Nothing Special   »   [go: up one dir, main page]

JPS5975145A - Method for measuring moisture in gaseous sample - Google Patents

Method for measuring moisture in gaseous sample

Info

Publication number
JPS5975145A
JPS5975145A JP18628382A JP18628382A JPS5975145A JP S5975145 A JPS5975145 A JP S5975145A JP 18628382 A JP18628382 A JP 18628382A JP 18628382 A JP18628382 A JP 18628382A JP S5975145 A JPS5975145 A JP S5975145A
Authority
JP
Japan
Prior art keywords
moisture
detector
gas
sample gas
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18628382A
Other languages
Japanese (ja)
Inventor
Atsushi Tanaka
厚 田中
Toshiyuki Shimizu
俊之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOTO DENSHI KOGYO KK
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
KYOTO DENSHI KOGYO KK
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOTO DENSHI KOGYO KK, Kyoto Electronics Manufacturing Co Ltd filed Critical KYOTO DENSHI KOGYO KK
Priority to JP18628382A priority Critical patent/JPS5975145A/en
Publication of JPS5975145A publication Critical patent/JPS5975145A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0006Calibrating gas analysers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To enable exact measurement irrespectively of the change in the sensitivity of a moisture concn. detector by supplying standard gas in sample gas in the preceding stage of the detector in such a way that the output signal of the detector is kept always constant and determining the moisture in the sample gas from the amt. of the standard gas to be supplied. CONSTITUTION:A solenoid valve 7 is closed and a solenoid valve 16 is opened to introduce the dry air which is quantatively humidified by a control pump 14 for supplying humidifying moisture as standard gas having a moisture concn. A into a detector 9 in the case of performing automatic one-point calibration at one point slightly higher than the fluctuating width of the moisture in the sample gas. The output of the detector in this stage is defined as E1. The valve 7 is opened and the valve 16 is closed to introduce sample gas into the detector 9. The pump 14 is controlled with a controller 13 according to the output signal from the detector 9 to supply the standard gas to the sample gas so that the output of the detector attains E1. The moisture concn. corresponding to the moisture in the supplied standard gas is subtracted from the known concn. A, whereby the moisture concn. in the sample gas is determined.

Description

【発明の詳細な説明】 本発明は試料ガス中の水分濃度の測定方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring moisture concentration in a sample gas.

従来、試料ガス中の水分濃度を測定する方法として、第
1図に示すように静電容量を測定して水分含有率を測定
する方法がある。この方法は2枚の榎1電板(1) (
1)を検出用電極として対向させることによりコンデン
サーを形成させ、このコンデンサーの極板間に試料ガス
(3)を満たし、そのi?I−知容量から水分量を測る
方法であるが、充分な検出の感度を得るために極板間に
は水の吸着材(2,・、例えば活性アルミナが充たされ
ている。そして、吸着杓(2)の中に吸着された水分量
か討、料カス中の水分濃度に対応することから、嬉’f
Ji板(1)(1間の計電容餡を測定することにより、
試料ガス中の水分濃ルが求められる。このような検出器
を用いて試料ガス中の水分濃度を連続測定する場合、第
2図(a)に示すように予じめ水分濃度とコンデンサー
の静電容量、即ち析出器出力との対応を検知線として設
定しておくことにより可能となる。即ち、水分濃度が既
知の糸準ガスを検出器のコンデンサーに通し、水分$度
を変えながら、これに対応する検出器の出力を測足する
ことにより検量線(4)(実線)か設定され、この設定
検量線(4)を用いて、試料ガスを検出器に通した時の
出力から試料ガスの水分濃度が*められる。
Conventionally, as a method of measuring the water concentration in a sample gas, there is a method of measuring the water content by measuring capacitance as shown in FIG. This method uses two Enoki 1 electric boards (1) (
1) as detection electrodes to form a capacitor, and sample gas (3) is filled between the plates of this capacitor, and the i? This is a method of measuring water content from I-sensitivity, but in order to obtain sufficient detection sensitivity, a water adsorbent (2,., for example, activated alumina) is filled between the electrode plates. Since the amount of water adsorbed in the ladle (2) corresponds to the water concentration in the food waste,
Ji board (1) (by measuring the total capacity between 1
The water concentration in the sample gas is determined. When continuously measuring the water concentration in a sample gas using such a detector, the correspondence between the water concentration and the capacitance of the condenser, that is, the precipitator output, must be determined in advance, as shown in Figure 2 (a). This is possible by setting it as a detection line. That is, a calibration curve (4) (solid line) is set by passing a standard gas with a known moisture concentration through the condenser of the detector and measuring the corresponding output of the detector while changing the moisture concentration. Using this set calibration curve (4), the water concentration of the sample gas can be estimated from the output when the sample gas is passed through the detector.

ところが、この測定方法の場合、検出器の感度か変化す
ると、同一濃度の基準ガスに対して、検出器出力が変り
、初めの設定検量線も変化してくるので、これを定期的
に校正しなければならない。例え番コ、第2図(a)に
おいて、水分量+x Aの基準ガスの検出器出力が初め
の設定検量線(4)によりElであったものが、検出器
の感度が変化し、検量線(4)が検N線(5)(破線)
に変わったために、E2になったとする。自動1点感度
校正にてE2をElに引上げたとすると、検渭:線(5
)け杉・!e(6)(一点鎖線)となり、水分濃度Cが
測定された時にE2の検出器出力となる。そして、初め
の設定検知線(4)に自動校正されたとして、検出器出
力E2に対する水分濃度を読みとると、水分濃度Bの値
を示し、“B−0”分の誤差を生じる。このように水分
濃度と検出器出力の関係を示す検量線において、各水分
濃度と検出器出力の変化率が常に一定の関係にならない
限り、検出器の感度変化に伴う検量線の補正は非常に困
難である。
However, with this measurement method, if the sensitivity of the detector changes, the detector output will change for the reference gas of the same concentration, and the initially set calibration curve will also change, so this must be calibrated periodically. There must be. For example, in Figure 2 (a), the detector output of the reference gas with water content + x A was El according to the initially set calibration curve (4), but the sensitivity of the detector changes and the calibration curve (4) is the inspection N line (5) (dashed line)
Suppose that it becomes E2 because of the change to . If E2 is raised to El by automatic one-point sensitivity calibration, the detection wave: line (5
) Kesugi! e(6) (dotted chain line), which becomes the detector output of E2 when the water concentration C is measured. Then, assuming that the initial setting detection line (4) has been automatically calibrated, when the moisture concentration for the detector output E2 is read, it shows the value of moisture concentration B, which causes an error of "B-0". In this way, in a calibration curve that shows the relationship between water concentration and detector output, it is extremely difficult to correct the calibration curve due to changes in detector sensitivity unless the rate of change of each moisture concentration and detector output always has a constant relationship. Have difficulty.

そこで本発明は上記従来の欠点にνj1み、これを改良
したもので、検量線の形状に関係なく、試料ガス中の水
分量の変動幅より若干異なる1点で、水分量と検出器出
力の関係が水分詰度既知の基準カスにより自1¥l11
点校正されれば、検出器の感1す変化に関1係なく正確
に試料ガス中の水分芯厚が求められる測定方法を4に供
する。
Therefore, the present invention takes into consideration the above-mentioned conventional drawbacks and improves this. Regardless of the shape of the calibration curve, the water content and detector output can be adjusted at one point that is slightly different from the fluctuation range of the water content in the sample gas. The relationship is based on the standard waste with a known moisture content.
Once the point is calibrated, a measurement method is provided in which the thickness of the water core in the sample gas can be accurately determined regardless of changes in the sensitivity of the detector.

即ち、本発明は試料ガス中の水分濃度測定製画において
、水分濃度に応じて出力変化を示す検出器からの出力信
号か常に一定になるように即ち、試料カス中の水分濃度
が変化しても、水分濃度検出器における畳体ガス中の水
分量が常に一定になるように、水分濃度検出器の前段で
試料ガス中に標準ガスを供給し、該標準ガス供給量より
試料ガス中の水分量を求めることを特衛とする試料カス
中水分測定方法である。
That is, the present invention is designed to measure the moisture concentration in a sample gas so that the output signal from the detector, which shows an output change depending on the moisture concentration, is always constant. In order to ensure that the amount of moisture in the gas in the tatami body gas in the moisture concentration detector is always constant, a standard gas is supplied into the sample gas before the moisture concentration detector, and the amount of moisture in the sample gas is This is a method for measuring moisture in sample waste whose special purpose is to determine the amount.

以下本発明を図面に示す実施例に従って説明する。第3
図(a)と第6図(b)は測定装置の基本フローシート
を示す図であるが、前記標準ガス中に含まれる水分量に
応じてその構成は異なる。
The present invention will be explained below according to embodiments shown in the drawings. Third
FIG. 6(a) and FIG. 6(b) are diagrams showing basic flow sheets of the measuring device, and the configuration thereof differs depending on the amount of water contained in the standard gas.

即ち、試料ガス中の水分量の変動幅より若干高い1点で
自動1点校正する場合、水分濃度検出器の前段で試料ガ
ス中に水分が供給されることにより、水分濃度検出器に
おける検体ガス中の水分濃度が校正点まで引き上げらγ
することが望ましい。従って供給される標準ガスは水分
iの多いガスであり、測定装置は第6図(a)に示す構
成となる。又、逆に試料ガス中の水分量の変動幅より若
干低い1点で自動1点校正する場合、水分濃度検出器の
前段で試料ガス中に乾燥ガスが供給されることにより、
水分濃度検出器にお:する検体ガス中の水分濃度が校正
点まで引き下げられることが望ましい。従って供給され
る標準ガスは水分量の少ないガスであり、測定装置は第
6図(b)に示す構成となる。
In other words, when performing automatic one-point calibration at a point that is slightly higher than the variation range of the moisture content in the sample gas, moisture is supplied into the sample gas before the moisture concentration detector, so that the sample gas at the moisture concentration detector is If the water concentration in the inside is raised to the calibration point γ
It is desirable to do so. Therefore, the supplied standard gas is a gas containing a large amount of water i, and the measuring device has the configuration shown in FIG. 6(a). Conversely, when performing automatic one-point calibration at a point that is slightly lower than the fluctuation range of the moisture content in the sample gas, dry gas is supplied into the sample gas before the moisture concentration detector.
It is desirable that the moisture concentration in the sample gas fed to the moisture concentration detector be reduced to the calibration point. Therefore, the supplied standard gas is a gas with a low moisture content, and the measuring device has the configuration shown in FIG. 6(b).

このように2つの異なる各実施例について本発明を説明
すれば次の通りである。即ち、第6図(a)に示す装置
において(7)は電磁弁であって、これを開くことによ
り試料ガスが水分濃度検出器(9)に導入される。(8
)はマニホールド、00)は除湿器であり、測定の終っ
た試料ガスを脱水する。そして、測定と脱水の終った試
料ガスは吸引ポンプ(11)によって流tti(ロ)を
通って排出さnるo Hは試料ガスの加湿用水分供給制
御ポンプであって、水分濃度検出器(9)の前段で試料
ガスGこ水槽@)から標準ガス用水分を供給する。川」
ち、自動校正時、電磁弁(16)を開き、電磁弁(7)
を閉じることによって、乾燥器07)から乾燥空気が標
準ガスとして加湿用水分供給制御ポンプ(]4)によっ
て加湿されて水分濃度検出器(9)に導入される。
The present invention will be described below with respect to two different embodiments. That is, in the apparatus shown in FIG. 6(a), (7) is a solenoid valve, and by opening this valve, the sample gas is introduced into the water concentration detector (9). (8
) is a manifold, and 00) is a dehumidifier, which dehydrates the sample gas after measurement. After the measurement and dehydration, the sample gas is discharged by the suction pump (11) through the flow (b).H is a moisture supply control pump for humidifying the sample gas, Before step 9), water for the standard gas is supplied from the sample gas tank. river"
During automatic calibration, open the solenoid valve (16) and close the solenoid valve (7).
By closing the dryer 07), dry air is humidified as a standard gas by the humidifying moisture supply control pump (4) and introduced into the moisture concentration detector (9).

この標準ガス用の水分の供給量は水分濃度検出器(9)
からの出力信号に1心じ、制御器θ3)で制御される。
The amount of moisture supplied for this standard gas is determined by the moisture concentration detector (9).
It is controlled by a controller θ3) based on the output signal from the controller θ3).

又、第6図(b>において試料ガスの導入から測定、脱
水を綽で排出にr++ろ過程、つまり(7)(s) (
91(io) (1υ(ロ)ノの構成は第3図(a)の
装置と同様であるが、標準ガス供給部は異なった構成と
なる。
In addition, in Fig. 6 (b>), the sample gas is introduced, measured, dehydrated and discharged through a filtration process, that is, (7) (s) (
91(io) (The configuration of 1υ(b) is the same as the device shown in FIG. 3(a), but the standard gas supply section has a different configuration.

即ち、(1セは定量給水器となり、水分供帽量は一定と
なるが、乾燥器(17)から試料ガス中に導入される乾
燥ガスは乾燥ガス供給量制御部(18)を経ることQこ
より、その供給量を制御ぎnる。そして、この乾燥ガス
供給量は水分濃度検出器(9)からの出力信号に応じ、
制御器(13)で制御される、即ち、第6図(a)の装
置における標準ガスは一定量の乾燥ガスに対し加湿用水
分供給側イ卸ポンプ(14)により供給量を制御された
水分を加湿したものであり、第6図(b)の装置におけ
る標準ガスは一定量の供給水分を、乾燥ガス供給用制御
部(18)により供給量を制御された乾燥ガスによって
減湿したものである。
That is, (1st cell is a metered water supply device, and the amount of water supplied is constant, but the drying gas introduced into the sample gas from the dryer (17) must pass through the drying gas supply amount control section (18). From this, the supply amount is controlled.The dry gas supply amount is determined according to the output signal from the moisture concentration detector (9).
The standard gas in the device shown in FIG. 6(a), which is controlled by a controller (13), is a constant amount of dry gas, and a moisture supply whose amount is controlled by a pump (14) on the humidification moisture supply side. The standard gas in the device shown in FIG. 6(b) is a constant amount of supplied moisture, which is dehumidified by drying gas whose supply amount is controlled by the drying gas supply control section (18). be.

次に上記構成に基づく本発明の各実施例の動作を説明す
るっ即ち、試料ガス中の水分量の変動幅より若干高い1
点で自動1点校正する場合、第6図(a)に示す装置(
こおいて、電、磁弁(7)を閉じ、電磁弁06)を開き
、加湿用水分供給制御ポンプ(14) Gこよって定か
、的に加湿さnた乾燥空気を水分濃度Aの既知基準ガス
として検出器(9)に導入した■か、検出器出力がEl
になったとする。そして、試料ガス中水分を測定するた
めに電磁弁(γ)をtJtIき、電磁弁(16)をmじ
て、試料ガスを検出器(9)に鵡大した時、E2の検出
器υ)力が得られたとする。この時、桓・小器(9)か
らの出力信号に応じて制御器(13jによって制御され
る加湿用水分供給制御ポンプ(川により、検出器出力が
Elになるように試料ガスに什準カスを定量的に供給す
る。
Next, the operation of each embodiment of the present invention based on the above configuration will be explained.
When performing automatic one-point calibration, the device shown in Figure 6(a) (
At this point, the electromagnetic valve (7) is closed, the electromagnetic valve (06) is opened, and the humidifying moisture supply control pump (14) is activated. If the gas is introduced into the detector (9), the detector output is El.
Suppose that it becomes Then, in order to measure the moisture in the sample gas, the solenoid valve (γ) is turned on, and when the solenoid valve (16) is turned on and the sample gas is sent to the detector (9), the detector υ) of E2 Suppose you have gained power. At this time, the humidifying moisture supply control pump (controlled by the controller (13j) controls the sample gas so that the detector output becomes El according to the output signal from the controller (9). Quantitative supply.

そして、この供帽Th=−準ガス中の水分量に対厘(シ
た水分濃度を既知濃度Aより差し引けは、元の試料ガス
中の水分濃度が求められることになる。即ち、自動1点
校正により水分濃度Aと検出器出力Elの1点のみのト
1係を維持しておけば検量線を必要としないで試料ガス
中の水分濃度が求められる。この時、記゛料ガス中の水
分量の変シII幅より若干高い1点で自動1点校正する
ことによりE2がElを赴7えないようにする。
Then, by subtracting the moisture concentration in the sample gas from the known concentration A, the moisture concentration in the original sample gas can be found. If the relationship between the water concentration A and the detector output El is maintained at only one point by point calibration, the water concentration in the sample gas can be determined without the need for a calibration curve. Automatic one-point calibration is performed at a point slightly higher than the moisture content variation range II to prevent E2 from reaching El.

そして、試料ガス中の水分量の変動幅より若干低い1点
で自動1点校正する場合、第6図(b)に示す装置Mに
おいて、電磁弁(7)を閉じ、定量給水器韓と乾燥ガス
供給量制御部08)によって定量的に加湿された乾燥空
気を水分濃度Aの既知基準ガスとして検出器(9)に導
入した時、検出器出力がElになったとする。そして、
試料ガス中水分を測定するために′電磁弁(ア)を開き
、乾燥ガス供給量制御部(ホ)及び定最給水器(川を閉
じて、試料ガス全検出器(9)に導入した時、112の
検出器出力が得られたとする。この時、検出器(9)か
らの出力信号に応じて制御器(1報によって制御される
乾燥ガス供給量制御部(ホ)により、検出器出力がEl
になるように試料ガスに標準ガスとしての乾hカスを定
創:的に供給する。そして、この供給乾燥ガス漬によっ
て希釈された水分濃度を既知計度Aに加算すれは、元の
試料ガス中の水分量1yが求められることになる。即ち
、自動1点校正により水分濃度Aと検出器出力Elの1
点のみの閃件を維持しておけば検量iを必要としないで
試料ガス中の水分濃度か求められる。この時、試料ガス
中の水分量の変動幅より若干低い1点で自動1点校正す
ることによりElがE2を超えないようにする。
When performing automatic one-point calibration at a point slightly lower than the variation range of the water content in the sample gas, in the device M shown in Fig. 6(b), close the solenoid valve (7) and connect the metered water supply device to the dryer. Assume that when dry air quantitatively humidified by the gas supply amount control unit 08) is introduced into the detector (9) as a known reference gas of moisture concentration A, the detector output becomes El. and,
To measure the moisture in the sample gas, open the solenoid valve (a), close the drying gas supply amount control section (e) and constant water supply device (river), and introduce the sample gas to all detectors (9). , 112 detector outputs are obtained.At this time, the controller (dry gas supply amount control unit (e) controlled by the first report) controls the detector output according to the output signal from the detector (9). is El
Dry sludge as a standard gas is supplied to the sample gas in a fixed manner so that Then, by adding the water concentration diluted by this supplied dry gas immersion to the known measurement A, the original water content 1y in the sample gas is determined. In other words, by automatic one-point calibration, the moisture concentration A and the detector output El are 1
If the point-only flash condition is maintained, the water concentration in the sample gas can be determined without requiring calibration i. At this time, automatic one-point calibration is performed at a point slightly lower than the fluctuation range of the water content in the sample gas to prevent El from exceeding E2.

又、自動1点校正時、水分濃度Aの既知基準ガスを導入
し、電気的に感度を引上げて検出器出力をElにする方
法と、常に出力がElになるように既知水分濃度を変え
る方法がある。即ち、後者においては検出器(9)の妖
、度か変化し、水分濃度Aの既知基準ガスに対する検出
器出力がElにならない場合、検出器出力がElになる
ように′電気的に検出器(9)の感度を引上げないで、
基準ガスの水分濃度を変えることによって検出器出力を
Elにするものである。そして、この1点において水分
濃度と検出器出力の関係が維持されれは、後者同様に試
料ガス中の水分濃度が求めら口る。
Also, during automatic one-point calibration, there are two methods: introducing a known reference gas with a water concentration A and electrically raising the sensitivity to make the detector output El; and another method changing the known water concentration so that the output is always El. There is. That is, in the latter case, if the temperature of the detector (9) changes and the detector output for a known reference gas of water concentration A does not become El, the detector is electrically adjusted so that the detector output becomes El. Without increasing the sensitivity of (9),
The detector output is set to El by changing the water concentration of the reference gas. If the relationship between the water concentration and the detector output is maintained at this one point, the water concentration in the sample gas can be determined in the same manner as the latter.

更に、従来の測定方法との関係を判り易くするために、
検量線を用いて上記測定方法を説明すれは次のようにな
る。即ち、試料ガス中の水分量の変動幅より若干高い1
点で自!1iI11点校正する場合、第2図(a)にお
いて既知水分濃度Aと検出器出力E1の1点のみの関係
が自動1点校正により維持されるとする。そして、初め
の設定検量線(4)において水分濃度Cがマ11定され
た時、E3の検出器出力が得られれば、]l[i3がE
lになるように“A−0”分の水分が標準ガスとして供
給されることになる。このことは、イφ小器の感度変化
に伴ってA点に補正した検fi fJ (6)において
水分mioが浬1定さnた時、Ellの検出器出力か得
られれば、E2をElになるようにするための“A−〇
”分の粉率ガスによる水分供給量と同じ結果である。即
ち、検量線の変化に関係なく、Aからの減少水分量を常
にAになるように維持することにより、試料ガス中の水
分濃度が求められることになる。
Furthermore, in order to make the relationship with conventional measurement methods easier to understand,
The above measurement method will be explained using a calibration curve as follows. In other words, 1 is slightly higher than the fluctuation range of the water content in the sample gas.
Self at the point! In the case of 1iI 11-point calibration, it is assumed that the relationship between the known water concentration A and the detector output E1 at only one point in FIG. 2(a) is maintained by automatic one-point calibration. Then, when the moisture concentration C is fixed in the first set calibration curve (4), if the detector output of E3 is obtained, ]l[i3 is E
Moisture equivalent to "A-0" is supplied as standard gas so that the amount of water becomes 1. This means that if the sensor output of Ell can be obtained when the moisture level is constant in the detection fi fJ (6) corrected to point A according to the sensitivity change of the small instrument, E2 can be changed to El. This is the same result as the amount of moisture supplied by the powder rate gas for "A-○" to achieve the following. That is, the water concentration in the sample gas can be determined by always maintaining the amount of water reduced from A to A, regardless of changes in the calibration curve.

そして、試料ガス中の水分量の変i!I1幅より若干低
い1点で自動1点校正する場合、第2図(b)において
既知水分濃度Aと検出器出力Elの1点のみの関係が自
動1点校正により維持されるとする。そして、初めの設
定検ah(4)において水分濃度びが測定された時、E
3′の検出器出力が得られれば、E3′がElになるよ
うに、即ち“σ−A”分の水分が減少するように標準ガ
スとしての乾燥ガスが供給されることになる。このこと
は、検出器の感度変化に伴ってA点に補正した検量線(
6) &ごおいて水分濃度σが測定さnた時、E2′の
悩小器出力か得られnは、E2′をEl&こなるように
するための“′σ−A”分の水分が減少するように供給
される乾燥ガス供¥¥量と回し結果である。
Then, the change in the amount of water in the sample gas i! When automatic one-point calibration is performed at one point slightly lower than the I1 width, it is assumed that the relationship between the known water concentration A and the detector output El at only one point is maintained by the automatic one-point calibration in FIG. 2(b). Then, when the moisture concentration was measured in the first setting check (4), E
If a detector output of 3' is obtained, dry gas as a standard gas is supplied so that E3' becomes El, that is, the moisture content is reduced by "σ-A". This means that the calibration curve corrected to point A (
6) When the moisture concentration σ is measured by &, the output of E2' is obtained. This is the result of the amount of dry gas supplied and its rotation so as to decrease.

即ち、検量線の変化に関係なく、Aからの増加水分量を
常にA&こなるように維持することにより試料ガス中の
水分濃度か求められることになる。
That is, irrespective of changes in the calibration curve, the water concentration in the sample gas can be determined by always maintaining the increase in water content from A to A&.

以上説、明したように本発明は水分濃度と水分濃度検出
器の出力関係が1点のみで水分濃度既知の基準ガスによ
り自動校正されれけ、検出器の感度変化に関係なく正確
に試料ガス甲の水分濃度が求められるようにしたから、
試料ガス中の水分濃度を直接>g定する従来の測定方法
において必要であった検量線が不要となる。従゛つて、
検出器の感度変化に伴う困姉な検量線の補正も不要にな
り、従来より正確に試料ガス中の水分濃度が求めらlし
る。又、検量線が不要となることから測定に安する手間
も軽減される。
As explained and explained above, in the present invention, the relationship between the moisture concentration and the output of the moisture concentration detector is automatically calibrated at only one point using a reference gas with a known moisture concentration, and the sample gas can be accurately calibrated regardless of changes in the sensitivity of the detector. Since the moisture concentration of the instep was determined,
This eliminates the need for a calibration curve, which was necessary in the conventional measurement method that directly determines the water concentration in the sample gas. Following,
It also eliminates the need for complicated calibration curve corrections due to changes in detector sensitivity, and the water concentration in the sample gas can be determined more accurately than before. Furthermore, since a calibration curve is not required, the effort required for measurement is also reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試料ガス中の水分濃度測定装置における水分濃
度検出用コンデンサーの側断面図、第2図(a)と第2
図(b)は水分濃度と水分濃度検出器出力の関係を示す
検量線、第6図(a)と第6図(b)は測定装置の実施
例の基本フローシートのブロック図である。 (9)・・・水分濃度検出器、(13)・・・制御器、
(14)・・・加湿用水分供給制御ポンプ、04・・・
定量給水器、に)・・・水槽、(16)・・・電磁弁、
(17)・・・乾燥器、(2))・・・乾燥ガス供給量
制御部。 特許出願人  夏都電子工業株式会社 代  理  人    江   原   省   合圧
   原        秀 給  1 図 節2図(匈
Figure 1 is a side cross-sectional view of a condenser for detecting moisture concentration in a device for measuring moisture concentration in sample gas, and Figure 2 (a) and 2.
FIG. 6(b) is a calibration curve showing the relationship between water concentration and the output of the water concentration detector, and FIGS. 6(a) and 6(b) are block diagrams of basic flow sheets of an embodiment of the measuring device. (9)...Moisture concentration detector, (13)...Controller,
(14)...Moisture supply control pump for humidification, 04...
Quantitative water supply device, ni)... water tank, (16)... solenoid valve,
(17)...Dryer, (2))...Drying gas supply amount control unit. Patent Applicant Xiadu Electronics Industry Co., Ltd. Agent Jiangyuan Province Joint Pressure Hara Hideki 1 Diagram 2 Diagram

Claims (1)

【特許請求の範囲】[Claims] (1,1試料ガス中の水分濃度測定装置において、水分
子Jh j+に1心じて出力変化を示す検出器からの出
力信号が常に一定にン′fるように即ち、試料ガス中の
水分濃度が変什しても、水分濃度検出器における検体方
ス中の水分量が常に一定になるように、水分濃度検出器
の前段で試料ガス中に標準ガスを供給し、該標準ガス供
給量より試料ガス中の水分量を求めることを特徴とする
試料ガス中水分測定方法。
(1.1 In a sample gas moisture concentration measurement device, the output signal from the detector, which shows an output change for each water molecule Jh j+, is always kept constant. In order to ensure that the amount of water in the sample gas detected by the moisture concentration detector is always constant even if the concentration changes, a standard gas is supplied into the sample gas before the moisture concentration detector, and the amount of supplied standard gas is A method for measuring moisture in a sample gas, characterized by determining the amount of moisture in the sample gas.
JP18628382A 1982-10-22 1982-10-22 Method for measuring moisture in gaseous sample Pending JPS5975145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18628382A JPS5975145A (en) 1982-10-22 1982-10-22 Method for measuring moisture in gaseous sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18628382A JPS5975145A (en) 1982-10-22 1982-10-22 Method for measuring moisture in gaseous sample

Publications (1)

Publication Number Publication Date
JPS5975145A true JPS5975145A (en) 1984-04-27

Family

ID=16185591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18628382A Pending JPS5975145A (en) 1982-10-22 1982-10-22 Method for measuring moisture in gaseous sample

Country Status (1)

Country Link
JP (1) JPS5975145A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621518A (en) * 1985-06-21 1986-11-11 The Dow Chemical Company Analyzer for water in gases by accumulate-desorb-inject method
JPH0560712A (en) * 1991-09-05 1993-03-12 Nippon Steel Corp Method for measuring concentration of moisture in air
WO2012097488A1 (en) * 2011-01-19 2012-07-26 四川电力科学研究院 Calibration device for on-line sulfur hexafluoride humidity meters and calibration method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619712U (en) * 1979-07-25 1981-02-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619712U (en) * 1979-07-25 1981-02-21

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621518A (en) * 1985-06-21 1986-11-11 The Dow Chemical Company Analyzer for water in gases by accumulate-desorb-inject method
JPH0560712A (en) * 1991-09-05 1993-03-12 Nippon Steel Corp Method for measuring concentration of moisture in air
WO2012097488A1 (en) * 2011-01-19 2012-07-26 四川电力科学研究院 Calibration device for on-line sulfur hexafluoride humidity meters and calibration method therefor

Similar Documents

Publication Publication Date Title
EP2034311B1 (en) Gasless calibration in metabolic gas analyzers
JP3282586B2 (en) Odor measurement device
US5894083A (en) Continuous gas analyzer
US4098650A (en) Method and analyzer for determining moisture in a mixture of gases containing oxygen
US3661724A (en) Closed loop hygrometry
RU2413935C1 (en) Humidity indicator
US20060078467A1 (en) Process for distinguishing wet from dry gas with a breath alcohol measuring device
JPS63175740A (en) Detector for gaseous component of air
JPS5975145A (en) Method for measuring moisture in gaseous sample
JPH0868732A (en) Gas concentration measuring instrument
US7084646B2 (en) Method of detecting a gas bubble in a liquid
CA1208035A (en) Method and device for measuring humidity
US4683211A (en) Method for measuring the concentration of CaCO3 in a slurry
US4677077A (en) Method for measuring the concentration of CaCO3 in a slurry
US2585811A (en) Electrochemical method of automatically determining available chlorine in an aqueous liquid
CN113624813A (en) A device and method for real-time control of wet desulfurization slurry oxidation process
EP1099949B1 (en) Device for measuring gases with odors
JP2946800B2 (en) Carbon dioxide measuring device
CN110850024B (en) Water detection calibration system, detection model establishing method and water detection method
DE3429952C2 (en) Method for measuring the concentration of CaCO↓3↓ and CaSO↓3↓
CN113624698B (en) A method for rapid determination of calcium carbonate and fiber content in cigarette paper white water
JPH0815151A (en) Gas analyzer
US3044288A (en) Humidiometer hydrogen tube analyzer
CN111929209B (en) Gas composition measuring method, apparatus, device and readable storage medium
JPH0241577Y2 (en)