Nothing Special   »   [go: up one dir, main page]

JPS5995922A - Denitration method of gas containing nox - Google Patents

Denitration method of gas containing nox

Info

Publication number
JPS5995922A
JPS5995922A JP57205420A JP20542082A JPS5995922A JP S5995922 A JPS5995922 A JP S5995922A JP 57205420 A JP57205420 A JP 57205420A JP 20542082 A JP20542082 A JP 20542082A JP S5995922 A JPS5995922 A JP S5995922A
Authority
JP
Japan
Prior art keywords
gas
denitrification
nox
contg
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57205420A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Kato
泰良 加藤
Kunihiko Konishi
邦彦 小西
Masao Ota
大田 雅夫
Yoshinori Takimoto
滝本 義範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP57205420A priority Critical patent/JPS5995922A/en
Publication of JPS5995922A publication Critical patent/JPS5995922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To denitrate efficiently NO2 in NOx-contg. gas without by-producing N2O by reducing at least a part of NO2 in said gas to NO then subjecting the same to a denitration treatment by an ammonia catalytic reduction method. CONSTITUTION:The NOx-contg. gas which contains the NO2 introduced through a line 1 is heated to a prescribed temp. with a heater 5 and is then introduced into an NO2-NO converter 6. The above-mentioned gas is brought into contact with a catalyst 9 contg. the oxide of metal such as Co as an active component in said converter, so that at least a part of NO2 is reduced by a reducing agent such as H2 and is converted to NO, thereby decreasing the ratio of NO2 in the NOx to more preferably <=50%. NH3 is added to said gas through a line 7 and the gas is introduced into a denitration reactor 8. The gas is brought into contact with a catalyst 10 combined with the oxides of Ti, V, Mo and W in said reactor and NO2 is denitrated with high efficiency by reduction reaction.

Description

【発明の詳細な説明】 本発明は、窒素酸化物含有ガスの脱硝方法に係り、特に
高濃度二酸化窒素(NO2)含有ガスを高効率で脱硝処
理するだめのアンモニア接$11元脱硝法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for denitrifying gas containing nitrogen oxides, and in particular to a $11 original denitrification method using ammonia contact for highly efficient denitrification of gas containing high concentration nitrogen dioxide (NO2). It is.

硝酸プラント、金属の酸洗工場などから排出される高濃
度No 2含有排ガスの無g化処、1里には、従来より
水、酸またはアルカリ溶l戊などによる洗浄法が深川さ
れているが、:吸収液中へのNo 2の溶解速度75員
序いだめに裂1.l’lが大を化することや、硝酸まだ
は亜硝酸の化合i勿を含む多1,1:の排液をISj生
するなどの間1、原がある。まだ、近年では、核燃料の
+iT処理プラントの排ガス処理において、放射性クリ
プトンやキセノンを回収する1T冷分子’+(I工程で
の、暴発を防止するため、排ガス中のNO2を高効率で
1余去する方法が沼まれでいる。]¥にこの場合には、
湿式法によると放射性物質を含有する排液処理が大きな
間、顆となる。
Conventionally, cleaning methods such as water, acid, or alkaline chloride have been used to treat waste gas containing high concentration No. 2 from nitric acid plants, metal pickling factories, etc. ,: Dissolution rate of No. 2 into the absorption liquid 75-membered order: 1. There are problems such as when l'l increases in size and when nitric acid and nitrous acid combine to produce a large amount of effluent containing nitrous acid. However, in recent years, in the exhaust gas treatment of nuclear fuel +iT processing plants, NO2 in the exhaust gas has been removed with high efficiency to prevent explosions in the 1T cold molecule '+ (I process) that recovers radioactive krypton and xenon. I am confused about how to do this.] In this case,
According to the wet method, wastewater containing radioactive substances is treated during a large amount of time.

以上のようにアルカリ洗浄−千の(風式法によるNo 
2の除去は、種々の間7但点を有して訃り、この方法に
代る簡1更かつ高効、慴の乾式、\JO2fish去プ
ロセスの確立が頃まれていた。
As mentioned above, alkaline cleaning - No. 1000 (by wind method)
Removal of JO2 fish has been unsuccessful for various reasons, and a simpler and more effective alternative to this method, the dry method, JO2 fish removal process, has been established.

このような要求をi’+M足するプロセスとして、アン
モニア(NI(a )を還元j11]として使用し@1
′独的にNo 2を窒素と水に還元する、いわゆるアン
モニア接触還元法脱硝プロセスが考えられ、すでに数多
くの提案がなされている。
As a process of adding such a request to i'+M, using ammonia (NI(a) as reduction j11) @1
'The so-called ammonia catalytic reduction denitrification process, which uniquely reduces No 2 to nitrogen and water, has been considered, and many proposals have already been made.

しかしながら、本発明者らの検討によれば、前述のよう
なNO2含有ガスをアンモニア接触、1元法によって処
理すると、NO2は窒素(N2)まで+41元されず、
還元の途中段階で亜酸化窒素(N20 )を多iitに
副生じ、実用化する上での大きな間八となることが判明
した。このことから高、l、′、1度No 2含有ガス
の脱硝にアンモニア接触1π元法を深川するだめには、
N20副生を抑制する方爪の開発が不可欠である。
However, according to the studies of the present inventors, when the above-mentioned NO2-containing gas is treated with ammonia contact and a one-component method, NO2 is not converted to nitrogen (N2) by +41,
It has been found that nitrous oxide (N20) is generated in large amounts as a by-product during the reduction process, which is a major hindrance to practical application. From this, Fukagawa cannot use the ammonia contact 1π element method for denitrification of high, l,', 1 degree No2-containing gas.
It is essential to develop strategies to suppress N20 byproducts.

本発明の目的は、上記した従来技0tffの欠点をi<
 1.、N20を副生することなく、旨効率でNo2を
アンモニア接触還元法により脱硝処理することができる
方法を提供するにある。
An object of the present invention is to solve the drawbacks of the conventional technique 0tff described above.
1. The present invention aims to provide a method that can efficiently denitrify No2 by an ammonia catalytic reduction method without producing N20 as a by-product.

本発明者らは、NO2をNH3で接融12元した場合の
N20副生機+f9について検討を進めた結果、N2゜
の生成が次のようにして起こることを見出し、本発明を
完成するに到った。すなわち、No2は、まず(1)式
で示される」(3の活性化に防用され、N。
As a result of studying the N20 by-product +f9 when NO2 is fused with NH3, the inventors discovered that the generation of N2° occurs in the following manner, and were able to complete the present invention. It was. That is, No. 2 is first prevented by the activation of 3, which is expressed by equation (1), and N.

が生成する。このように生成されたNoは、さらに(2
)式の反応によシ還元され、N2とI20を生成する。
is generated. The number generated in this way is further calculated as (2
) is reduced to produce N2 and I20.

一方、N1−13の活性化に、冷加しなかったNo 2
は、(3)式の反応により、N2oとI20を生成する
。このN20は、安定なガスで反応・並に乏しく、これ
1メ上還元されないだめ、N2oのま寸残存することに
なる。
On the other hand, for the activation of N1-13, No 2 which was not cooled
generates N2o and I20 by the reaction of formula (3). This N20 is a stable gas with very little reactivity, and unless it is reduced to a certain extent, a small amount of N2o will remain.

2NH3+ NO2→2NI(2+ No + lI2
0   ・・・−(1)NH2十NO−+N2  + 
I20    −−(2)Nl(2+ NO2→N20
 + f(20・旧= (3)ここでNH2は触媒上の
活性中間体を表わす。
2NH3+ NO2→2NI(2+ No + lI2
0...-(1)NH20NO-+N2+
I20 --(2)Nl(2+ NO2→N20
+f(20·old=(3) where NH2 represents the active intermediate on the catalyst.

上+jeのようにNO2によるNH3の活性化1寺には
2倍モルの聞(2か生成され((1)式)、そのうちの
1培モルのNH2だけが(1)式で生成したNOと反応
してN2とI20になるが((2)式)、残りの1倍モ
ルの* NHzは排ガス中のNo tと反応してNzOを生成せ
ざるを得す、NO2脱硝時のN20生成は反応磯借的に
赴けられないことになる。このためNo 2副生を抑制
するには、生成した2培モルのN1−I2を(2)式の
反応でできるだけNOと反応させることが必要である。
As shown in above + je, activation of NH3 by NO2 generates twice as many moles of NH3 (Equation (1)), and only one mole of NH2 is the same as the NO generated in Equation (1). It reacts to become N2 and I20 (formula (2)), but the remaining 1 mole of *NHz has no choice but to react with Not in the exhaust gas to generate NzO, and the N20 generation during NO2 denitrification is Therefore, in order to suppress the No 2 by-product, it is necessary to react the generated 2 moles of N1-I2 with NO as much as possible in the reaction of equation (2). It is.

従って還元されるべき彼処[里ガスを先ず河らかの方策
によp 、Notの大半をN OK転化し、N。
Therefore, the gas that should be reduced should first be converted to NOK, and most of the NO gas should be converted to NOK.

0度をNo 2濃度以上(以T N O/ No 2 
”41と記す)としだ後、NH3による脱硝反応を−B
こさせれば、含有されるNo 2は(1)式の反応にす
べて消tでされ、生成したNoおよび屍存のNOとは(
2)式の反応によりすべてN2にまで還元される。
0 degree to No 2 concentration or higher (hereinafter referred to as T NO/No 2
(denoted as 41), the denitrification reaction using NH3 is carried out by -B
If this is allowed to occur, all of the contained No 2 will be quenched by the reaction of equation (1), and the generated No and remaining NO will be (
2) It is all reduced to N2 by the reaction of formula.

本発明は、被処理ガス中のNo 2の一部ないし窒素全
部をあらかじめNOに転換し、3侍されるNOx中のN
o vの割合を50チ以下にしだ後、アンモニア接)独
7畳元法を行なうことにより、N20の副生を抑制する
とともに、脱硝性能の向上を実現できるようにしたもの
である。
The present invention converts part or all of the NO2 in the gas to be treated into NO in advance, and converts the NO2 in the NOx to be treated.
After reducing the o v ratio to 50 or less, the ammonia contact method is carried out, thereby suppressing the by-product of N20 and improving the denitrification performance.

本発明に分いて、彼処ノ里ガス中のNo工をNQに転換
する方法としては、例えば熱分解法、j妾融熱分解法お
よび還元剤による還元法などがちげられるが、コバルト
、マンガン、クロム、洞などの金属の酸化物を活性成分
とするか媒を用いた接7・独熱分屏法が、NOへの転換
速度が大きく最も沼ましい。上記還元法による還元剤と
しては、例えば水素、炭化水素、−酸化炭素、グラファ
イト等の固体炭素などが用いられる。まだ、被処理ガス
中のNo 2をN0vc伝美する。−’1合は、N(L
7::i度がNO2?Q度と等しいか、またはこれより
大きい条件(N。
According to the present invention, methods for converting NO into NQ in the gas include pyrolysis, fusion pyrolysis, and reduction using a reducing agent, but cobalt, manganese, The catalytic/self-thermal separation method, which uses a medium containing oxides of metals such as chromium and carbon dioxide as active ingredients, is the most sluggish because it has a high rate of conversion to NO. As the reducing agent used in the above reduction method, for example, hydrogen, hydrocarbon, -carbon oxide, solid carbon such as graphite, etc. are used. Still, No. 2 in the gas to be treated is transferred to N0vc. -'1 is N(L
7::I degree is NO2? Condition equal to or greater than Q degree (N.

/NO,≧0.5)であればよい。しかし、1″−■済
り′上を考慮すれば、NO/NO,を0.5にパく定す
ることが1ましい。さらに、NO2をNoに;云;:!
 l、た1贅の脱硝工程に用いる触媚としては、ボイラ
排ガスンよどのNoを主体とするNo工金含有ガス脱硝
に醍用されるものであればいずれも使用可能であるが、
チタン、バナジウム、モリブデン、タングステンの1夜
化吻の租み合せによりなるf独砧が好請果を与える。
/NO, ≧0.5). However, considering the above 1''-■, it is best to set NO/NO to 0.5.Furthermore, set NO2 to No;
As a tactile agent to be used in the denitrification process of boiler exhaust gas, any material that is suitable for denitrification of No-containing gases such as boiler exhaust gas can be used.
The combination of titanium, vanadium, molybdenum, and tungsten gives good results.

以下、本発明を図面によりざらに詳rl”iFI K説
明する。
Hereinafter, the present invention will be roughly explained in detail with reference to the drawings.

第1図は、本発明の一実廁し1jを示す典′収的な装置
系統図である。ここで、NO2を含有するガス(NO/
NO2<1)は、配・α1を介してノJD熱器5に導か
れ、所定温度にn1:1へされた後、NO2NO転換器
6に導かれる。転僕醋6には、下記(4)式の反応を促
進する触媒9が充填されておp1処理ガス中のNO2が
熱分iQイされる。
FIG. 1 is a typical system diagram showing one practical implementation of the present invention. Here, a gas containing NO2 (NO/
NO2<1) is led to the NOJD heater 5 via the pipe α1, brought to a predetermined temperature at a ratio of n1:1, and then led to the NO2NO converter 6. The converter 6 is filled with a catalyst 9 that promotes the reaction of the following formula (4), and NO2 in the p1 processing gas is converted into heat iQ.

NOz 4 No 十]、/ 202    (4)と
のようにしてNo/No2叱が1以上になっだ被処理ガ
スは、N1(3ci人ライン7からN1−(3を添加さ
れた後、脱硝反応器8に充てんされている触媒10と接
触させられ、脱硝反応が行なわ〕する。脱硝後の清浄ガ
スは配管4から系外に排出される。
NOz 4 No 10], / 202 (4) The gas to be treated whose No/No2 value has become 1 or more is subjected to a denitrification reaction after N1 (3ci) is added from the human line 7. The denitrified gas is brought into contact with the catalyst 10 filled in the vessel 8 to perform a denitrification reaction.The clean gas after denitrification is discharged from the system through the pipe 4.

なお、上記装置系1統には、転換器6と脱硝反応218
の温度を異にして運転したり、排熱回収などの目的で適
宜加熱器または熱交換器を付ノルしてもよい。
Note that the first system of the above equipment includes a converter 6 and a denitrification reaction 218.
It may be operated at different temperatures, or a heater or heat exchanger may be installed as appropriate for purposes such as waste heat recovery.

次に第2図は、本発明の他の実施し1]を示すもので、
PJ1図と異なる点は、NO2No転1,1用ブ法礎9
と脱硝用触媒10をこの二46f造にし、その中111
にN1(s注入管7を設けて二)13型反応器11とし
たことである。この実施例によれば、f’J02NO転
換器と脱硝反応器を一体化したので、装置1工をコンパ
クト化することができ、また熱損失浄も減少させること
ができる。
Next, FIG. 2 shows another embodiment 1 of the present invention,
The difference from the PJ1 diagram is the NO2 No. 1, 1 use method foundation 9.
The denitrification catalyst 10 was made of two 46f structures, of which 111
A N1(s) injection pipe 7 was installed in the reactor to form a 2) 13 type reactor 11. According to this embodiment, since the f'J02NO converter and the denitrification reactor are integrated, it is possible to downsize the device and reduce heat loss.

次に本発明を実験1クリにより具体的に説明する。Next, the present invention will be specifically explained using Experiment 1.

実施例 第1図に示す装置系、)売を有する実〕裟11tをJI
Jい、第1表に示す条件で、No21:Q蛸時における
脱硝率とN20副生率を1.゛コベ/こ。な〉、ここで
脱イj1□1率およびN20副生率は以−「のように定
、ミされる。
Embodiment: The equipment system shown in FIG.
Under the conditions shown in Table 1, the denitrification rate and N20 by-product rate during No.21:Q were set to 1.゛Kobe/ko. Here, the deionization rate and N20 by-product rate are determined as follows.

7窮3図は、加熱器5の温度を変えることによ気脱硝反
応器入口におけるN O/ NOz比を変えた場合の脱
硝反応器の脱硝率とN20副生率を示したものである。
Figure 7 shows the denitrification rate and N20 by-product rate of the denitrification reactor when the N O/NOz ratio at the inlet of the denitrification reactor is changed by changing the temperature of the heater 5.

N20の副生清は、NO/NO2比が1をJ肥えると測
定限界内である数I・−以下になっており、本発明方法
がN20副生を抑制する上で1ごれた方法であることが
1川る。また、NO2をNOに法浪することにより脱硝
性能も大福に改善されておシ、本方法が脱硝性能の点で
も優れたものであることが団る。
When the NO/NO2 ratio increases from 1 to 1, the N20 by-product liquid becomes less than a few I--, which is within the measurement limit, indicating that the method of the present invention is an excellent method for suppressing N20 by-products. There is one thing. Furthermore, by converting NO2 into NO, the denitrification performance was greatly improved, and it can be concluded that this method is excellent in terms of denitrification performance as well.

次に第2表は、第1表に示した脱硝用触盛と異なる酸化
物からなる触媒を用いた場合のN20副生抑制効果(N
 O/ N02転換比を0.08から1〜1,06にし
た場合の効果)を示しだものである。
Next, Table 2 shows the N20 by-product suppression effect (N
This figure shows the effect of increasing the O/N02 conversion ratio from 0.08 to 1 to 1,06.

第2表の結果から、貫−V基以外の脱硝)独媒糸に本発
明を適用してもN20の・、71j生率は、大幅に戊少
しており、本発明が有効であることが明ら刀・である。
From the results shown in Table 2, even when the present invention is applied to monopolized yarns with non-V group denitrification, the N20 and 71j production rates are significantly reduced, indicating that the present invention is effective. It's obviously a sword.

以上、本発明によれば、硝(−″2ブラント、金属の酸
6己排ガス、核燃料再処理グランド序のイ、(「ガスに
含有されるNO2ガスを、アンモニアノ音/、;l!は
元法によりN20の副生を抑・11すしつつ高効・ぢで
脱硝処l(Rすることができる。具体的t・では、θj
えば従来法では被処理ガス中のNO2の20〜3o襲に
相当するN20か副生していたものを、(はとんど0チ
にすることができ、しかも脱硝性能を1.5倍以上向上
させることができる。
As described above, according to the present invention, the NO2 gas contained in the NO2 gas is With the original method, it is possible to perform denitrification with high efficiency while suppressing the by-product of N20.
For example, in the conventional method, it is possible to reduce the by-product N20, which corresponds to 20 to 3 degrees of NO2 in the gas to be treated, to almost 0 degrees, and moreover, the denitrification performance has been increased by more than 1.5 times. can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ本発明の一実施例を示
す装置系統図、第3図は木発1月の実施例の効果を示す
グラフである。 1・・・被処理ガス配′U15・・・加熱器、6・・・
No2−NO転換器、7・・・N1(s注入品71,8
・・・脱硝反応器、9・・・NoP熱分解触媒、1o・
・・脱イIrjl独媒。
FIGS. 1 and 2 are system diagrams showing an embodiment of the present invention, and FIG. 3 is a graph showing the effects of the January embodiment. 1... Processing gas distribution 'U15... Heater, 6...
No2-NO converter, 7...N1 (s injection product 71,8
...Denitrification reactor, 9...NoP thermal decomposition catalyst, 1o.
...Irjl independent media.

Claims (1)

【特許請求の範囲】[Claims] (1)二酸化窒素(NO2)含有ガスをアンモニア接触
還元法により脱硝処理する工程の前に、前記ガス中のN
o 2の少なくとも一部をあらかじめ−【像化窒素(N
o)に転換する工程金膜けたことを!時機とする窒素酸
化物含有ガスの脱硝方法。 (2、特許請求の範囲第1項において、彼処3里ガス中
の窒素酸化物中のNo2の割合が50係以下になるよう
に前記転換反応を行なうことを、i?aとする窒素酸化
物含有ガスの脱硝方法。
(1) Before the process of denitrifying nitrogen dioxide (NO2)-containing gas by the ammonia catalytic reduction method,
o At least a portion of the
o) The process of converting to gold film! Timely denitrification method for nitrogen oxide-containing gas. (2. In claim 1, i?a refers to the fact that the conversion reaction is carried out so that the ratio of No2 in the nitrogen oxides in the gas becomes 50 parts or less. Method of denitration of contained gas.
JP57205420A 1982-11-25 1982-11-25 Denitration method of gas containing nox Pending JPS5995922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57205420A JPS5995922A (en) 1982-11-25 1982-11-25 Denitration method of gas containing nox

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57205420A JPS5995922A (en) 1982-11-25 1982-11-25 Denitration method of gas containing nox

Publications (1)

Publication Number Publication Date
JPS5995922A true JPS5995922A (en) 1984-06-02

Family

ID=16506546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57205420A Pending JPS5995922A (en) 1982-11-25 1982-11-25 Denitration method of gas containing nox

Country Status (1)

Country Link
JP (1) JPS5995922A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505919A (en) * 1993-08-03 1996-04-09 Mitsubishi Jukogyo Kabushiki Kaisha Method for the denitration of exhaust gas
JP2002177740A (en) * 2000-12-15 2002-06-25 Ishikawajima Harima Heavy Ind Co Ltd Denitration apparatus for waste heat recovery boiler
JP2008238069A (en) * 2007-03-28 2008-10-09 Babcock Hitachi Kk Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst
JP2013017934A (en) * 2011-07-08 2013-01-31 Ihi Corp Denitration device and denitration method
JP2023512906A (en) * 2020-01-08 2023-03-30 株式会社イーエムコ Thermal power plant flue gas treatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483698A (en) * 1977-12-16 1979-07-03 Hitachi Ltd Nitrogen dioxide reducting method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483698A (en) * 1977-12-16 1979-07-03 Hitachi Ltd Nitrogen dioxide reducting method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505919A (en) * 1993-08-03 1996-04-09 Mitsubishi Jukogyo Kabushiki Kaisha Method for the denitration of exhaust gas
JP2002177740A (en) * 2000-12-15 2002-06-25 Ishikawajima Harima Heavy Ind Co Ltd Denitration apparatus for waste heat recovery boiler
JP2008238069A (en) * 2007-03-28 2008-10-09 Babcock Hitachi Kk Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst
JP2013017934A (en) * 2011-07-08 2013-01-31 Ihi Corp Denitration device and denitration method
JP2023512906A (en) * 2020-01-08 2023-03-30 株式会社イーエムコ Thermal power plant flue gas treatment method

Similar Documents

Publication Publication Date Title
JP4512238B2 (en) Method for removing nitrogen oxides from a waste gas stream
JPS62176524A (en) Method of reducing nitrogen oxide conetnt in flue gas from boiler for power plant
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
JPH02172590A (en) Process for removing nitrite and nitrate from aqueous solution without leaving residue
JPH11171535A (en) Method for generating ammonia and exhaust gas treatment using ammonia generated therewith.
JP4167039B2 (en) Gas turbine single plant remodeling method, catalyst recycling method
JPS5995922A (en) Denitration method of gas containing nox
JPH0871372A (en) Denitration apparatus and method using urea
JPH08103636A (en) Low-temperature denitrator
JP3366417B2 (en) Prevention method of ammonium sulfate precipitation in selective reduction denitration method
JP3863610B2 (en) Ammonia detoxification method and apparatus
JPH0417083B2 (en)
JP3713634B2 (en) Nitrogen oxide removal method and flue gas denitration equipment in exhaust gas
US6168770B1 (en) Method of removing nitrogen oxides from a gas flow by using a combustion engine
JP2004202450A (en) Exhaust gas denitrification method and denitrification apparatus thereof
JP2002068734A (en) Method for producing ammonia and method for treating exhaust gas
JP3942673B2 (en) Exhaust gas denitration method
JPS62213825A (en) Method for simultaneously performing desulfurizing and denitrating treatment of combustion flue gas and drainage treatment
JPH02214524A (en) Method for removing nitrogen oxide
JPH0694029B2 (en) Ammonia-containing wastewater treatment method
JPS62262729A (en) Method for removing nitrogen oxide contained in exhaust gas
JPS61111126A (en) Treatment of waste gas
JP3795114B2 (en) Waste incinerator exhaust gas treatment method and apparatus
JPH01315320A (en) Method for removing nitrogen oxide in exhaust gas
JP2001179050A (en) Method for treating nitrogen oxide by injection of ammonia