JPS5991603A - Thermal conductive electrically insulating material and method of producing same - Google Patents
Thermal conductive electrically insulating material and method of producing sameInfo
- Publication number
- JPS5991603A JPS5991603A JP20065682A JP20065682A JPS5991603A JP S5991603 A JPS5991603 A JP S5991603A JP 20065682 A JP20065682 A JP 20065682A JP 20065682 A JP20065682 A JP 20065682A JP S5991603 A JPS5991603 A JP S5991603A
- Authority
- JP
- Japan
- Prior art keywords
- thermally conductive
- weight
- electrically insulating
- insulating material
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Organic Insulating Materials (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、新規な電気絶縁性を兼ね備えた熱伝導材料な
らびにその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel thermally conductive material having electrical insulation properties and a method for manufacturing the same.
従来、電気絶縁性を兼ね備えた熱伝導材料としては、マ
イカ板、酸化アルミニウム、マイラ板げリエチレン、テ
レフタラートフィルム)、酸化ベリリウム、窒化ホウ素
などが使用されてきた。これらの材料は柔軟性に欠ける
ため、加工の際に破損を生じた)、絶縁破壊の原因とな
っていた。さらに接触性を良くするため、放熱グリース
を併用する必要があった。これに対して最近柔軟性があ
り電気絶縁性をもった熱伝導材料として、シリコンゴム
に窒化ホウ素を混練した熱伝導材料が開発されている。Conventionally, mica plates, aluminum oxide, mylar plated polyethylene, terephthalate films), beryllium oxide, boron nitride, and the like have been used as thermally conductive materials that have electrical insulation properties. These materials lacked flexibility, causing breakage during processing) and causing dielectric breakdown. Furthermore, in order to improve contact, it was necessary to use heat dissipation grease. In response to this, recently a heat conductive material made by kneading boron nitride into silicone rubber has been developed as a heat conductive material that is flexible and has electrical insulation properties.
然しなから本材料も十分な緒特性を有するものとは限ら
ず次の様な問題点がある。即ち ア)多量の無機充填物
を混入するため柔軟性の低下を生ずる。 イ、)ポリマ
ーが二次元的な結合であるため機械的強度が低く、伸び
も少ない。However, this material does not necessarily have sufficient properties and has the following problems. Namely: a) A large amount of inorganic filler is mixed, resulting in a decrease in flexibility. b) Because the polymer is two-dimensionally bonded, its mechanical strength is low and its elongation is low.
つ・)電気絶縁性の向上が図られない。 工)材料コス
トが高価である。・) Electrical insulation cannot be improved. Engineering) Material costs are high.
本発明者等は叙上の熱伝導性電気絶縁材料の問題点に鑑
み、電気絶縁性でしかも良好な熱伝導性を具備した新規
な熱伝導性材料の開発に取組み本発明を完成したもので
ある。In view of the above-mentioned problems with thermally conductive electrically insulating materials, the present inventors have worked on developing a new thermally conductive material that is electrically insulating and has good thermal conductivity, and have completed the present invention. be.
本発明の目的は熱伝導性を有し電気絶縁性において従来
よシ優れた新規な熱伝導性電気絶縁材料及び製造方法を
提供するにあシ、本発明の要旨とするところは。An object of the present invention is to provide a novel thermally conductive electrically insulating material and a manufacturing method that have thermally conductive properties and are superior in electrically insulating properties to conventional materials.
架橋剤及び酸化アルミニウム又は水酸化アルミニウムの
無機充填物とから成ることを特徴とする熱伝導性電気絶
縁材料とその製造方法にある。A thermally conductive electrical insulating material characterized by comprising a crosslinking agent and an inorganic filler of aluminum oxide or aluminum hydroxide, and a method for producing the same.
本発明における熱伝導性電気絶縁材料は、該材料の母材
となるポリマー、有機金属アルコキシドの架橋剤及び無
機充填物からなシ、ポリマーとしては、分子鎖中に一〇
H基をもつ熱可塑性樹脂 例えば
ポリビニルアルコール ポリビニルブチラールO
HC=o (C)h )z
1
00−CH−00H
1111
+CHr”CH−C&−CHCHr(IH−C&−CH
e−フェノキシ樹脂
が好ま(−く、これに架橋剤としてはアルキル基の禾
摩端に酸素が結合した形の1価の原子団であるアルコキ
シルグループに金属が結合したアルコキシル金属特に有
機金属アルコキシドが有効でib、有機金属アルコキシ
ドとしてはAt(OR)s 、T r (OR)4 e
Zr(OR)4及びGe(OR)4ただしRはC1〜C
4の−CH5−C2H5−Ca H7−−Ca He
から成るアルキル基及びフェニル基−CsHsなどが
あけられる。具体的には At(OCR(CHs )2
)3− At(0C4Hs)s 。The thermally conductive electrical insulating material in the present invention does not consist of a polymer as a base material, an organometallic alkoxide crosslinking agent, and an inorganic filler, and the polymer is a thermoplastic material having 10H groups in its molecular chain. Resin e.g. polyvinyl alcohol polyvinyl butyral O
HC=o (C)h )z 1 00-CH-00H 1111 +CHr"CH-C&-CHCHr(IH-C&-CH
E-phenoxy resin is preferable, and as a crosslinking agent, an alkoxyl metal in which a metal is bonded to an alkoxyl group, which is a monovalent atomic group in which oxygen is bonded to the end of an alkyl group, particularly an organometallic alkoxide is used as a crosslinking agent. effective, ib, and organometallic alkoxides such as At(OR)s, T r (OR)4 e
Zr(OR)4 and Ge(OR)4 where R is C1 to C
4 -CH5-C2H5-Ca H7--Ca He
Alkyl groups and phenyl groups consisting of -CsHs, etc. can be opened. Specifically, At(OCR(CHs)2
)3-At(0C4Hs)s.
At(OCzHs)sw At(OC4Hs)sy
Ti(OCaHe)4sZ r (OC4He )4
等が本発明の実施例によって有効であることが立証
された。これら上述のポリマーを有機金属アルコキシド
にて架橋生成せしめた生成物に無機充填物を添加するが
無機充填物としては酸化アルミニウム及び水酸化アルミ
ニウムが本発明の熱伝導性電気絶縁材料として望ましい
。At(OCzHs)sw At(OC4Hs)sy
Ti(OCaHe)4sZ r (OC4He)4
etc. have been proven to be effective by the embodiments of the present invention. An inorganic filler is added to the product obtained by crosslinking these above-mentioned polymers with an organometallic alkoxide, and as the inorganic filler, aluminum oxide and aluminum hydroxide are preferable as the thermally conductive electrically insulating material of the present invention.
上述の本発明による熱伝導性電気絶縁材料の各々の成分
比としては分子鎖中に一〇H基をもつ熱可塑性樹脂から
なるポリマーは熱伝導性電気絶縁材料中重量%にて20
〜49チが好ましく架橋剤としての有機金属アルコキシ
ドは1%(重量)未満では架橋不足となり、十分な強度
が得られ丁、10チ(重りを超える場合は架a過剰とな
シ柔軟性が得られないので好ましいのは1〜ioz量〆
である。一方無機充填物の含有量が50重量%未満では
充分な熱伝導率が得られず80重量%を超える場合はポ
リマーと有機金属の反応生成物との混線が不十分となる
ので50〜80重量%が好まある。As for the component ratio of each component of the thermally conductive electrically insulating material according to the present invention described above, the polymer made of a thermoplastic resin having 10H groups in the molecular chain is 20% by weight in the thermally conductive electrically insulating material.
If the organometallic alkoxide used as a crosslinking agent is less than 1% (weight), crosslinking will be insufficient and sufficient strength will be obtained. Therefore, it is preferable to limit the amount to 1 to ioz.On the other hand, if the content of the inorganic filler is less than 50% by weight, sufficient thermal conductivity cannot be obtained, and if it exceeds 80% by weight, the reaction between the polymer and the organic metal will occur. The amount is preferably 50 to 80% by weight, since there is insufficient crosstalk with objects.
又本発明の熱伝導性電気絶縁材料は、ポリビニルアルコ
ール、ポリビニルブチラール、或はフェノキシ樹脂等の
ポリマーを窒素ガスを通した反応容器に熱伝導性電気絶
縁材料として20〜49チ(重量)相当量を装入し、ポ
リマーの特性によシ具なるが100〜220℃に加熱溶
融し、攪拌しながら、架橋剤として有機金属アルコキシ
ド例えばTf(OR)4− AL(OR)as G
e(OR)n 等を1〜10%(重量相当量)を徐々に
添加し20〜60分反応せしめる。この場合10チを超
える例えば15チ(重量)程度添加した場合、反応生成
物は架橋過剰のゲル状化するので好ましくない。次で反
応容器から反応生成物を取出し、該反応生成物と前述の
酸化アルミニウム又は水酸化アルミニウムを50〜80
重量%相当量と共に通常の混線機に装入し110〜22
0℃で10〜20分間充分混練し次で成形機にて希望の
形状例えばカレイダー設備等を用いて適宜厚み寸法のシ
ート状に成形し熱伝導性電気絶縁材料を製造する。Further, the thermally conductive electrically insulating material of the present invention is prepared by adding a polymer such as polyvinyl alcohol, polyvinyl butyral, or phenoxy resin to a reaction vessel through which nitrogen gas is passed, in an amount equivalent to 20 to 49 inches (by weight) as a thermally conductive electrically insulating material. is heated and melted at 100-220°C depending on the properties of the polymer, and while stirring, an organometallic alkoxide such as Tf(OR)4- AL(OR) as G is added as a crosslinking agent.
1 to 10% (weight equivalent) of e(OR)n etc. is gradually added and reacted for 20 to 60 minutes. In this case, if more than 10 inches (by weight) is added, for example, about 15 inches (by weight), the reaction product becomes gelatinous due to excessive crosslinking, which is not preferable. Next, the reaction product is taken out from the reaction vessel, and the reaction product and the above-mentioned aluminum oxide or aluminum hydroxide are mixed at 50-80%.
Charge it into a normal mixer with an amount equivalent to 110~22% by weight.
The mixture is sufficiently kneaded at 0° C. for 10 to 20 minutes, and then molded into a sheet having a desired shape and appropriate thickness using a molding machine, such as a kaleider equipment, to produce a thermally conductive electrical insulating material.
以下実施例によって本発明の熱伝導性電気絶縁材料の製
造法ならびに特性値について述べる。The manufacturing method and characteristic values of the thermally conductive electrically insulating material of the present invention will be described below with reference to Examples.
実施例1゜
ポリマーとして、ポリビニルブチラール(電気化学:デ
ンカブチラールφ2000L ) 30重量1有機金属
アルコキシドとして市販のALCOCH(CHs )g
)3を5x量チならびに無機充填物として水酸化アルミ
ニウム(昭和軽金属ハイシライトH−32I)を65重
量%とからなる材料で前記デンカブチラールφ2000
L [30重量qb)を窒素ガスを通した反応容器中に
投入後130℃に加熱攪拌しなからAt(OCR(CH
s )+1)! ’(5重量%)を徐々に添加し30分
程度反応を行なった。次で反応生成物を取出上、無機充
填物として、前記ノ)イジライトH−32I (65重
貴重)と共に加圧ニーダ(圧力5〜/cII)に投入し
、150℃% 10分間混線を行なった。混線後カレン
ダー設備(日本ロール141nch逆り型)を用いて0
.3 wm厚のシートを作成しその熱伝導性材料として
の特性値を求めた。Example 1 As a polymer, polyvinyl butyral (electrochemistry: Denka Butyral φ2000L) 30 weight 1 commercially available ALCOCH (CHs) g as organometallic alkoxide
) 3 and 65% by weight of aluminum hydroxide (Showa Light Metal Hisilite H-32I) as an inorganic filler.
After charging At(OCR(CH
s)+1)! ' (5% by weight) was gradually added and the reaction was carried out for about 30 minutes. Next, the reaction product was taken out and put into a pressure kneader (pressure 5~/cII) as an inorganic filler together with the above-mentioned Igilite H-32I (65 heavy duty), and mixed at 150°C% for 10 minutes. . After crosstalk, use calendar equipment (Japan Roll 141nch reverse type) to
.. A sheet with a thickness of 3 wm was prepared, and its characteristic values as a thermally conductive material were determined.
特性値の結果は第1表に示す。The results of the characteristic values are shown in Table 1.
実施例2゜
母材となるポリマーとしてポリビニルアルコール(信越
化学ポバール C−17)25重量%、有機金属トシテ
市販(D AL(OCa Hs )s t 5重量%
ならびに無機充填物として酸化アルミニウム(昭和軽金
属AL−13)を70重量%とからなる材料で、前記信
越ポバール C−17(25重量%)を実施例1と同様
の窒素ガスを通した反応容器中に投入し、110℃で加
熱攪拌しながらAt(QC4Hs )s (5重量Is
)を徐々に添加し、20分程度反応を行なった後、前記
酸化アルミニウム(70重量%)と共に反応生成物を実
施例1と同様の加圧ニーダ内に装入し160℃10分間
混線後実施例1と同様にシートを作成し、その熱伝導性
材料としての特性値を求めた。その結果を第1表に示す
。Example 2 The polymer used as the base material was 25% by weight of polyvinyl alcohol (Shin-Etsu Chemical Poval C-17), 5% by weight of organometallic Toshite (DAL (OCa Hs) s t).
In addition, the Shin-Etsu Poval C-17 (25% by weight) was placed in a reaction vessel through which nitrogen gas was passed, as in Example 1, using a material consisting of 70% by weight of aluminum oxide (Showa Light Metal AL-13) as an inorganic filler. At(QC4Hs)s (5 weight Is
) was gradually added and the reaction was carried out for about 20 minutes, and then the reaction product together with the aluminum oxide (70% by weight) was charged into the same pressure kneader as in Example 1, and the mixture was mixed at 160°C for 10 minutes. A sheet was prepared in the same manner as in Example 1, and its characteristic values as a thermally conductive material were determined. The results are shown in Table 1.
実施例3゜
母材となるポリマーとして、フェノキシ樹脂(米国ユニ
オンカーバイト社製)65重D%、有機金属として市販
のAt(OCz Hs )sを5重量%ならびに無機充
填物として実施例1と同じ酸化アルミニウムを60重t
tsとからなる材料で、前記フェノキシ樹脂(35重量
ts)を実施例1と同様の窒素ガスを通した反応容器中
に投入し、200℃で加熱溶融し、攪拌しながら有機金
属アルコキシドkl(OCz Hs )s (5重i′
%)を徐々に添加し、30分程度反応を行なった後、酸
化アルミニウム(60重量%)と共に反応生成物を実施
例1と同様の加圧ニーダ“−内に装入し、200℃、1
5分間混線後、実施例1と同様にシートを作成しその熱
伝導性材料としての特性値を求めた。その結果を第1表
に示す。Example 3 As the base polymer, phenoxy resin (manufactured by Union Carbide Co., USA) was used in an amount of 65% by weight and D, commercially available At(OCz Hs)s was used as an organic metal in an amount of 5% by weight, and the same as in Example 1 was used as the inorganic filler. 60 tons of the same aluminum oxide
The phenoxy resin (35 weight ts) was charged into the same reaction vessel as in Example 1 through which nitrogen gas was passed, melted by heating at 200°C, and while stirring, organic metal alkoxide kl (OCz Hs )s (5fold i'
%) and reacted for about 30 minutes, the reaction product together with aluminum oxide (60% by weight) was charged into the same pressure kneader as in Example 1, and heated at 200°C for 1
After 5 minutes of crosstalk, a sheet was prepared in the same manner as in Example 1, and its characteristic values as a thermally conductive material were determined. The results are shown in Table 1.
実施例4゜
ポリマーとしてポリビニルアルコール(電気化学デンカ
ポバール K−17)25重t*、有機金属アルコキシ
ドとしてTi(OCa H9)4 (日本f達B−1)
5重量%ならびに無機充填物として水酸化アルミニウム
(昭和軽金属 AL−13)70重量優とからなる材料
で、前記ポリビニルアルコール(25重量%)を実施例
1と同様の窒素ガスを通した反応容器中に投入し、13
0℃で溶融攪拌しながら有機金属T i (OC4HB
)4を徐々に5重量係相当添加する。60分程度攪拌
した後、反応生成物を取出し、水酸化アルミニウム(7
0重量%)とともに実施例1と同様の加圧ニーダ内に装
入し、150℃15分間混線を行なう。混線後実施例1
と同様にシートを作成しその熱伝導材料としての特性値
を求めた。その結果を第1表に示す。Example 4 Polyvinyl alcohol (Electrochemical Denka Poval K-17) 25 weight tons* as a polymer, Ti (OCa H9) 4 (Japan fada B-1) as an organometallic alkoxide
The polyvinyl alcohol (25% by weight) was mixed with a material consisting of 5% by weight and 70% by weight of aluminum hydroxide (Showa Light Metal AL-13) as an inorganic filler in a reaction vessel through which nitrogen gas was passed as in Example 1. 13
Organometallic T i (OC4HB
) 4 was gradually added in an amount equivalent to 5 parts by weight. After stirring for about 60 minutes, the reaction product was taken out and aluminum hydroxide (7
0% by weight) in the same pressure kneader as in Example 1, and cross-mixing was performed at 150° C. for 15 minutes. Example 1 after crosstalk
A sheet was prepared in the same manner as above, and its characteristic values as a thermally conductive material were determined. The results are shown in Table 1.
実施例5゜
ポリマーは実施例1と同じポリビニルブチラール60重
量%、有機金属としてZr C0Ca HB )4 (
日本1達TBZR’)5重量、チ、ならびに無機充填物
として実施例2と同じ酸化アルミニウム65重量%とか
らなる材料で、前記ボリ〆ニルプチラール(30重量%
)を実施例1と同様の窒素ガスを通した反応容器中に投
入し、150℃で溶融、攪拌しながらZ r (OC4
HB )4を徐々に5重量%相轟添加する。60分程度
反応後生成物を取出し、酸化アルミニウム65重量%と
共に実施例1と同様の加圧ニーダ内に装入し180℃1
5分間混練後実施例1と同様にシートを作成し、その熱
伝導材料としての特性値を求めた。その結果を第1表に
示す。Example 5 The polymer was the same as in Example 1, with 60% by weight of polyvinyl butyral, and the organic metal was Zr COCa HB )4 (
Japan No. 1 TBZR') 5% by weight, and 65% by weight of aluminum oxide, the same as in Example 2, as an inorganic filler.
) was charged into a reaction vessel through which nitrogen gas was passed as in Example 1, and melted at 150°C.
HB)4 was gradually added in an amount of 5% by weight. After about 60 minutes of reaction, the product was taken out and placed in the same pressure kneader as in Example 1 together with 65% by weight of aluminum oxide and heated at 180°C.
After kneading for 5 minutes, a sheet was prepared in the same manner as in Example 1, and its characteristic values as a thermally conductive material were determined. The results are shown in Table 1.
実施例6゜
ポリマー15重量%、有機金属15重量%、無機充填物
70重量%のものを作る予定でポリマーとして実施例4
と同じポリビニルアルコールを実ながら、有機金属とし
てAt(OCH(CHs )2 )3を徐々に滴下し材
料の10重量%相当を10分圧亘って添加後反応状況を
しらべた結果ゲール化しているためシート作成は不可で
あった。Example 6 We plan to make a polymer with 15% by weight of polymer, 15% by weight of organic metal, and 70% by weight of inorganic filler.
Using the same polyvinyl alcohol as the organic metal, At(OCH(CHs)2)3 was gradually added dropwise to the material at a rate equivalent to 10% by weight over 10 minutes of pressure. After examining the reaction situation, a gel was formed. It was not possible to create a sheet.
実施例Z
ポリマー15重量%、有機金属15重量%、無機充填物
20重tチのものを作る予定でポリマーとして′実施例
1と同じポリビニルブチラールを実施例1と同様の霊素
ガスを通した反応容器中に材料の15重量%相当を投入
し、160℃で溶融、攪拌しながら有機金属としてAt
COC4Ha )s を徐々に滴下し、材料の15重
量%相当を10分に亘って添加後、反応状況をしらべた
結果ゲル化L7ているためシート作成は不可であった。Example Z It was planned to make a polymer with 15% by weight of polymer, 15% by weight of organic metal, and 20% by weight of inorganic filler.As the polymer, polyvinyl butyral, which was the same as in Example 1, was passed through the same spirit gas as in Example 1. Add 15% by weight of the material into a reaction vessel, melt at 160°C, and add At as an organic metal while stirring.
COC4Ha)s was gradually added dropwise to the mixture in an amount equivalent to 15% by weight of the material over a period of 10 minutes, and the reaction status was examined. As a result, gelation was observed at L7, making it impossible to prepare a sheet.
実施例8゜
実施例6ヲの組成と同様のものを作る予定でポリマーと
して実施例6と同じフェノキシ樹脂を実施例1と同様の
窒素ガスを通した反応容器中に155重量相当を投入し
200℃で溶融、攪拌しながら、有機金属としてAt(
QC2H5)3 を徐々に滴下し15重fi%相当を
15分に亘って添加後、反応状況をしらべた結果ゲル化
しているためシ、−ト作成は不可であった。Example 8 It was planned to make a product similar to the composition of Example 6, so the same phenoxy resin as in Example 6 was put into a reaction vessel similar to Example 1, in which 155% of the weight was poured into a reaction vessel through which nitrogen gas was passed. While melting and stirring at °C, At(
QC2H5)3 was gradually added dropwise in an amount equivalent to 15% by weight over 15 minutes, and the reaction conditions were examined. As a result, it was found that the reaction mixture had turned into a gel, making it impossible to prepare a sheet.
以上実施例1〜5で作成した熱伝導性電気絶縁材料とし
てのシートの特性値とシリコンゴムに窒化ホウ素を混練
した従来材料の比較値を次の第1表に示す。The following Table 1 shows the characteristic values of the sheets as thermally conductive electrical insulating materials prepared in Examples 1 to 5 above and comparative values of the conventional material made by kneading boron nitride into silicone rubber.
第1表 特性値表
本発明による熱伝導性電気絶縁材料は第1表にも明らか
なようにポリマーを有機金属で架橋し三次元網目構造を
形成するためシート材料の電気絶縁mi土力、機械的強
度及び伸びが向上しかつシリコンゴム窒化ホウ素系熱伝
導性材料に比して材料が安価に出来、優れた材料である
。Table 1 Characteristic Value Table As is clear from Table 1, the thermally conductive electrically insulating material of the present invention cross-links polymers with organic metals to form a three-dimensional network structure. It is an excellent material because it has improved physical strength and elongation, and can be made at a lower cost than silicone rubber boron nitride-based thermally conductive materials.
代理人 弁理士 木 村 三 朗Agent: Patent Attorney Sanro Kimura
Claims (1)
ポリマー、有機金属アルコキシドの架橋剤、酸化アルミ
ニウム又は水酸化アルミニウムの無機充填物とから成る
ことを特徴とする熱伝導性電気絶縁材料。 2、前記ポリマーがポリビニールアルコール、ポリビニ
ルブチラール及びフェノキシ樹脂から成ることを特徴と
する特許請求の範囲第1項記載の熱伝導性電気絶縁材料
。 6、前記有機金属アルコキシドがAt (OR)s e
Ti(OR)4− Zr(OR)as Ge(OR)
4であり、分子式中ORは01〜C4のアルキル基及び
フェニル基であることを特徴とする特許請求の範囲第1
項記載の熱伝導性電気絶縁材料。 4、 前記ポリマーが20〜490〜49重量%属が1
〜10重量%及び無機充填物が50〜80%から成るこ
とを特徴とする特許請求の範囲第1項記載の熱伝導性電
気絶縁材料。 5、 ポリビニル、アルコール、ポリビニルブチラール
、フェノキシ樹脂等から選ばれたポリマーの一種を窒素
ガスを通した反応容器中にて加熱溶融し、攪拌しながら
、At(OR)s−Ti(OR)4−Zr(OR)n−
Ge(OR)a ただし分子式中のRはC1〜C4の
アルキル基及びフェニル基であるアルコキシ金属からな
る有機金属を添加反応せしめ、該反応生成物と酸化アル
ミニウム又は水酸化アルミニウムを共に加圧混練し製造
することを特徴とする熱伝導性電気絶縁材料の製造方法
。 6、有機金属アルコキシドとポリマーとの反応温度が1
00〜220℃であり110〜220℃で加圧混練する
ことを特徴とする特許請求の範囲第5項記載の熱伝導性
電気絶縁材料の製造方法。[Claims] 1. A polymer comprising a thermoplastic resin having 10H groups in its molecular chain, an organometallic alkoxide crosslinking agent, and an inorganic filler of aluminum oxide or aluminum hydroxide. A thermally conductive electrical insulation material. 2. The thermally conductive electrically insulating material according to claim 1, wherein the polymer comprises polyvinyl alcohol, polyvinyl butyral, and phenoxy resin. 6. The organometallic alkoxide is At(OR)s e
Ti(OR)4- Zr(OR) as Ge(OR)
4, and in the molecular formula, OR is an alkyl group of 01 to C4 and a phenyl group, Claim 1
Thermally conductive electrically insulating material described in . 4. The polymer contains 20 to 490 to 49% by weight of 1
A thermally conductive electrically insulating material according to claim 1, characterized in that it consists of ~10% by weight and 50-80% of inorganic filler. 5. A type of polymer selected from polyvinyl, alcohol, polyvinyl butyral, phenoxy resin, etc. is heated and melted in a reaction vessel through which nitrogen gas is passed, and while stirring, At(OR)s-Ti(OR)4- Zr(OR)n-
Ge(OR)a However, R in the molecular formula is made by adding and reacting an organic metal consisting of a C1 to C4 alkyl group and an alkoxy metal which is a phenyl group, and kneading the reaction product and aluminum oxide or aluminum hydroxide together under pressure. A method for producing a thermally conductive electrically insulating material. 6. The reaction temperature between organometallic alkoxide and polymer is 1
The method for producing a thermally conductive electrically insulating material according to claim 5, characterized in that the temperature is 00 to 220°C and the kneading is carried out under pressure at 110 to 220°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20065682A JPS5991603A (en) | 1982-11-16 | 1982-11-16 | Thermal conductive electrically insulating material and method of producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20065682A JPS5991603A (en) | 1982-11-16 | 1982-11-16 | Thermal conductive electrically insulating material and method of producing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5991603A true JPS5991603A (en) | 1984-05-26 |
JPS6314444B2 JPS6314444B2 (en) | 1988-03-31 |
Family
ID=16428032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20065682A Granted JPS5991603A (en) | 1982-11-16 | 1982-11-16 | Thermal conductive electrically insulating material and method of producing same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5991603A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005199562A (en) * | 2004-01-15 | 2005-07-28 | Toshiba Corp | Tape member or sheet member and method for producing tape member or sheet member |
WO2018159724A1 (en) * | 2017-02-28 | 2018-09-07 | 東レ株式会社 | Organic-inorganic mixture, use thereof, and method for producing same |
-
1982
- 1982-11-16 JP JP20065682A patent/JPS5991603A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005199562A (en) * | 2004-01-15 | 2005-07-28 | Toshiba Corp | Tape member or sheet member and method for producing tape member or sheet member |
JP4599063B2 (en) * | 2004-01-15 | 2010-12-15 | 株式会社東芝 | Coil winding insulation tape |
WO2018159724A1 (en) * | 2017-02-28 | 2018-09-07 | 東レ株式会社 | Organic-inorganic mixture, use thereof, and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JPS6314444B2 (en) | 1988-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8221645B2 (en) | Heat dissipating material and semiconductor device using same | |
TW500765B (en) | Thermoplastic resin composition and heat-resistant tray for IC | |
JP5154010B2 (en) | Thermally conductive silicone rubber composition | |
CN100425668C (en) | Flame retardant adhesive without halogen in use for flexible printed circuit | |
KR102540533B1 (en) | light-weight polymer composition with excellent thermal conductivity and manufacturing method of the same and product using the same | |
TW200922954A (en) | In-situ methods of generating water through the dehydration of metal salt hydrates for moisture crosslinking of polyolefins | |
JP2021046562A (en) | Thermally conductive sheet | |
JP3340112B2 (en) | Thermal conductive material and manufacturing method thereof | |
JP4993555B2 (en) | Addition reaction curable silicone composition | |
CN112105687B (en) | Controlled curing thermally conductive gap filling material | |
JPS5991603A (en) | Thermal conductive electrically insulating material and method of producing same | |
CN100420006C (en) | Heat radiating component | |
TW202118854A (en) | Thermally conductive silicone composition, and thermally conductive silicone sheet | |
JPH11116807A (en) | Silicone rubber composition having thermal conductivity and its molding product | |
JPH11279406A (en) | Highly heat conductive silicone rubber composition and heat conduction device | |
JPS6250324A (en) | Epoxy resin molding material for sealing electronic component | |
JPS5936651B2 (en) | thermosetting resin composition | |
CN106280050B (en) | A kind of high thermal conductive silicon rubber laminar composite | |
JPS6317849B2 (en) | ||
JPS6017426B2 (en) | Thermal conductive electrically insulating composition | |
JPH04198265A (en) | Resin composition for sealing electronic part | |
JPH06256654A (en) | Polyarylene sulfide resin composition | |
CN116178618B (en) | High-heat-conductivity polyion liquid/boron nitride composite insulating material and preparation method thereof | |
CN109181591A (en) | A kind of thermally conductive pressure sensitive adhesive of high-performance and preparation method | |
JPS5835220B2 (en) | How to use the handshake method |