Nothing Special   »   [go: up one dir, main page]

JPS5990363A - Solid secondary battery - Google Patents

Solid secondary battery

Info

Publication number
JPS5990363A
JPS5990363A JP57200673A JP20067382A JPS5990363A JP S5990363 A JPS5990363 A JP S5990363A JP 57200673 A JP57200673 A JP 57200673A JP 20067382 A JP20067382 A JP 20067382A JP S5990363 A JPS5990363 A JP S5990363A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
solid electrolyte
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57200673A
Other languages
Japanese (ja)
Other versions
JPH0522350B2 (en
Inventor
Satoshi Sekido
関戸 「さとし」
Tadashi Tonomura
外「村」 正
Yoshito Ninomiya
二宮 義人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57200673A priority Critical patent/JPS5990363A/en
Publication of JPS5990363A publication Critical patent/JPS5990363A/en
Publication of JPH0522350B2 publication Critical patent/JPH0522350B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a solid lithium secondary battery having an excellent charge-and-discharge repeated characteristic by using a niobium polysulfide as the positive active material and a reversible lithium-aluminum alloy as the negative electrode. CONSTITUTION:A positive mixture 1 is made of mixture consisting of 90- 70pts.wt. niobium trisulfide (NbS2.9) used as an active material and 10-30pts.wt. a lithium-ion-conducting solid electrolyte. It is formed by weighing the above mixture so that the quantity of Nb2.9 is about 3 millimols, then molding the mixture into a disk of 18mm. diameter and around 0.4mm. thickness at a pressure of 300MPa. A lithium-ion-conducting solid electrolyte layer 2 is formed by the use of a compound represented by nLiI.C5H5N.C4H9I. Here, 4-6 is preferably selected as n value. The solid electrolyte layer 2 is formed by molding the above mentioned electrolyte powder into a disk of 18mm. diameter and around 0.4mm. thickness at a pressure of 300MPa. A reversible negative lithium electrode 3 is a disk of 18mm. diameter and 0.5mm. thickness consisting of a lithium-aluminum alloy plate represented by LixAl. Here, value x can be varied within the range of 0.08-0.9 according to purpose.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属リチウムを主体とする負極ケ有する固体
状の二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid secondary battery having a negative electrode mainly composed of metallic lithium.

従来例の構成とその問題点 固体電解質を用いることによって特徴づけられる固体状
の電池で、現在もっばら提唱され、また実際に実用化さ
れている電池は、はとんどが−吹型池である。固体電解
質材料としては、リチウムイオン導電性の物質あるいは
銀イオン導電性の物質を用いることが提唱されている。
Structures of conventional examples and their problems Solid-state batteries characterized by the use of solid electrolytes, and most of the batteries currently proposed and actually put into practical use are blown-type batteries. be. It has been proposed to use a lithium ion conductive substance or a silver ion conductive substance as the solid electrolyte material.

この中でもリチウムイオン導電性の固体電解質は、イオ
ン導電率が銀イオン導電性の固体電解質に較べると数桁
小さく、電池とした際大電流が取り出せない欠点は有し
ているものの、分解電圧は、銀イオン導電性固体電解の
0.6■程度に較べると1.8〜3.4■と数倍部く、
電池電圧の高い、すなわち高エネルギー密度の電池が得
られることから、近年、電子機器の低消費電流化が進む
につれて、高エネルギー密度である特徴が増々注目され
、もっばらリチウムイオン導電性固体電解質が選ばれ、
これを用いたリチウム固体電池が一次電池として実用化
さ3 ページ れるに至っている。
Among these, the lithium ion conductive solid electrolyte has an ionic conductivity several orders of magnitude lower than that of the silver ion conductive solid electrolyte, and although it has the disadvantage that it cannot draw a large current when used as a battery, the decomposition voltage is Compared to about 0.6 parts of silver ion conductive solid electrolyte, it is several times smaller at 1.8 to 3.4 parts.
Since batteries with high battery voltage, that is, high energy density, can be obtained, in recent years, as the current consumption of electronic devices has progressed, the feature of high energy density has been attracting more and more attention, and lithium ion conductive solid electrolytes are becoming more and more popular. selected,
A lithium solid-state battery using this has been put into practical use as a primary battery and has been published for three pages.

一方、このようなリチウム固体電池の電子機器への使わ
れ方は、半導体メモリ素子の発達により、主電源が切れ
た場合においてもメモリ保持を損なわないように、補助
電源として、いわゆるメモリバックアップ用の電源とし
ての使われ方が主流となってきている。補助電源として
用いられるのに好ましい電池特性としては、放電容量、
放電電流がいかに小さくても、小型で、すなわち半導体
メモリ素子と同一プリント基板上に組み込め、さらには
、半導体メモリ素子と一緒に樹脂モールドパッケージさ
れるぐらいの小型さでかつ、容量が尽きた場合において
も電池交換が不必要であること、すなわち、充電による
再生が可能であることが挙げられる。
On the other hand, due to the development of semiconductor memory elements, lithium solid-state batteries are being used in electronic devices as auxiliary power supplies, so-called memory backup batteries, so that memory retention will not be lost even if the main power supply is cut off. Its use as a power source has become mainstream. Preferred battery characteristics for use as an auxiliary power source include discharge capacity,
No matter how small the discharge current is, it is small enough that it can be incorporated on the same printed circuit board as the semiconductor memory element, or even small enough to be packaged in a resin mold together with the semiconductor memory element, and when the capacity is exhausted. Also, there is no need to replace the battery, that is, it can be regenerated by charging.

このような必要性に対して現在は、有機電解液を用いる
リチウム二次電池会が提唱されているが、液体を用いて
いるため、電池構成物を液密に保持しておく容器が必要
であシ、このため先に述べた小型化をはかるのは至難で
あった。
In response to this need, lithium secondary batteries that use organic electrolytes are currently being proposed, but because they use liquid, they require a container to keep the battery components liquid-tight. For this reason, it was extremely difficult to achieve the aforementioned miniaturization.

そこで、このような小型化に対して、有機電解液を用い
る電池に対して決定的な優位さを持つ固体電解質を用い
た固体状二次電池の実用化が期待される。すなわち固体
状二次電池は、後に本発明の実施様態で詳しく説明する
が、電池構成物を特に別途定められた形状の容器に納め
る必要はなく、樹脂等により発電要素を被覆するだけで
良く、小型化が容易にはかれるし、さらには、電池の構
成に当たっては、半導体プロセスで通常用いられている
真空蒸着法、スパッタリング法などの薄膜化技術を用い
ての小型化も容易に可能であるという優位さを持ってい
る。
Therefore, for such miniaturization, it is expected that solid secondary batteries using solid electrolytes, which have a decisive advantage over batteries using organic electrolytes, will be put to practical use. That is, as will be explained in detail later in the embodiments of the present invention, the solid state secondary battery does not require the battery components to be housed in a container with a specially determined shape, and it is sufficient to simply cover the power generation element with resin or the like. It has the advantage of being easily miniaturized, and furthermore, the battery structure can be easily miniaturized using thin film techniques such as vacuum evaporation and sputtering, which are commonly used in semiconductor processes. It has a certain value.

しかし、以上のような決定的とも言われる優位さにもか
かわらず、固体二次電池の実用化がいまだなされていな
いのは、ひとつには電池の充放電に際してリチウムイオ
ンを可逆的に出し入れが可能な適当な正極活物質がいま
だ見い出されていないこと、捷たひとつには、充電に際
してリチウム負極側に、金属リチウムが霧状あるいは樹
枝状に析出するため、充放電がくり返し行われると、つ
5 ページ いには正極と負極とが金属リチウムでつながれ内部短絡
を生じるという問題があるためであった。
However, despite the so-called decisive advantages mentioned above, solid-state secondary batteries have not yet been put into practical use. One reason is that lithium ions can be reversibly put in and taken out when charging and discharging the battery. One of the problems is that a suitable positive electrode active material has not yet been found.One reason is that metallic lithium is deposited in the form of mist or dendrites on the lithium negative electrode side during charging, so when charging and discharging are repeated, This was due to the problem that the positive electrode and negative electrode were connected by metallic lithium, causing an internal short circuit.

発明の目的 本発明は、充・放電くシ返し特性の優れた固体状のりテ
ウムニ次電池を提供することを目的とする0 発明の構成 本発明の電池は、正極活物質として多硫化ニオブ、好適
には三硫化ニオブ(NbS3)を用い、金属リチウムを
主体とする可逆性のリチウム負極、好適には、リチウム
−アルミニウム合金を主体とする負極、リチウムイオン
導電性固体電解質より構成され、電池構成要素がすべて
固体の二次電池である。
Object of the Invention The object of the present invention is to provide a solid-state rechargeable battery with excellent charge/discharge recycle characteristics.Constitution of the Invention The battery of the present invention preferably uses niobium polysulfide as a positive electrode active material. Niobium trisulfide (NbS3) is used for the battery component, and is composed of a reversible lithium negative electrode mainly made of metallic lithium, preferably a negative electrode mainly made of lithium-aluminum alloy, and a lithium ion conductive solid electrolyte. are all solid-state secondary batteries.

本発明に正極活物質として用いる多硫化ニオブは、硫化
の程度によシその結晶構造は層状構造を有し、互いにフ
ァンデルワールス力で結合した反復層から成り立ってい
る。そして個々の層は、イオウ原子のシート間にサンド
インチされたニオブ原子を含む少なくとも1つのシート
から成ってい6 ″ ・ る。反復層間でリチウムイオンの出し入れが容易に起こ
るため、すなわち、各層を結合するファンデルワールス
力の弱さのため急速なリチウムイオンの拡散を容易にす
るので、電池の充・放電が可能となっている。また、負
極は、可逆性のリチウム負極、好適にはりチウム−アル
ミニウム合金負極であるので、充電反応による霧状ある
いは樹枝状のリチウム負極の成長が生じ難く、充・放電
をくシ返し行っても、内部短絡が生じることはない。
The niobium polysulfide used as a positive electrode active material in the present invention has a layered crystal structure depending on the degree of sulfidation, and is composed of repeated layers bonded to each other by van der Waals forces. Each layer then consists of at least one sheet containing niobium atoms sandwiched between sheets of sulfur atoms. Lithium ions can easily be transferred in and out of the repeating layers, i.e., bonding each layer together. The weak van der Waals force facilitates the rapid diffusion of lithium ions, making it possible to charge and discharge the battery.In addition, the negative electrode is a reversible lithium negative electrode, preferably lithium-ion. Since it is an aluminum alloy negative electrode, it is difficult for a mist-like or dendritic lithium negative electrode to grow due to the charging reaction, and even if charging and discharging are repeated, no internal short circuit will occur.

また、リチウムイオン導電性固体電解質としては、n 
L t I @06i45N ’ C4H9I、L 1
 a N。
In addition, as a lithium ion conductive solid electrolyte, n
L t I @06i45N ' C4H9I, L 1
aN.

mLi■・nL125−P2O3など各種のものを用い
ることができる。
Various materials such as mLi■.nL125-P2O3 can be used.

実施例の説明 実施例1 第1図は固体電解質二次電池の構成例を示す01は正極
合剤で、活物質の三硫化ニオブ(NbS2.9)の90
〜70重量部とリチウムイオン導電性固体電解質の10
〜30重量部との混合物からなり、Nb S 2.9が
約3ミリモルとなるよう了 t・−ン に前記の混合物を秤量し、300 MP aの圧力で直
径18問、厚さ0.4mm程度の円板状に成形したもの
である。なお、正極合剤中に特に導電材の混合は粋梃必
要としないが、大電流放電用途の場合、カーボンなどの
導電材を加えてもよい。
Description of Examples Example 1 Figure 1 shows an example of the structure of a solid electrolyte secondary battery.
~70 parts by weight and 10 parts of lithium ion conductive solid electrolyte
30 parts by weight of NbS 2.9 to about 3 mmol.The above mixture was weighed out at a pressure of 300 MPa to give a diameter of 18 pieces and a thickness of 0.4 mm. It is molded into a disk shape of about 100 yen. Although it is not particularly necessary to mix a conductive material into the positive electrode mixture, in the case of a large current discharge application, a conductive material such as carbon may be added.

2はリチウムイオン導電性固体電解質層である。2 is a lithium ion conductive solid electrolyte layer.

この例では、電解質として、nLiI・C6H3N・C
4H9Iで表されるものを用いた。ここにn値としては
4〜6が好適に選ばれる。電解質層2は、上記の電解質
粉末を300 MP aの圧力で直径18胴、厚さ0.
4mm程度の円板状に成形したものである。
In this example, the electrolyte is nLiI・C6H3N・C
The compound represented by 4H9I was used. Here, a value of 4 to 6 is suitably selected as the n value. The electrolyte layer 2 is made of the above-mentioned electrolyte powder at a pressure of 300 MPa, with a diameter of 18 mm and a thickness of 0.5 mm.
It is molded into a disc shape of about 4 mm.

3は可逆性リチウム負極で、LixAtで表されるリチ
ウム−アルミニウム合金板よりなる直径18M、厚さ0
.5胴の円板状のものである。Xの値としては0.08
〜0.9 まで目的に応じて変えられるが、本実施例で
はx=o、Bのものを用いている04は正極集電体であ
り、Cr含量が30重量%以上のFe−0rフエライト
系ステンレス鋼よりなる厚さ0.1聰の円板である。も
ちろん、正極集電体材料として、炭素、Au、Pd、P
t等を用いても良い。6は負極集電体である。隣接する
セルの負極集電体5と正極集電体4は、グラファイト導
電ペイントにより電気的に結合されて3セルが直列に接
続されている。6,7は電極端子リードである。
3 is a reversible lithium negative electrode, made of a lithium-aluminum alloy plate represented by LixAt, with a diameter of 18M and a thickness of 0.
.. It is disc-shaped with five bodies. The value of X is 0.08
Although it can be changed up to ~0.9 depending on the purpose, in this example, x=o, B is used. 04 is a positive electrode current collector, and is a Fe-0r ferrite type with a Cr content of 30% by weight or more. It is a 0.1 thick disk made of stainless steel. Of course, carbon, Au, Pd, P
t etc. may also be used. 6 is a negative electrode current collector. The negative electrode current collector 5 and the positive electrode current collector 4 of adjacent cells are electrically coupled by graphite conductive paint, and the three cells are connected in series. 6 and 7 are electrode terminal leads.

8は樹脂被膜であり、エポキシ系の熱硬化性樹脂を被覆
して得たものである。もちろん、光硬化性の樹脂等を用
いても良い。
8 is a resin coating, which is obtained by coating with an epoxy thermosetting resin. Of course, a photocurable resin or the like may also be used.

第2図は、本実施例の電池を20℃で、電流30μAで
放電した際の放電容量と端子電圧の関係を示している。
FIG. 2 shows the relationship between discharge capacity and terminal voltage when the battery of this example was discharged at 20° C. with a current of 30 μA.

第3図は、30μAで5■寸で放電し、同じ電流で7■
まで充電する充放電のくり返しに伴う放電容量の変化を
示したものである。第3図中、Aは、負極をリチウム−
アルミニウム合金としたもの、Bはリチウム金属を用い
た同様の構成を有する電池についての充・放電特性を示
している。
Figure 3 shows a discharge of 5 cm at 30 μA, and a discharge of 7 cm at the same current.
This figure shows the change in discharge capacity due to repeated charging and discharging. In Figure 3, A indicates that the negative electrode is lithium-
B shows the charging/discharging characteristics of a battery having a similar structure using aluminum alloy and lithium metal.

第2図から明らかなように、本発明に従う固体二次電池
の放電時の端子電圧はきわめて平坦で、従来の固体−吹
型池の放電電圧に較べても遜色は9ページ 全くない。また、第3図から明らかなように、充放電特
性は、負極にリチウム−アルミニウム合金を用いたもの
は、負極をリチウムとした電池に較べ、放電容量が大き
い。このことは、充電時におけるリチウムの霧状あるい
は樹枝状の析出による内部短絡による自己放電が発生し
難いことを示している。
As is clear from FIG. 2, the terminal voltage during discharge of the solid state secondary battery according to the present invention is extremely flat, and is not inferior at all to the discharge voltage of a conventional solid-state blown type pond. Furthermore, as is clear from FIG. 3, regarding charge and discharge characteristics, the battery using a lithium-aluminum alloy for the negative electrode has a larger discharge capacity than the battery using lithium for the negative electrode. This indicates that self-discharge due to internal short circuit due to mist or dendrite precipitation of lithium during charging is unlikely to occur.

実施例2 実施例1のリチウムイオン導電性固体電解質層2の代わ
りに、可逆性リチウム負極の表面に、化雰囲気中におい
て60℃で24時間保持して形成したLiIを主体とす
るリチウムイオン導電性固体電解質層を用いた電池を構
成した。
Example 2 Instead of the lithium ion conductive solid electrolyte layer 2 of Example 1, a lithium ion conductive material mainly composed of LiI was formed on the surface of a reversible lithium negative electrode by holding it at 60° C. for 24 hours in a chemical atmosphere. A battery using a solid electrolyte layer was constructed.

第4図はこの電池Cの電流密度と端子電圧の関係を示し
ているOAは実施例1に示した電池の特性を示している
0ポリ沃化ブチルピリジニウムを負極に塗布して電解質
層を形成した電池Cは、そうでない電池Aに較べ電池内
部抵抗が小さくなシ、1o・、 より大きな電流を取り出すことができる。この理由につ
いては明らかでないが、負極表面上で負極のリチウムと
沃素との化学反応で固体電解質層を形成することによっ
て、単に固体電解質層と負極とが圧力により接合されて
いる実施例1の電池に較べ、負極と固体電解質層との接
合が良好に得らラムを用いても同様な効果が得られるこ
とは言うまでもない。
Figure 4 shows the relationship between current density and terminal voltage of this battery C. OA shows the characteristics of the battery shown in Example 1.0 Polyiodide butylpyridinium is applied to the negative electrode to form an electrolyte layer. Compared to battery A, which does not have this condition, battery C has a lower internal resistance and can draw a larger current. Although the reason for this is not clear, the battery of Example 1 in which the solid electrolyte layer and the negative electrode are simply joined by pressure by forming a solid electrolyte layer on the surface of the negative electrode through a chemical reaction between lithium and iodine in the negative electrode. It goes without saying that the bond between the negative electrode and the solid electrolyte layer can be better compared to that of the conventional method, and the same effect can be obtained even if a ram is used.

発明の効果 以上のように、本発明によれば、充放電のくり返し特性
に優れ、メモリーバックアップ用電源などとして好適な
固体状二次電池を得ることができる0
Effects of the Invention As described above, according to the present invention, it is possible to obtain a solid-state secondary battery that has excellent repeatability of charging and discharging and is suitable as a memory backup power source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電池の構成例を示す縦断面図、第
2図は放電時の端子電圧と放電容量の関係を示す図、第
3図は充放電回数と放電容量の関11ページ 係を示す図、第4図は放電電流密度と端子電圧の関係を
示す。 1・・・・・・正極、2・・・・・固体電解質、3・・
・・・・負極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名・ 
 關                  9−   
                        C
’lSw                   鞍 
1 V市1ビ田ミ
Figure 1 is a longitudinal cross-sectional view showing an example of the structure of a battery according to the present invention, Figure 2 is a diagram showing the relationship between terminal voltage during discharge and discharge capacity, and Figure 3 is a diagram showing the relationship between the number of charging and discharging times and discharge capacity (page 11). Figure 4 shows the relationship between discharge current density and terminal voltage. 1...Positive electrode, 2...Solid electrolyte, 3...
...Negative electrode. Name of agent: Patent attorney Toshio Nakao and one other person
9-
C
'lSw Saddle
1 V City 1 Bitami

Claims (4)

【特許請求の範囲】[Claims] (1)金属リチウムを主体とする可逆性リチウム負極と
、多硫化ニオブを主体とする正極及びリチウムイオン導
電性固体電解質より構成した固体状二次電池。
(1) A solid secondary battery composed of a reversible lithium negative electrode mainly composed of metallic lithium, a positive electrode mainly composed of niobium polysulfide, and a lithium ion conductive solid electrolyte.
(2)多硫化ニオブが三硫化ニオブである特許請求の範
囲第1項記載の固体状二次電池。
(2) The solid state secondary battery according to claim 1, wherein the niobium polysulfide is niobium trisulfide.
(3)可逆性リチウム負極が、リチウム−アルミニウム
合金である特許請求の範囲第1項記載の固体状二次電池
(3) The solid state secondary battery according to claim 1, wherein the reversible lithium negative electrode is a lithium-aluminum alloy.
(4)前記電解質層が、リチウム負極とポリ沃化1−ア
ルキルピリジニウムとの接触によシ形成される沃化リチ
ウムを主体とするリチウムイオン導電性固体電解質層で
ある特許請求の範囲第1項記載の固体状二次電池。
(4) Claim 1, wherein the electrolyte layer is a lithium ion conductive solid electrolyte layer mainly composed of lithium iodide formed by contacting a lithium negative electrode with 1-alkylpyridinium polyiodide. The solid state secondary battery described.
JP57200673A 1982-11-15 1982-11-15 Solid secondary battery Granted JPS5990363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57200673A JPS5990363A (en) 1982-11-15 1982-11-15 Solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200673A JPS5990363A (en) 1982-11-15 1982-11-15 Solid secondary battery

Publications (2)

Publication Number Publication Date
JPS5990363A true JPS5990363A (en) 1984-05-24
JPH0522350B2 JPH0522350B2 (en) 1993-03-29

Family

ID=16428331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200673A Granted JPS5990363A (en) 1982-11-15 1982-11-15 Solid secondary battery

Country Status (1)

Country Link
JP (1) JPS5990363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186260A (en) * 1983-04-01 1984-10-23 デユラセル・インタ−ナシヨナル・インコ−ポレ−テツド Cathode for chemical battery and chemical battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2711344A3 (en) 2009-07-08 2014-04-16 Saudi Arabian Oil Company Wastewater treatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519096A (en) * 1974-07-12 1976-01-24 Exxon Research Engineering Co
JPS5688265A (en) * 1979-12-19 1981-07-17 Citizen Watch Co Ltd Solid-electrolyte battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519096A (en) * 1974-07-12 1976-01-24 Exxon Research Engineering Co
JPS5688265A (en) * 1979-12-19 1981-07-17 Citizen Watch Co Ltd Solid-electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186260A (en) * 1983-04-01 1984-10-23 デユラセル・インタ−ナシヨナル・インコ−ポレ−テツド Cathode for chemical battery and chemical battery
JPH0562432B2 (en) * 1983-04-01 1993-09-08 Duracell Int

Also Published As

Publication number Publication date
JPH0522350B2 (en) 1993-03-29

Similar Documents

Publication Publication Date Title
JP7154847B2 (en) Method for manufacturing all-solid-state battery
KR20110003595A (en) Battery including carbon foam current collectors
JPS5990362A (en) Solid secondary battery
JPS5990363A (en) Solid secondary battery
JPS5990361A (en) Solid secondary battery
JPH0522348B2 (en)
JP2511947B2 (en) Solid electrolyte molding
JPS5990359A (en) Solid secondary battery
JP2552352B2 (en) Sealed lead acid battery
JPH05159803A (en) Manufacture of solid secondary battery
JPS6012677A (en) Solid electrolyte secondary battery
JPS6017867A (en) Solid electrolyte secondary battery
JPS6142868A (en) Nonaqueous electrolyte battery
JPS59186276A (en) Nonaqueous electrolyte secondary battery
JPH06124706A (en) Sealed nickel-zinc storage battery
JPS63261674A (en) Nonaqueous electrolyte secondary battery
JPS6174258A (en) Lithium organic secondary battery
JP2003303589A (en) Negative electrode for lithium secondary battery, lithium secondary battery using the same, and method of manufacturing the same
JPS63211568A (en) Negative grid for sealed lead-acid battery
JPH056309B2 (en)
JPS61114470A (en) Plate for lead storage battery
JPH01128370A (en) Nonaqueous solvent secondary cell
JPH0357170A (en) Coin type polymer battery
JPS63289758A (en) Secondary battery
JPH0465070A (en) All solid voltage memory element