength of 80 Kg/mm 2 . (Object of the Invention) As a result of intensive research in order to solve the above-mentioned problems in the production of high-strength non-tempered steel bars, the present inventors have discovered that they have added a relatively large amount of S along with a small amount of V to medium carbon steel. Regarding the hot rolling and subsequent hot forging of the raw material steel, the benefits can be achieved by specifying the start and end temperatures of hot rolling and hot forging to be lower temperatures than in conventional methods. By refining the ferrite grains in the steel bar that is produced, elongating the MnS inclusions in the working direction during these hot working processes, and controlling the cooling rate after hot forging, we are able to achieve high strength while still hot forging. The present invention was developed based on the discovery that it is possible to obtain a high-strength non-tempered steel bar with excellent toughness and ductility. (Structure of the Invention) The method for manufacturing a high-strength non-tempered steel bar according to the present invention includes:
By weight, C 0.30-0.50%, Si 0.15-0.50%, Mn 1.0-1.65%, S 0.04-0.1%, V 0.08-0.2%, Al 0.015-0.05%, the balance being substantially iron and unavoidable impurities. Heating the steel material to a temperature of 850 to 1000℃, 800 to 950℃
After hot rolling at a finishing temperature of
Hot forging is carried out at a finishing temperature of ℃, and then
It is characterized by cooling from the A3 transformation point to 550°C at a cooling rate of 0.3 to 10°C/sec. First, the reason for limiting the chemical composition of the steel material in the method of the present invention will be explained. C ensures the strength of non-tempered steel bars, and
V is added as an indispensable element to form carbides and exhibit a strengthening effect through precipitation hardening, but if the content is less than 0.35%, the strengthening effect is poor, while if it exceeds 0.50% In this case, V carbide is excessively produced, resulting in a decrease in toughness. Therefore, the C content range is 0.35 to 0.50
%. In addition to deoxidizing, Si is an effective element for strengthening the ferrite structure of steel after cooling by rolling and forging. However, if it is less than 0.15%, the strength will be insufficient, and if it exceeds 0.50%, it will have poor cold workability. Deteriorates toughness. Therefore, the Si content range is 0.15 to 0.50%. Like C, Mn is an essential element for increasing the strength of steel, and in order to increase the tensile strength of steel after rolling and forging to 80 kg/mm 2 or more within the C content range limited above, Mn needs to be added in an amount of 1.0% or more. However, when adding too much Mn, a bainite structure is generated after rolling and forging, which deteriorates the toughness of the steel, so the upper limit is set at 1.65%. In the method of the present invention, S is an essential element for increasing the impact value of steel. Generally, S is added to improve the machinability of steel, in this case,
Since S needs to be MnS, which is difficult to deform during rolling, the amount of oxygen in the steel is increased to 1100~
Rolling is carried out at high temperatures such as 950°C. It is also known that for this reason, when increasing the S content in steel, the impact value is generally lowered. However, according to the method of the present invention, S
By containing a relatively large amount of and performing hot rolling and forging at a low temperature, as will be described later, the room temperature impact value of the resulting non-thermal steel bar can be significantly improved. That is, in the present invention, while adding S in the range of 0.04 to 0.1%,
Thoroughly deoxidize the steel with Al, and then heat it to 1000℃.
Rolling and forging at the following low temperatures facilitates the elongation of MnS inclusions in the rolling and forging direction, thus improving the room temperature impact value in the rolling and forging direction. Thus, to improve the impact value of the steel, S requires an addition of at least 0.04%.
On the other hand, if too much is added, the increase in MnS inclusions will adversely affect the impact value, so the amount added should be 0.1% or less. In the method of the present invention, precipitation hardening of V carbides is used to add 80 kg/mm 2 of V to the resulting non-tempered steel bar.
It is an essential element to provide above-mentioned strength, and in order to obtain sufficient precipitation hardening, it is necessary to add at least 0.08%, but when adding too much, the toughness will deteriorate as the strength increases. Therefore, the amount added should be 0.2% or less. Al is added for deoxidation and grain refinement, and in order to effectively exhibit these effects,
It is necessary to add at least 0.015%. However, even if it is contained in a large amount exceeding 0.05%, the effect increases only slightly, so the content range is from 0.015 to
It shall be 0.05%. Note that the content of oxygen O 2 must be kept low in order to easily deform MnS during rolling, and in the present invention, it is preferably 0.004% or less. In the method of the present invention, steel having the above-mentioned composition is used as a material steel, which is hot-rolled at a low temperature in the austenite region, then reheated, and hot-forged at a low temperature again to improve the impact value. improve. That is, according to the present invention, by heating to a low temperature during rolling and forging, the austenite crystal grains at the time of heating are refined, and by refining the austenite crystal grains during rolling and forging, In addition to making the ferrite grains finer, as described above, the MnS inclusions are made easier to elongate in the rolling and forging direction, thereby improving the impact value at room temperature.
MnS inclusions are relatively softer than the steel itself when the steel heating temperature is below 1000℃.
Since it is easily deformed, it improves the impact value in the rolling and forging directions. When the steel heating temperature is higher than 1000℃, V is sufficiently dissolved in solid solution, so the obtained steel bar is
Although there is no particular problem in terms of strength, the toughness decreases due to coarse grains, and the MnS inclusions are harder than the steel itself, making it difficult to deform during hot rolling and forging processes. On the other hand, when the heating temperature is 850° C. or lower, the amount of solid solution of V is small, so the required strength cannot be obtained, and the deformation resistance increases, making rolling and forging difficult. Therefore, in the method of the present invention, the heating temperatures for rolling and forging are each in the range of 850 to 1000°C. In addition, the finishing temperature of rolling and forging is 800
Temperatures range from ~950°C. When the finishing temperature is lower than 800℃, unrecrystallized structure remains, so
The required strength cannot be imparted to the resulting rolled forged steel bar. On the other hand, if the temperature is higher than 950°C, the crystal grains are coarse and the toughness is low. The steel bar hot forged as described above is then cooled from the A3 transformation point to 550°C at a cooling rate of 0.3 to 10°C/sec. When the cooling rate is slower than 0.3° C./sec, the crystal grains become coarse, so sufficient strength cannot be obtained and toughness cannot be improved. However, if the cooling rate is faster than 10° C./sec, supercooled structures such as bainite are formed, resulting in a decrease in toughness. In the present invention, an as-rolled steel bar having sufficient high speed, high toughness and ductility can be obtained by hot rolling the raw steel under the above conditions. Therefore, this rolled steel bar was further hot forged as described above, and further,
By cooling at a predetermined cooling rate, the impact value of the resulting steel bar can be further improved. (Effects of the Invention) As described above, according to the present invention, by adding a small amount of V to medium carbon steel, the steel can be strengthened by precipitation hardening, and at the same time, compared to Adding a large amount of S, this material steel is hot-rolled and forged at low temperature, and during this processing process,
Facilitates the elongation of MnS inclusions in the rolling and forging direction,
Furthermore, by controlling the cooling rate after forging, the impact value can be further improved, thus achieving a
In addition to high strength of Kg/mm 2 or more, the impact value at room temperature is
It is possible to obtain a high-strength non-tempered steel bar with high toughness and high ductility of 10 Kgm/cm 2 or more. (Example) Examples of the present invention are listed below. Example Material steel having the chemical composition shown in Table 1 was heated to various temperatures as shown in Table 2, rolling was started and completed at the temperature shown in Table 2, and rolled steel bars with a diameter of 40 mm were obtained. Obtained. Its mechanical properties and ferrite particle size are shown in Table 2. In Table 1, steels A and B have the chemical composition specified in the present invention, steels C and D are comparative steels, and the impact value was measured using a JIS No. 3 test piece. In Table 2, steels A, B, C, and D have different rolling conditions for steel A, and steel A has a high rolling heating temperature, has a small ferrite grain size, and has a low impact value. D cannot be rolled because the rolling heating temperature is too low. B and C were heated and rolled within the temperature range defined by the present invention, and have large ferrite grain sizes and improved impact values. Within the range specified by the present invention, steel B, which has a lower C content and a higher Mn content than steel A, is used as the raw material steel and is rolled according to the conditions of the present invention, and is the same as B and C. The ferrite grain size is large and the impact value is improved. On the other hand, F is the rolling heating temperature and the rolling temperature is E above.
However, because the amount of C in the material steel is higher than the range specified by the present invention, and the amount of Mn is lower than the amount specified by the present invention, the tensile strength is maintained at 80 Kg/mm 2 . However, due to the excessive amount of C, the impact value is extremely small. G has a small ferrite grain size because the material steel is a low S steel and the rolling heating temperature is high, and therefore the impact value is also small. H is obtained by rolling material steel D under the conditions specified in the present invention, and although the ferrite grains are fine, the impact value is inferior because steel D is a low S steel. Next, the hot rolled steel bar obtained above was reheated to the forging heating temperature shown in Table 3, finished forging at the finishing temperature shown in Table 3, and then cooled at a rate of 1.0°C/sec. A forged steel bar with a diameter of 30 mm was obtained. Table 3 shows the mechanical properties and ferrite grain size of the forged steel bar thus obtained. Steels I and J are obtained by reheating and forging the rolled steel bars A and B, respectively, from Steel A having the chemical composition specified in the present invention, but the forging heating temperature and forging finishing temperature are as specified in the present invention. Although the tensile strength is high, the ferrite grain size is large and the impact value is therefore small. On the other hand, Steels K and L are products forged according to the method of the present invention, and have fine ferrite grains, and while maintaining a tensile strength of 80 kg/mm 2 class, their impact value is significantly lower. It has been improved. Steel M has a small S content in the material steel and a high finishing temperature, so the ferrite grain size is small and the impact value is low. Steel N is forged under the temperature conditions specified in the present invention, and although the ferrite grains are fine, the impact value is not improved because the S content in the material steel is lower than that specified in the present invention. do not have. According to the method of the present invention, the impact value can be improved by hot rolling or forging the steel material at a low temperature while containing a relatively large amount of S, as shown in FIG. 1, for example. , as shown for the case of steel B, the shock transition temperature shifts to the lower temperature side, while the low S
In the case of steel, for example, as shown for steel H,
This is due to the high impact transition temperature even with rolling or forging at low temperatures. Next, Table 4 shows that rolled steel bar B was heated to 950°C,
Forging start and end temperatures are 920℃ and 850℃, respectively.
After being forged as
【表】【table】
【表】【table】
【表】
(注) 圧延温度の欄は、圧延開始温度/圧延終了
温度を示す。
[Table] (Note) The rolling temperature column indicates rolling start temperature/rolling end temperature.
【表】【table】
【表】
得た鍛造棒鋼の機械的性質を第4表に示す。鋼O
及びPはいずれも冷却速度が本発明で規定する範
囲外にあるため、衝撃値の改善が認められない。
これに対して、鋼Qは本発明による鋼であり、上
記の比較鋼に比べて格段にすぐれた衝撃値を有す
ることが明らかである。[Table] Table 4 shows the mechanical properties of the obtained forged steel bar. Steel O
and P, the cooling rates of which are outside the range defined by the present invention, and therefore no improvement in impact value is observed.
On the other hand, Steel Q is a steel according to the present invention, and it is clear that it has a much better impact value than the comparative steels mentioned above.
図面は、本発明による鋼と比較鋼とにおいて、
温度と衝撃値との関係を示すグラフである。
The drawings show that in the steel according to the invention and the comparative steel,
It is a graph showing the relationship between temperature and impact value.
Claims (1)
鋼材を850〜1000℃の温度に加熱し、800〜950℃
の仕上温度にて熱間圧延を行なつた後、この圧延
棒鋼を850〜1000℃の温度に再加熱し、800〜950
℃の仕上温度にて熱間鍛造を行ない、次いで、
A3変態点から550℃の間を0.3〜10℃/秒の冷却速
度にて冷却することを特徴とする高強度非調質棒
鋼の製造方法。[Claims] 1% by weight: C 0.30-0.50%, Si 0.15-0.50%, Mn 1.0-1.65%, S 0.04-0.1%, V 0.08-0.2%, Al 0.015-0.05%, the balance being substantial A steel material made of iron and unavoidable impurities is heated to a temperature of 850 to 1000℃, and then heated to a temperature of 800 to 950℃.
After hot rolling at a finishing temperature of
Hot forging is carried out at a finishing temperature of ℃, and then
A method for manufacturing a high-strength non-thermal steel bar, characterized by cooling from the A3 transformation point to 550°C at a cooling rate of 0.3 to 10°C/sec.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1119785A JPS61170513A (en) | 1985-01-24 | 1985-01-24 | Manufacture of high strength unrefined steel bar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1119785A JPS61170513A (en) | 1985-01-24 | 1985-01-24 | Manufacture of high strength unrefined steel bar |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61170513A JPS61170513A (en) | 1986-08-01 |
JPS6411083B2 true JPS6411083B2 (en) | 1989-02-23 |
Family
ID=11771319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1119785A Granted JPS61170513A (en) | 1985-01-24 | 1985-01-24 | Manufacture of high strength unrefined steel bar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61170513A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4551694B2 (en) * | 2004-05-21 | 2010-09-29 | 株式会社神戸製鋼所 | Method for manufacturing warm molded product and molded product |
-
1985
- 1985-01-24 JP JP1119785A patent/JPS61170513A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61170513A (en) | 1986-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4018905B2 (en) | Hot rolled wire rod and bar for machine structure and manufacturing method thereof | |
JP7300451B2 (en) | Wire rod for cold heading, processed product using the same, and manufacturing method thereof | |
JP2567150B2 (en) | Manufacturing method of high strength low yield ratio line pipe material for low temperature | |
JPS6160892B2 (en) | ||
US9394580B2 (en) | High-toughness cold-drawn non-heat-treated wire rod, and method for manufacturing same | |
KR20010060760A (en) | structural steel having High strength and method for menufactreing it | |
JPH05105957A (en) | Production of heat resistant high strength bolt | |
JP3733229B2 (en) | Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance | |
JP3554506B2 (en) | Manufacturing method of hot-rolled wire and bar for machine structure | |
JPH09279233A (en) | Production of high tension steel excellent in toughness | |
JPH06128631A (en) | Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness | |
JPH0425343B2 (en) | ||
JPS61284554A (en) | Alloy steel for unrefined bolt or the like having superior toughness and steel material for unrefined bolt or the like using same | |
CN110951953B (en) | HRB500E steel bar and vanadium-nitrogen microalloying process thereof | |
JPH0696742B2 (en) | High strength / high toughness non-heat treated steel manufacturing method | |
JPS63161117A (en) | Production of hot rolled steel products having high strength and high toughness | |
JPH0526850B2 (en) | ||
JPH0813028A (en) | Production of precipitation hardening steel material having high tensile strength and high toughness | |
JPS6411083B2 (en) | ||
JPS6137333B2 (en) | ||
JP2000160285A (en) | High-strength and high-toughness non-heat treated steel | |
JPH04297548A (en) | High strength and high toughness non-heat treated steel and its manufacture | |
JPH10280036A (en) | Wire rod for high strength bolt excellent in strength and ductility and its production | |
JPH03260010A (en) | Production of non-heattreated steel bar for hot forging and production of hot forged non-heattreated parts | |
KR940007365B1 (en) | Method of manufacturing steel rod |