JPS5973726A - Flow rate detecting device - Google Patents
Flow rate detecting deviceInfo
- Publication number
- JPS5973726A JPS5973726A JP18429682A JP18429682A JPS5973726A JP S5973726 A JPS5973726 A JP S5973726A JP 18429682 A JP18429682 A JP 18429682A JP 18429682 A JP18429682 A JP 18429682A JP S5973726 A JPS5973726 A JP S5973726A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- valve
- flow
- regulating valve
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】 検出する装置に関するものである。[Detailed description of the invention] The present invention relates to a detection device.
配管流路内を流れる流体の流量を求める場合には.通常
オリフィスを用いている。When determining the flow rate of fluid flowing in a piping flow path. Usually an orifice is used.
すなわち、第1図に示すように配管1内にオリフィス2
を介装し.オリフィス2の近傍上・下流側の流体圧力を
導圧管3・4で差圧計5に導き.差圧計5の出力をあら
かじめ求められているレイノルズ数等の関係により流量
に変換し2変換器7で出力するものである。That is, as shown in FIG.
Interposed. Fluid pressure near the orifice 2 on the upstream and downstream sides is guided to a differential pressure gauge 5 through impulse pipes 3 and 4. The output of the differential pressure gauge 5 is converted into a flow rate based on a predetermined relationship such as the Reynolds number, and the two converters 7 output the flow rate.
このようにしてなる装置で,たとえば、′0.体窒素の
ように極低温蒸発主液流体の流量を測定する場合には,
不具合となることもある。For example, in the device constructed in this manner, '0. When measuring the flow rate of a cryogenic evaporation main liquid fluid such as body nitrogen,
It may also be a problem.
配管1に介装しである流量調節弁6が全閉に近い状態で
.流れがほとんど無い時に不具合が生じる。なんとなわ
ば、配管1や導圧管34には断熱材が巻かれているもの
の,若干の熱の流入はまぬがれない。従って,流れがほ
とんど無いような場合には導圧管3・4などからの入熱
によってオリフィス2の周辺の液体が気化してしまい,
気泡が局部的に発生する。これによって、差圧計5に伝
達される差圧が異常に変動してしまう場合も多い。The flow control valve 6 installed in the pipe 1 is almost fully closed. Problems occur when there is almost no flow. After all, although the piping 1 and the impulse pipe 34 are wrapped with heat insulating material, some amount of heat cannot be avoided. Therefore, when there is almost no flow, the liquid around the orifice 2 will vaporize due to heat input from the impulse pipes 3 and 4, etc.
Air bubbles are generated locally. As a result, the differential pressure transmitted to the differential pressure gauge 5 often fluctuates abnormally.
まだ、オリフィス2などの絞り機構を用いた流量測定で
流量は差圧の平方根に比例するが。However, when measuring the flow rate using a throttle mechanism such as the orifice 2, the flow rate is proportional to the square root of the differential pressure.
オリフィス2の開口面積は一定であるために差圧を特に
大きくするなどということができない。Since the opening area of the orifice 2 is constant, the differential pressure cannot be particularly increased.
流量が少ない場合には、小さい寸まの差圧を用いること
になってしまい、気泡の発生による圧力の異常変動は極
めて大Aい検出誤差をもたらすことになり、前述の不具
合は一層助長され。When the flow rate is low, a small differential pressure is used, and abnormal fluctuations in pressure due to the generation of bubbles result in extremely large detection errors, further aggravating the above-mentioned problems.
流量測定の安定性・信頼性を阻害することてなる。This will impede the stability and reliability of flow measurement.
本発明はこれらの欠点を排除するものであって、流量調
節弁に′よって絞られだ流路内を流れる流体の流量を測
定する装置において、上記流量調節弁の弁リフトを検出
する弁リフト検出器と、同弁リフトに基づき上記流量調
節弁の個有のCv値を発生するCv関数発生器と、上記
流量調節弁の近傍上・下流側の圧力の差圧を測定する偏
差器と、同偏差器で求められた値の絶対値を開平する開
平演算器と、同開平演算器と上記Cv関数発生器の出力
および定数を乗じる乗算器とからなることを特徴とし、
その目的とするところは、極低温蒸発主液流体などの流
れがほとんど無い様な状態であっても正しくその流量を
求めることのできる流量検出装置を提供するものである
。The present invention eliminates these drawbacks, and provides a device for measuring the flow rate of fluid flowing in a flow path restricted by a flow rate control valve, which includes a valve lift detection method for detecting the valve lift of the flow rate control valve. a Cv function generator that generates a unique Cv value of the flow control valve based on the valve lift; and a deviation device that measures the pressure difference between the pressure on the upstream and downstream sides of the flow control valve; It is characterized by comprising a square root operator that squares the absolute value of the value obtained by the deviation device, and a multiplier that multiplies the square root operator and the output of the Cv function generator and a constant,
The purpose of this invention is to provide a flow rate detection device that can accurately determine the flow rate of cryogenic evaporated main liquid even when there is almost no flow.
すなわち0本発明の装置ではオリフィスの使用を廃し、
流量を調整する流量調節弁の弁リフトにもとすくいわゆ
るCv値と、流量調節弁の近傍上・下流側の流体圧力の
差圧を用いて流量を検出するようにしたものである。In other words, the device of the present invention eliminates the use of an orifice,
The flow rate is detected by using the so-called Cv value, which is used for the valve lift of the flow rate control valve that adjusts the flow rate, and the differential pressure between the fluid pressures on the upstream and downstream sides near the flow rate control valve.
従って、流れがほとんど無いような場合には。Therefore, in cases where there is almost no flow.
流量調節弁の開度を絞ることによってその上・下流側の
圧力差を大きくすることができるので。By narrowing the opening of the flow control valve, the pressure difference between the upstream and downstream sides can be increased.
圧力波などによって発生した気泡が移動し、若干の差圧
変動が生じる場合であっても流量の検出誤差を極小に抑
えることが可能となる。Even when air bubbles generated by pressure waves move and cause slight fluctuations in differential pressure, it is possible to minimize flow rate detection errors.
以下本発明を第2図に示す一実施例の装置について説明
する。The present invention will now be described with reference to an embodiment of the apparatus shown in FIG.
1は流体を流す配管であって流量調節弁6が介装されて
おり、その上・下流側近傍に一対の導圧管8・1oが開
口している。9および11は上記導圧管8・1oで導び
かれる流体圧Pa・PL測定する圧力変換器であって、
その出力は偏差器12に導入され差圧PU−PLが検出
される。Reference numeral 1 denotes a pipe through which a fluid flows, and a flow rate control valve 6 is interposed therein, and a pair of impulse pipes 8 and 1o are opened near the upper and downstream sides thereof. 9 and 11 are pressure transducers for measuring the fluid pressures Pa and PL guided by the pressure impulse pipes 8 and 1o,
The output is introduced into the deviation device 12 and the differential pressure PU-PL is detected.
13は偏差器12で検出、される差圧PU −PLの絶
対値を開平する開平演算器であって、後記する乗算器1
6にその値J l−’p、、 ’−PLlを出力するも
のである。Reference numeral 13 denotes a square root computing unit which squares the absolute value of the differential pressure PU - PL detected and detected by the deviation device 12, and includes a multiplier 1 to be described later.
6, the values Jl-'p, , '-PLl are output.
14は流量調節弁6の弁リフトを検出する弁リフト検出
器、1合は弁リフトに基づき流量調節弁6の固有のCv
値を発生するCv関数発生器であり、第3図に示すよう
な弁リフトとCv値との関数を記憶し、たものである。14 is a valve lift detector that detects the valve lift of the flow rate control valve 6; 1 is a valve lift detector that detects the specific Cv of the flow rate control valve 6 based on the valve lift;
This is a Cv function generator that generates a value, and stores a function between valve lift and Cv value as shown in FIG.
16は開平演算器13の出力J l’Pg −Pl、
l 、 Cv関数発生器15の出カCv値、および、定
数Kを乗する演算器であって、流量。が出力される。16 is the output J l'Pg -Pl of the square root calculator 13;
l, an arithmetic unit that multiplies the output Cv value of the Cv function generator 15 and a constant K, and is a flow rate. is output.
さて、配管l内を流れる流体は、別途設けられた制御装
置により流量調節弁6の弁リフトが操作されることによ
って変化する。Now, the fluid flowing in the pipe 1 is changed by operating the valve lift of the flow control valve 6 by a separately provided control device.
弁リフト検出器14は、流量調節弁6の弁リフトを検出
し、当該弁個有のCv値の関数を発生させるべく出力信
号をCv関数発生器15の入力信号として送出する。The valve lift detector 14 detects the valve lift of the flow control valve 6 and sends an output signal as an input signal to the Cv function generator 15 to generate a function of the Cv value unique to the valve.
一方導圧管8・10を介して圧力変換器9・11に伝達
された流量調節弁6の上・下流側の流体圧力PUPLは
電気信号に変換され偏差器12に人力される。偏差器1
2で得られた差圧pu −pLは、開平演算器13でそ
の絶対値の開平が行なわれ1乗算器16に入力され、上
記Cv値および定数との乗算が行なわれて流量Qが出力
される。On the other hand, the fluid pressures PUPL on the upstream and downstream sides of the flow control valve 6, which are transmitted to the pressure transducers 9 and 11 via the impulse pipes 8 and 10, are converted into electrical signals and input to the deviation device 12 manually. Deviation device 1
The differential pressure pu -pL obtained in step 2 is subjected to square rooting of its absolute value in a square root calculator 13 and inputted to a 1 multiplier 16, where it is multiplied by the above Cv value and a constant and the flow rate Q is output. Ru.
配管内を流れる流体流量の自動制御を目的とするなどの
流量検出装置において従来はオリフィスを用いていた。Conventionally, orifices have been used in flow rate detection devices for the purpose of automatically controlling the flow rate of fluid flowing in piping.
オリフィスを用いる場合は。When using an orifice.
差圧検出の原理にもとづいて導圧管の取付は位置が至近
な関係となるのが必然であるため、極低温の蒸発性液流
体が対象とされるときは、特に微小流量において外部か
らの入熱が導圧管を伝ってオリフィス周辺に集中的に到
達する。その結果1局部の気泡発生が著しくなり、流体
の圧縮性は犬とな1ツ、主管内の微小な圧力変動に影響
されて差圧変動を生じ易い状態となる。一方、検出流量
はオリフィる差圧の平方根に比例する原理より、差圧が
小さい状態眞おける微小な差圧変動は大きい流量誤差に
変換されるので。Based on the principle of differential pressure detection, it is inevitable that the impulse pipes are installed in close proximity, so when extremely low temperature evaporative liquid fluids are involved, it is difficult to prevent external input, especially at minute flow rates. Heat travels through the impulse tube and reaches the area around the orifice in a concentrated manner. As a result, the generation of bubbles in one local area becomes significant, and the compressibility of the fluid is affected by minute pressure fluctuations in the main pipe, making it easy to cause differential pressure fluctuations. On the other hand, based on the principle that the detected flow rate is proportional to the square root of the differential pressure at the orifice, minute differential pressure fluctuations in a state where the differential pressure is small will be converted into a large flow rate error.
このような検出信号を自動制御に用いることは不都合で
ある。It is inconvenient to use such a detection signal for automatic control.
しか[7ながも、′本実施例の装置は上記したように流
駿調整弁G自体を絞り機構として用いたものであり、流
量調節弁6の開度が小となるにしたがい差圧は大となり
、流量ビ主として弁開度(’ Cv値)に依存して小と
なる。この物理現象の実態に順応した装置であるので、
上述のオリフィス使用における流量検出の欠点をすべて
解消できる特長を有すことができる。However, as described above, the device of this embodiment uses the flow regulating valve G itself as a throttling mechanism, and as the opening degree of the flow regulating valve 6 becomes smaller, the differential pressure increases. The flow rate becomes large, and the flow rate becomes small depending mainly on the valve opening degree ('Cv value). Since it is a device that adapts to the reality of this physical phenomenon,
It can have the advantage of eliminating all the drawbacks of flow rate detection when using an orifice as described above.
例えば、第1図のような装置で流量調節弁6を急縮した
場合、オリフィス2での流量検出値は第4図に実線に示
すごとき逆応答を呈するが。For example, when the flow control valve 6 is suddenly contracted in the device shown in FIG. 1, the flow rate detected at the orifice 2 exhibits a reverse response as shown by the solid line in FIG.
本発明によれば第4図の破線のごとく改良される。特に
、上流の管路が長大である程両者の差異は犬となり改良
の効果が明確になる。According to the present invention, improvements are made as shown by the broken line in FIG. In particular, the longer the upstream pipeline is, the more the difference between the two becomes more pronounced, and the effect of the improvement becomes clearer.
なお1本実施例の装置で流量検出精度を左右する要点は
、流量調節弁6のCv特性およびその絶対値であるが、
最近の弁の製作・調整技術によるものであれば、実用上
十分な精度の製品の提供を受けることが可能であり、ま
だ1%に修正の必要があればCv関数発生器15の設定
値調整によって容易に修正可能でもある。Note that the key points that affect the flow rate detection accuracy in the device of this embodiment are the Cv characteristic of the flow rate control valve 6 and its absolute value.
If it is based on recent valve manufacturing and adjustment technology, it is possible to receive a product with sufficient accuracy for practical use, and if it still needs to be corrected to 1%, the set value of the Cv function generator 15 can be adjusted. It can also be easily modified by
第1図は従来の装置の説明図、第2図は本発明の一実施
例を示す装置の説明図、第3図は弁リフトとCv値の関
係図、第4図は流量検出の特性を示すグラフでちる。
1:配管、6:流量調節弁、12:偏差器。
13:開平演算器、14:弁リフト検出器。
15 : Cv関数発生器、16:乗算器。
肩2閃 垢3閃
鳩4図
第1頁の続き
0発 明 者 平田大作
高砂市荒井町新浜二丁目1番1
号三菱重工業株式会社高砂製作
所内
■出 願3人 三菱重工業株式会社
東京都千代田区丸の内2丁目5
番1号Fig. 1 is an explanatory diagram of a conventional device, Fig. 2 is an explanatory diagram of a device showing an embodiment of the present invention, Fig. 3 is a diagram showing the relationship between valve lift and Cv value, and Fig. 4 is a diagram showing the characteristics of flow rate detection. Chill with the graph shown. 1: Piping, 6: Flow control valve, 12: Deviation device. 13: Square root calculator, 14: Valve lift detector. 15: Cv function generator, 16: Multiplier. Shoulder 2 Flashes 3 Flashes 4 Continuation of Figure 1 Page 0 Author: Daisaku Hirata, 2-1-1 Niihama, Arai-cho, Takasago City, Mitsubishi Heavy Industries, Ltd., Takasago Works ■Applicant: 3 people Mitsubishi Heavy Industries, Ltd., Chiyoda-ku, Tokyo Marunouchi 2-5-1
Claims (1)
の流量を測定する装置であって、上記流量調節弁の弁リ
フトを検出する弁リフト検出器と。 同弁リフトに基づき上記流量調節弁の個有のCv値を発
生するCv関数発生器と、上記流量調節弁の近傍上・下
流側の圧力の差圧を測定する偏差器と、同偏差器で求め
られた値の絶対値を開平する開平演算器と′、同開平演
算器と上記Cv関数発生器の出力および定数を乗じる乗
算器とからなることを特徴とする流量検出装置。[Scope of Claims] A device for measuring the flow rate of fluid flowing in a flow path constricted by a flow rate control valve, comprising a valve lift detector for detecting the valve lift of the flow rate control valve. A Cv function generator that generates a unique Cv value of the flow rate control valve based on the valve lift, a deviator that measures the differential pressure between the pressure on the upstream and downstream sides of the flow rate control valve, and the deviator. A flow rate detection device comprising: a square root calculator which squares the absolute value of the obtained value; and a multiplier which multiplies the square root calculator by the output of the Cv function generator and a constant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18429682A JPS5973726A (en) | 1982-10-20 | 1982-10-20 | Flow rate detecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18429682A JPS5973726A (en) | 1982-10-20 | 1982-10-20 | Flow rate detecting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5973726A true JPS5973726A (en) | 1984-04-26 |
Family
ID=16150843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18429682A Pending JPS5973726A (en) | 1982-10-20 | 1982-10-20 | Flow rate detecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5973726A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6062118U (en) * | 1983-10-04 | 1985-05-01 | 株式会社 京浜精機製作所 | flow control valve |
US4653288A (en) * | 1984-07-02 | 1987-03-31 | Hitachi, Ltd. | Apparatus for measuring refrigerant flow rate in refrigeration cycle |
JPS6370119A (en) * | 1986-09-12 | 1988-03-30 | Tokyo Keiki Co Ltd | Flow rate measuring apparatus |
JPS6484118A (en) * | 1987-09-26 | 1989-03-29 | Yamatake Honeywell Co Ltd | Control valve with flow rate indicator |
JPH02166357A (en) * | 1988-12-19 | 1990-06-27 | Matsushita Electric Ind Co Ltd | Refrigerant flow rate adjusting valve |
JPH02297023A (en) * | 1989-05-11 | 1990-12-07 | Kubota Konpusu Kk | Water distribution controller |
EP0671578A1 (en) * | 1994-02-23 | 1995-09-13 | GIACOMINI Services and Engineering SA | Control valve for a train of pipes |
CN114432916A (en) * | 2021-12-30 | 2022-05-06 | 北京航天长峰股份有限公司 | Gas mixing equipment |
-
1982
- 1982-10-20 JP JP18429682A patent/JPS5973726A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6062118U (en) * | 1983-10-04 | 1985-05-01 | 株式会社 京浜精機製作所 | flow control valve |
US4653288A (en) * | 1984-07-02 | 1987-03-31 | Hitachi, Ltd. | Apparatus for measuring refrigerant flow rate in refrigeration cycle |
JPS6370119A (en) * | 1986-09-12 | 1988-03-30 | Tokyo Keiki Co Ltd | Flow rate measuring apparatus |
JPS6484118A (en) * | 1987-09-26 | 1989-03-29 | Yamatake Honeywell Co Ltd | Control valve with flow rate indicator |
JPH0519085B2 (en) * | 1987-09-26 | 1993-03-15 | Yamatake Honeywell Co Ltd | |
JPH02166357A (en) * | 1988-12-19 | 1990-06-27 | Matsushita Electric Ind Co Ltd | Refrigerant flow rate adjusting valve |
JPH02297023A (en) * | 1989-05-11 | 1990-12-07 | Kubota Konpusu Kk | Water distribution controller |
EP0671578A1 (en) * | 1994-02-23 | 1995-09-13 | GIACOMINI Services and Engineering SA | Control valve for a train of pipes |
CN114432916A (en) * | 2021-12-30 | 2022-05-06 | 北京航天长峰股份有限公司 | Gas mixing equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI245113B (en) | Differential pressure type flowmeter and differential pressure type flowmeter controller | |
KR101930304B1 (en) | Flow meter | |
JP4949039B2 (en) | Flow rate detector | |
JPH02272341A (en) | Method and instrument for measuring vapor pressure of liquid composition | |
US5002459A (en) | Surge control system | |
JPS5973726A (en) | Flow rate detecting device | |
JP3865813B2 (en) | Fluid mixing device | |
JP4977669B2 (en) | Differential pressure type flow meter | |
JPS5992313A (en) | Flow rate detector | |
JPS6329210Y2 (en) | ||
TWI470388B (en) | Mass flow controller | |
JPH0132525B2 (en) | ||
JP2000249619A (en) | Gas leakage detecting method | |
US3034352A (en) | Means for the measurement of the flow of a gas | |
KR101668483B1 (en) | Mass flow controller | |
US2093842A (en) | Fluid distribution system | |
JP2787369B2 (en) | Automatic pressure control valve | |
JPS61146329A (en) | Mixing device | |
JPH084101Y2 (en) | Gas mixing equipment | |
JPH04235611A (en) | Mass flow controller | |
JPH01227012A (en) | Method and apparatus for controlling flow rate | |
JP3297507B2 (en) | Flow measurement device | |
JP2000222043A (en) | Pressure control using differential pressure | |
JPS61202120A (en) | Flow rate measuring apparatus | |
JPS6014170Y2 (en) | flow rate detector |