JPS5966058A - Secondary battery - Google Patents
Secondary batteryInfo
- Publication number
- JPS5966058A JPS5966058A JP57177245A JP17724582A JPS5966058A JP S5966058 A JPS5966058 A JP S5966058A JP 57177245 A JP57177245 A JP 57177245A JP 17724582 A JP17724582 A JP 17724582A JP S5966058 A JPS5966058 A JP S5966058A
- Authority
- JP
- Japan
- Prior art keywords
- charging
- electrode
- discharging
- polymer
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、高分子物質を電極材料に用いた二次電池に関
するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a secondary battery using a polymeric substance as an electrode material.
従来pltf)構成とその問題点
最近、高分子重合体にある種の物質をドープすると電気
伝導性が向−卜し、ついには金属電導を示すようなもの
が知られており、このような高分子物質は合成金属と呼
ばれている。その代表例としてポリアセチレンやポリフ
ェニレンがある0これらは、高分子主鎖の炭素原子のπ
電子が共役二重結合により主鎖の間で非局在化しており
。Conventional PLTF) structure and its problems Recently, it has been known that doping a high molecular weight polymer with a certain substance improves its electrical conductivity, and that it eventually exhibits metallic conductivity. Molecular substances are called synthetic metals. Typical examples are polyacetylene and polyphenylene.
Electrons are delocalized between the main chains due to conjugated double bonds.
ある種の物質をドープすることにより高導電率を示すよ
うになる。By doping it with a certain type of substance, it exhibits high electrical conductivity.
この種の高分子物質を電極材料に用いた新しい号公報に
記載されている。高分子物質を正極に用いた場合の充電
放電反応は、高分子物質の電解液中の陰イオンの取り込
み(ドープ)による充電反応ト、陰イオンの放出(アン
ドープ)による放電反応であり、負極に用いた場合は陽
イオンの取り込みによる充電反応と陽イオンの放出によ
る放電反応である。A new publication using this type of polymer material as an electrode material is described. When a polymeric material is used as the positive electrode, the charge-discharge reaction is a charging reaction due to the incorporation of anions (doping) into the electrolyte of the polymeric material, and a discharging reaction due to the release of anions (undoping). When used, a charging reaction occurs due to the uptake of cations, and a discharging reaction occurs due to the release of cations.
高分子物質としてポリアセチレン(CH)n−’に解液
として過塩素酸リチウムを例えはプロlピレンカーボネ
ートに溶解した溶液を用いた場合の充放電反応を以下に
示す。The charge/discharge reaction will be shown below when a solution prepared by dissolving lithium perchlorate in, for example, propylene carbonate is used as a solution in polyacetylene (CH) n-' as a polymeric substance.
正極
(CH)n−+−nχ(CAO4−)
負極
(CH)y)−)−nX+9+nXLi’−このように
高分子物質は、正極又は負極として機能するので、他の
負極又は正極と組み合わせることは勿論、高分子物質同
志の組み合わせでも二次電池を構成することができる。Positive electrode (CH)n-+-nχ(CAO4-) Negative electrode (CH)y)-)-nX+9+nXLi'-As described above, a polymer substance functions as a positive electrode or a negative electrode, so it cannot be combined with other negative electrodes or positive electrodes. Of course, a secondary battery can also be constructed by a combination of polymeric substances.
この種の高分子物質としては、上記の他、ポリ硫化フェ
ニレン、ポリピロール、あるいは水素原子の若干がハロ
ゲン原子、アルキル基、フェニル基、アルキルフェニル
基、へロフェニル基などで置換きれたポリアセチレンな
どが知られている。In addition to the above, known polymeric substances of this type include polyphenylene sulfide, polypyrrole, and polyacetylene in which some of the hydrogen atoms have been substituted with halogen atoms, alkyl groups, phenyl groups, alkylphenyl groups, herophenyl groups, etc. It is being
一方、高分子物質を負極として用いる場合、これと組み
合わせる電解液としては、過塩素酸リチウム(t、1c
6o4)−硼フッ化リチウム(LiBF4)、六フフ化
リン酸リチウム(LiPF6) などのリチウム塩を
溶質とし、プロピレンカーボネートやデトラヒドロフラ
ン全溶媒とした有機電解液が知られている。On the other hand, when a polymer material is used as the negative electrode, the electrolyte used in combination with it is lithium perchlorate (t, 1c
Organic electrolytes are known in which a lithium salt such as 6o4)-lithium borofluoride (LiBF4) or lithium hexafluorophosphate (LiPF6) is used as a solute and propylene carbonate or detrahydrofuran is used as a total solvent.
しかし、上記に示した高分子物質を電極に用いた場合に
は、高率充放電が困難であるという欠点があった。However, when the above-mentioned polymeric substances were used for electrodes, there was a drawback that high rate charging and discharging was difficult.
発明の目的
本発明の目的は、高率充放電が可能な高分子物質電極を
提供することである。OBJECTS OF THE INVENTION An object of the present invention is to provide a polymer material electrode that is capable of high rate charging and discharging.
発明の構成
本発明は、ポリアセチレンやポリニトリルのように主鎖
がπ電子で共役しており、との主鎖がフェロセン官能基
により橋かけされている高分子物質を正極または負極と
し、充電、放電により、高分子物質中に取り込まれたり
、放出されたりする陰イオンや陽イオン左肩する溶質を
溶解させた電Mlとからなることを特徴としている。Structure of the Invention The present invention utilizes a polymeric substance such as polyacetylene or polynitrile, whose main chain is conjugated with π electrons and whose main chain is cross-linked with a ferrocene functional group, as a positive or negative electrode, for charging and discharging. It is characterized by being composed of electrolyte M1 in which solutes are dissolved, including anions and cations that are incorporated into or released from polymeric substances.
本発明の高分子物質が充放電特性に優れるのは、次のよ
うに考えられる。すなわち、例えばポリアセチレンの主
鎖同士をフェロセン官能基で結ぶことによね、平面状に
配置しているポリアセチレンのπ電子がサンドウィッチ
構造を持ち、π電子と鉄のd軸道が混成vl道を作って
いるフェロセンを介して、相−4作用をすることによっ
て、電極としての充放電特性が向上するものである。The reason why the polymeric substance of the present invention has excellent charge/discharge characteristics is considered to be as follows. That is, for example, by connecting the main chains of polyacetylene with a ferrocene functional group, the π electrons of the polyacetylene arranged in a plane have a sandwich structure, and the π electrons and the d-axis path of iron form a hybrid VL path. The charge/discharge characteristics of the electrode are improved by performing a phase-4 action through the ferrocene present in the ferrocene.
実施例の説明
実施例に使用した高分子物質の構造を以下に示以降、高
分子(1)と称することにする。Description of Examples The structure of the polymer substance used in the examples is shown below and will be referred to as polymer (1).
二次電池の正極としての実施例を以下に示す。Examples of the positive electrode of a secondary battery are shown below.
実施例1
電解液に1モル/lの過塩素酸リチウムを溶解させたプ
ロピレンカーボネートヲ用いた。対極すなわち負極とし
て、大きさ2CmX 2 C711、厚さ1 mmのリ
チウム板を用い、また照合電極としてリチウム板を用い
た。正極材料には、比較例としてのポリアセチレン及び
前記の高分子(1)を用いた。ポリアセチレンは大きさ
2 cIILX 2 Cnl+重量50mgのフィルム
を用い、高分子(1)は粉末60 ml f大きさ2α
X2cnLのシート状に圧縮成形したものを用いた。Example 1 Propylene carbonate in which 1 mol/l of lithium perchlorate was dissolved in an electrolytic solution was used. A lithium plate having a size of 2 cm x 2 C711 and a thickness of 1 mm was used as a counter electrode, that is, a negative electrode, and a lithium plate was used as a reference electrode. As the positive electrode material, polyacetylene as a comparative example and the polymer (1) described above were used. For polyacetylene, use a film with size 2 cIILX 2 Cnl + weight 50 mg, and for polymer (1), use powder 60 ml f size 2α
A compression molded sheet of X2cnL was used.
これらの正極拐料1を第1図に示すように−カーボン塗
料2を用いて集電体であるチタン板3に接着して電極を
構成した。As shown in FIG. 1, these positive electrode particles 1 were adhered to a titanium plate 3 serving as a current collector using a carbon paint 2 to form an electrode.
充放電試験は、すべて20゛Cで行った。充電は正極の
電位が照合電極に対して−1−4,2vになるまで行い
、放電は+2.OVになるまで行った。All charge/discharge tests were conducted at 20°C. Charging is carried out until the potential of the positive electrode becomes -1-4.2V with respect to the reference electrode, and discharge is carried out until the potential of the positive electrode becomes -1-4.2V with respect to the reference electrode. I went all the way to OV.
第1サイクルの充放電は、○j2mAで行った後。The first cycle of charging and discharging was performed at ○j2mA.
第2サイクル以降の充放電はすべて4mAで連続して行
った。第2図には一第10サイクルにおけるそれぞれの
正極の充電曲線、放電曲線を示す。All charging and discharging from the second cycle onwards were performed continuously at 4 mA. FIG. 2 shows the charging curve and discharging curve of each positive electrode in the 1st and 10th cycles.
図中、Aはポリアセチレン、Bは高分イ(1)である。In the figure, A is polyacetylene and B is polymer (1).
また第1表には、第10ザイクルにおける充電容凰、放
電容量全示す。Table 1 also shows all the charging capacity and discharging capacity in the 10th cycle.
第1表
実施例2
実施例1と同じ構成の正+iff用い、電・解法には1
モル/4のヨウ化亜鉛(ZnI2)水溶液を用いた。Table 1 Example 2 Positive + iff with the same configuration as Example 1 is used, and 1 is used for the electrolytic/lysis method.
A mol/4 zinc iodide (ZnI2) aqueous solution was used.
対極−トなわち負極には曲、鉛板を、照合電極には飽和
間“永電極を用いた。充放電は、全て正極が飽和1土水
電極に対して−1−o、16 Vになるまで行い、放電
は−0,24Vになる寸で行った。第1サイクルの充放
電は0−12 mAで行い一第2ザイクル以降の充放電
はすべて4mAで行った。第2表には、第10ザイクル
における各正極の充電容量、放電容量を示した。このよ
うに水溶′o、を電解液とした場合にも高分子(1)は
優れた充放電特性を示す。A curved lead plate was used as the counter electrode, that is, the negative electrode, and a saturated permanent electrode was used as the reference electrode.For charging and discharging, the positive electrode was saturated at -1-o, 16 V with respect to the saturated earth and water electrode. The discharge was carried out until the voltage reached -0.24V.The first cycle of charging and discharging was carried out at 0-12 mA, and the charging and discharging after the second cycle were all carried out at 4 mA.Table 2 shows , the charging capacity and discharging capacity of each positive electrode in the 10th cycle are shown.As described above, polymer (1) exhibits excellent charging and discharging characteristics even when aqueous solution 'o' is used as the electrolyte.
第2表
実施例から、高分子(1)を正極とした場合、充放電反
応として、有機電解液中あるいは水溶液中の過塩素酸イ
オンやヨウ素イオンなどの陰イオンの取り込みや放出を
行わせることができ、従来のポリアセチレンに比べ優れ
た性能を示すことがわかる○
以下に負極としての実施例を述べる。From the examples in Table 2, when polymer (1) is used as a positive electrode, it is possible to take in and release anions such as perchlorate ions and iodine ions in an organic electrolyte or an aqueous solution as a charge/discharge reaction. It can be seen that it shows superior performance compared to conventional polyacetylene. Examples as negative electrodes will be described below.
実施例3
実施例1で示したのと同様にして第1図のような電極を
構成し負極とした。ただし、第1図で示した電極構成の
うち、2のカーボン塗料は白金系A1であり、3の集電
体としてはチタン板の代りにニッケル板を使った。対極
すなわち正極には、二(11ff 化チタ7 (TIS
7 )を用いた。二硫化チタン11に導電材としての
アセチレンブラック0.1 、!7 及[’給着剤とし
ての四フッ化エチレン樹脂0.19 f加えブこ混合物
を1トンの圧力で大きさ2 C7n X 2 Cmの7
−ト状に圧縮成形したものである。照合電極とし7ては
、リチウム板を用いた。電解液には、1モル/βの六フ
ッ化リン酸リチウムを溶解したプロピレンカーボネート
を用いた。充放電は全て一負極の電位が、リチウム照合
電極に対して+0.2vVこなるまで充電1−1放電は
負極の電位が→−2.OVになる丑で行った。第1ザイ
クルの充放電電流は、0.12mAとし、第2サイクル
以降は4mAで充放電を行った。第3図には一第1oザ
イクルにおける各負極の充放電曲線を示す。図中A′は
ポリアセチレン、B′は高分子(1)である。第3表に
は一第10サイクルにおける充電容量、放電容量を示す
。Example 3 An electrode as shown in FIG. 1 was constructed as a negative electrode in the same manner as shown in Example 1. However, in the electrode configuration shown in FIG. 1, the carbon paint in No. 2 was platinum-based A1, and the current collector in No. 3 was a nickel plate instead of the titanium plate. The counter electrode, that is, the positive electrode, is
7) was used. Titanium disulfide 11 and acetylene black as a conductive material 0.1,! 7 and [' Add 0.19 f of tetrafluoroethylene resin as adhesion agent and mix the mixture at a pressure of 1 ton with a size of 2 C7n x 2 Cm.
- Compression molded into a flat shape. A lithium plate was used as the reference electrode 7. Propylene carbonate in which 1 mol/β lithium hexafluorophosphate was dissolved was used as the electrolyte. Charging and discharging are performed until the potential of the negative electrode becomes +0.2 vV with respect to the lithium reference electrode. I went with the ox that became OV. The charging/discharging current of the first cycle was 0.12 mA, and charging/discharging was performed at 4 mA from the second cycle onward. FIG. 3 shows the charge/discharge curves of each negative electrode in the first o cycle. In the figure, A' is polyacetylene and B' is polymer (1). Table 3 shows the charging capacity and discharging capacity in the 1st and 10th cycles.
第3表
本実施例では、対極すなわち正極に二硫化チタンを用い
たが、負極の特性をリチウム照合電極に対する電位の変
化をパラメータとして評価した。Table 3 In this example, titanium disulfide was used as the counter electrode, that is, the positive electrode, and the characteristics of the negative electrode were evaluated using the change in potential with respect to the lithium reference electrode as a parameter.
この方法により負極の特性が明確に杷握できるからであ
る。正極に、実施例1と同じ電極、すなわち、高分子を
用いた場合にも、負極の特性は同じであった。This is because the characteristics of the negative electrode can be clearly determined by this method. Even when the same electrode as in Example 1, that is, a polymer was used for the positive electrode, the characteristics of the negative electrode were the same.
またヨウ化亜鉛を溶かした水溶液を電解液に用いて、高
分子物質の負極としての充放電特性全検討した場合にも
、高分子(1)の方が優れていた。Furthermore, when the charging and discharging characteristics of polymeric substances as negative electrodes were all investigated using an aqueous solution containing dissolved zinc iodide as an electrolyte, polymer (1) was superior.
以上より、高分子(1)を負極とした場合にも、充放電
反応として、有機電解液中あるいは水溶液中のリチウム
イオンや亜鉛イオンなどの陽イオンの取り込みや放出を
行わせることができ、従来のポリアセチレンに比べ優れ
た性能を示すことがわかる。From the above, even when polymer (1) is used as a negative electrode, it is possible to take in and release cations such as lithium ions and zinc ions in an organic electrolyte or an aqueous solution as a charge/discharge reaction. It can be seen that it shows superior performance compared to polyacetylene.
以−ヒの実施例では、ポリアセチレンをフェロセンで橋
かけした構造の高分子物質で示した。その他にも、主鎖
がπ電子で共役していて、その主鎖がフェロセンで橋か
けされている高分子物質として、ポリニトリルをフェロ
センで架橋した高分子物質を検討した結果、ポリアセチ
レンを大きく上回る充放電特性を示した。この高分子物
質の分子構造を(11)に示す。In the following examples, a polymer material having a structure in which polyacetylene is cross-linked with ferrocene is used. In addition, as a polymer material whose main chain is conjugated with π electrons and whose main chain is cross-linked with ferrocene, we have investigated a polymer material in which polynitrile is cross-linked with ferrocene. The discharge characteristics were shown. The molecular structure of this polymeric substance is shown in (11).
以下余白
以上において、π電子で共役している主鎖をフェロセン
で架橋した高分子物質を正極または負極に用いた場合、
その充放電特性が向上することを示した。これより、二
次電池の正極、負極のどちらか一方又は両方に使用する
ことにより、二次電池の充放電特性が向上することが明
らかである。In the following margins, when a polymer material whose main chain conjugated with π electrons is cross-linked with ferrocene is used for the positive or negative electrode,
It was shown that its charge-discharge characteristics were improved. From this, it is clear that the charge/discharge characteristics of the secondary battery are improved by using it for either or both of the positive electrode and the negative electrode of the secondary battery.
発明の効果
本発明によれば、高分子物質を正極および/または負極
に用いた二次電池の充放電特性を向上さぜることかでき
る。Effects of the Invention According to the present invention, it is possible to improve the charging and discharging characteristics of a secondary battery using a polymeric substance as a positive electrode and/or a negative electrode.
第1図は一実施例に用いた電極の縦断面図、第2図は有
機電解液中での各種正極の充放電曲線を示す図、第3図
は治機電解液中での各種負極の充放電曲線を示す。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
充V吟閣(時間) 放電時間(時間〕第3図Figure 1 is a longitudinal cross-sectional view of the electrode used in one example, Figure 2 is a diagram showing the charge-discharge curves of various positive electrodes in an organic electrolyte, and Figure 3 is a diagram showing the charge-discharge curves of various negative electrodes in an organic electrolyte. Charging and discharging curves are shown. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Charging time (time) Figure 3 Discharging time (time)
Claims (1)
み、放出する高分子物質よりなる正極または負極と、前
記の陰イオンまたは陽イオンを含む電解液を備え、前記
高分子物質が、π電子によって共役している主鎖の間を
フェロセンによって橋かけ構造となっていることを特徴
とする二次電池。A positive electrode or a negative electrode made of a polymeric substance that reversibly takes in and releases anions or cations through charging and discharging, and an electrolytic solution containing the anions or cations, wherein the polymeric substance is conjugated by π electrons. A secondary battery characterized by a structure in which the main chains of the two main chains are bridged by ferrocene.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57177245A JPS5966058A (en) | 1982-10-07 | 1982-10-07 | Secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57177245A JPS5966058A (en) | 1982-10-07 | 1982-10-07 | Secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5966058A true JPS5966058A (en) | 1984-04-14 |
Family
ID=16027686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57177245A Pending JPS5966058A (en) | 1982-10-07 | 1982-10-07 | Secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5966058A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0667032A1 (en) * | 1992-09-01 | 1995-08-16 | Motorola, Inc. | Rechargeable electrical energy storage device having organometallic electrodes |
JP2005510677A (en) * | 2001-11-27 | 2005-04-21 | リテンズ オートモーティヴ | Synchronous drive device having non-circular drive element |
-
1982
- 1982-10-07 JP JP57177245A patent/JPS5966058A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0667032A1 (en) * | 1992-09-01 | 1995-08-16 | Motorola, Inc. | Rechargeable electrical energy storage device having organometallic electrodes |
EP0667032A4 (en) * | 1992-09-01 | 1995-11-08 | Motorola Inc | Rechargeable electrical energy storage device having organometallic electrodes. |
JP2005510677A (en) * | 2001-11-27 | 2005-04-21 | リテンズ オートモーティヴ | Synchronous drive device having non-circular drive element |
US7720650B2 (en) | 2001-11-27 | 2010-05-18 | Litens Automotive | Synchronous drive apparatus and methods |
US8303444B2 (en) | 2001-11-27 | 2012-11-06 | Litens Automotive Partnership | Synchronous drive apparatus and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0256870A (en) | Chargeable electrochemical generator | |
JPH117942A (en) | Total solid lithium battery | |
JP2006324179A (en) | Electrode and electrochemical element using it | |
JPH10265567A (en) | Aniline polymer, electrode material and secondary battery | |
CN105428634A (en) | Lithium ion battery negative electrode material and preparation method of lithium sulfide battery | |
JP2008159275A (en) | Electrode active material and power storage device using the same | |
JPH02148665A (en) | Electrolyte for lithium secondary battery | |
JP3257018B2 (en) | Battery charge / discharge method | |
JP6875818B2 (en) | Electrolyte and electrochemical device using it | |
JPS5966058A (en) | Secondary battery | |
JP2871077B2 (en) | Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery | |
JP3089707B2 (en) | Solid electrode composition | |
JP2017174539A (en) | Positive electrode material for lithium-sulfur secondary battery and lithium-sulfur secondary battery | |
JP2008078040A (en) | Secondary battery | |
JPS61206170A (en) | Secondary battery and its electrode | |
JPS5966057A (en) | Secondary battery | |
JPH0526305B2 (en) | ||
JPS5966056A (en) | Secondary battery | |
JPS5946760A (en) | Secondary battery | |
JPS59198666A (en) | Secondary battery | |
JPS5966059A (en) | Secondary battery | |
JPS62290069A (en) | Organic electrolyte secondary battery | |
JP3144929B2 (en) | Non-aqueous electrolyte secondary battery | |
JPS622469A (en) | High-molecular secondary cell | |
JP2707657B2 (en) | Electrolyte for lithium secondary battery |