JPS5946375A - Seawater power generation device - Google Patents
Seawater power generation deviceInfo
- Publication number
- JPS5946375A JPS5946375A JP57157725A JP15772582A JPS5946375A JP S5946375 A JPS5946375 A JP S5946375A JP 57157725 A JP57157725 A JP 57157725A JP 15772582 A JP15772582 A JP 15772582A JP S5946375 A JPS5946375 A JP S5946375A
- Authority
- JP
- Japan
- Prior art keywords
- seawater
- sea water
- power generation
- surface layer
- water intake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013535 sea water Substances 0.000 title claims abstract description 62
- 238000010248 power generation Methods 0.000 title claims abstract description 12
- 239000012530 fluid Substances 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 238000001704 evaporation Methods 0.000 claims abstract description 4
- 230000008020 evaporation Effects 0.000 claims abstract description 3
- 230000005494 condensation Effects 0.000 claims abstract 2
- 238000009833 condensation Methods 0.000 claims abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 238000009835 boiling Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims 1
- 238000005192 partition Methods 0.000 abstract description 2
- 239000002344 surface layer Substances 0.000 abstract 6
- 239000010410 layer Substances 0.000 abstract 2
- 239000008236 heating water Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/04—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
- F03G7/05—Ocean thermal energy conversion, i.e. OTEC
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Oceanography (AREA)
- Sustainable Development (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、海水による発電装置f!L[関するもので
あり、さらに詳しくいうと、低沸点の流体を温度差のあ
る海水によって蒸発および凝縮させろ熱サイクルを利用
して原動機を駆動し、発電する海水による発電装置に関
するものである。DETAILED DESCRIPTION OF THE INVENTION This invention provides a seawater power generation device f! More specifically, it relates to a power generation device using seawater that generates electricity by driving a prime mover using a thermal cycle in which a fluid with a low boiling point is evaporated and condensed by seawater having a temperature difference.
従来、この種の装置として第1図に示すものがあった。Conventionally, there has been a device of this type as shown in FIG.
図において、海洋lに取水ボンプコに接続され表層海水
を汲み上げる取水管Jが挿入され、取水ポンプλの出口
側圧接続された表層海水の導水管グが蒸発器Sに接続さ
れている。蒸発器5は表層海水によって低沸点流体を蒸
発させる機能を有するもので、発電機6が連結された原
動機であるタービン7に入口弁Sを介して接続されてい
る。In the figure, an intake pipe J that is connected to the water intake pump and pumps up surface seawater is inserted into the ocean L, and a surface seawater conduit pipe G that is connected to the outlet side pressure of the water intake pump λ is connected to the evaporator S. The evaporator 5 has a function of evaporating a low boiling point fluid using surface seawater, and is connected via an inlet valve S to a turbine 7 which is a prime mover to which a generator 6 is connected.
取水ポンプ9には下端が深層海水に挿入された取水管I
O力鳴続されており、取水ボンプヂの出口側は導水管/
/を介して凝縮器/2に接続されている。凝縮器/、2
にはタービン7の排気側が接続されており、凝縮器/、
2は導水管//によって導入された深層海水によりター
ビン7の排出蒸気を凝縮する。蒸発器Sと凝縮器7.2
間には、作動流体を循環させる作動流体ポンプ13およ
び排水管/グが配設されている。The intake pump 9 has an intake pipe I whose lower end is inserted into deep seawater.
O-power is continuously applied, and the outlet side of the water intake pump is connected to the water conduit/
/ is connected to condenser /2 via /. Condenser/2
The exhaust side of the turbine 7 is connected to the condenser/,
2 condenses the exhaust steam of the turbine 7 with deep seawater introduced by the water conduit //. Evaporator S and condenser 7.2
A working fluid pump 13 and a drain pipe for circulating working fluid are disposed between them.
以上の構成により、低沸点の流体を凝縮器/、2ど蒸発
器5のループ内に入れる。取水ポンプλを運転し、取水
管3と導水管りを通して海洋lの表層海水を蒸発器5に
導入すると、蒸発器S内で低沸点流体が蒸気化する。こ
の蒸気を、大口弁gを開いてタービン7に送給し、ター
ビン7を駆動することにより発電機6から電力を得るこ
とができる。タービッツ作動後の排出蒸気は凝縮器7.
2に導かれ、一方、取水ポンプtを運転して表層海水よ
りも温度の低い深層海水を、取水管/θ、?rtI水管
/lを経て凝縮器/、2に導入することに」こり、ター
ビン排出蒸気は凝縮液化される。この凝縮された低沸点
流体は作動流体ポンプ/3によって蒸発器5に戻される
。With the above configuration, a low boiling point fluid is introduced into the loop of the condenser/secondary evaporator 5. When the water intake pump λ is operated and the surface seawater of the ocean L is introduced into the evaporator 5 through the water intake pipe 3 and the water conduit pipe, the low boiling point fluid is vaporized in the evaporator S. This steam is fed to the turbine 7 by opening the large mouth valve g, and electric power can be obtained from the generator 6 by driving the turbine 7. The exhaust steam after Turbits operation is sent to the condenser 7.
2, on the other hand, the water intake pump t is operated to pump deep seawater, which has a lower temperature than the surface seawater, to the water intake pipe /θ,? The turbine exhaust steam is condensed and liquefied by being introduced into the condenser/2 through the rtI water pipe/l. This condensed low-boiling fluid is returned to the evaporator 5 by the working fluid pump/3.
しかし、以上説明した従来の装置は、表層海水と深層海
水との温度差が十分でなく、この温度差を大きくするた
めには、さらに深い深層の海水を取水する取水管ioを
設けるか1表層海水を別の熱源で加熱する等の手段を講
する必要があった。However, with the conventional device described above, the temperature difference between surface seawater and deep seawater is not sufficient. It was necessary to take measures such as heating the seawater with another heat source.
しかし、取水管10の延長は技術」二の困難を伴ない、
他方の熱源による表層海水の加熱は、石油性のエネルギ
ーが必要となる等の欠点があった。However, extending the water intake pipe 10 involves technical difficulties.
Heating surface seawater using the other heat source has drawbacks such as the need for petroleum-based energy.
この発明は、以上の事情に着目してなされたもので、自
然エネルギーをさらに有効に活用することを目途とし、
表層海水を太陽熱によってさらに加熱する手段を設けて
表層海水の温度を高め、表層海水と深層海水との温度差
を大きくしてシステムの効率を向上した海水による発電
装置を提供することを目的とするものである。This invention was made in view of the above circumstances, and aims to utilize natural energy even more effectively.
The purpose of the present invention is to provide a power generation device using seawater that increases the temperature of the surface seawater by providing a means for further heating the surface seawater using solar heat, increases the temperature difference between the surface seawater and deep seawater, and improves the efficiency of the system. It is something.
以下、この発明の一実施例を第2図について説明する。An embodiment of the present invention will be described below with reference to FIG.
図において、太陽光線λ/によって加熱され、その熱を
表層海水へ伝達する海水加熱器、22を設け、取水管3
を加熱された表層海水に挿入する。他の部分は上記従来
の装置と同一であり、説明を省略する。In the figure, a seawater heater 22 is provided which is heated by sunlight λ/ and transmits the heat to the surface seawater, and a water intake pipe 3 is provided.
into heated surface seawater. The other parts are the same as the conventional device described above, and their explanation will be omitted.
かかる構成において、海水加熱器、2ユは、表層海水の
水面あるいは水面下で、取水管3の周囲に、ある適宜の
広さの受光面を有するように配信され、太陽光線、2/
で加熱された熱を表層海水へ伝達して゛表層海水を加熱
する。かようにして加熱された表層海水は、そうでない
表層海水よりも温度が高くなる。この加熱された表層海
水を、取水ボンプコを運転して蒸発器Sへ導くと、低沸
点流体の蒸気化が促進されて蒸気量が増大し、タービン
7の駆動力が増大し、したがって発電機乙の発電電力が
増大する。In such a configuration, the seawater heater 2 is distributed around the water intake pipe 3 at or below the surface seawater surface so as to have a light-receiving surface of an appropriate size, and receives sunlight, 2/2
This heat is transferred to the surface seawater to heat the surface seawater. Surface seawater that has been heated in this way has a higher temperature than surface seawater that has not. When this heated surface seawater is guided to the evaporator S by operating the water intake pumpco, the vaporization of the low boiling point fluid is promoted, the amount of steam increases, the driving force of the turbine 7 increases, and therefore the power generator power generation will increase.
なお、海水加熱器−一に、加熱された表層海水が潮流で
流されないための、一定の深さの仕切板を設けてもよい
。この海水加熱器、2.2は、水面上または水面下いず
れに配設してもよい。Note that the seawater heater-1 may be provided with a partition plate having a certain depth so that the heated surface seawater is not washed away by the current. This seawater heater, 2.2, may be placed either above or below the water surface.
上記実施例では海水加熱器2.2を設けたが、第3図に
示すように、表層海水の取水管および導水管として、太
陽光線、2/によって加熱され、その熱を管内通過中の
海水へ伝達して表層海水の温度を高めるように、加熱物
を巻回して表層海水への熱伝達特性を高めた加熱取水管
ノ3および加熱導水管2グを採用してもよく、同様の効
果が得られる。In the above embodiment, the seawater heater 2.2 was provided, but as shown in Fig. 3, the seawater heater 2.2 is used as an intake pipe and a water conduit pipe for surface seawater, and is heated by sunlight, and the seawater passing through the pipe is heated by the seawater. Heating water intake pipe No. 3 and heating water conduit pipe No. 2 may be adopted, which have heated objects wrapped around them to increase the temperature of the surface seawater and increase the heat transfer characteristics to the surface seawater, and the same effect can be obtained. is obtained.
以上のように、この発明は、取水される表層海水を、蒸
発器に導入される前段において太陽光線を利用して加熱
するようにしたので、表層海水と深層海水との温度差を
増大して作動流体の蒸発。As described above, this invention uses sunlight to heat the surface seawater taken in before it is introduced into the evaporator, increasing the temperature difference between the surface seawater and deep seawater. Evaporation of working fluid.
凝縮熱サイクルの効率を高め、発電能力を増大する効果
がある。It has the effect of increasing the efficiency of the condensing heat cycle and increasing power generation capacity.
第1図は従来の装置の系統図、第2図はこの発明の一実
施例の要部構成系統図、第3図は同じく他の実施例の要
部構成図である。
/・・海洋、λ・・取水ポンプ、3・・取水管、f・・
導水管、S・・蒸発器、6・・発電、機、7・・タービ
ン、に・・入口弁、9・・取水ポンプ、/θ・・取水管
、//・・導水管、/、2・・凝縮器、/3・・作動流
体ポンプ、/り・・排水管、コト・太陽光線1.2.2
・・海水加熱器、2J・・加熱取水管、24t・・加熱
導水管。
なお、各図中、同一符号は同−又は相当部分を示す0
特開昭59−4G375(3)
幣1図
幣2図
殆3図FIG. 1 is a system diagram of a conventional device, FIG. 2 is a system diagram of the main part of an embodiment of the present invention, and FIG. 3 is a diagram of the main part of another embodiment. /... Ocean, λ... Water intake pump, 3... Water intake pipe, f...
Water pipe, S...Evaporator, 6...Power generation, machine, 7...Turbine,...Inlet valve, 9...Water intake pump, /θ...Water intake pipe, //...Water pipe, /, 2・・Condenser, /3・・Working fluid pump, /・・Drain pipe, etc.・Sunlight 1.2.2
・・Seawater heater, 2J・・Heating water intake pipe, 24t・・Heating water pipe. In each figure, the same reference numerals indicate the same or equivalent parts.
Claims (1)
度差によつ【低沸点流体に蒸発、II+縮の熱ザイクル
を生せしめて原動機を駆動する発電P2置において、前
記表層海水の前記蒸発器への取水部に太陽熱による加熱
手段を備え又なることを特徴とする海水による発電装置
。 (コ)加熱手段が表N4s水取水管の位置する表層海水
部に配設された海水加熱器である特許請求の範囲ハル/
項記載の海水による発電装置。 (、?)加熱手段が加熱物を巻回した表層海水の加熱取
水管および加熱導水管である特許請求の範囲第1項記載
の海水による発電装置k。(1) In the power generation P2, which has an evaporator and a condenser and drives the prime mover by causing a thermal cycle of evaporation and II+condensation in the low boiling point fluid due to the temperature difference between surface seawater and deep seawater, A power generation device using seawater, characterized in that a heating means using solar heat is provided in a water intake section of the seawater to the evaporator. (g) Claims in which the heating means is a seawater heater disposed in the surface seawater area where the Table N4s water intake pipe is located Hull/
A power generation device using seawater as described in Section 1. (,?) The seawater power generation device k according to claim 1, wherein the heating means is a heated water intake pipe and a heated water conduit pipe for surface seawater around which a heated material is wound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57157725A JPS5946375A (en) | 1982-09-08 | 1982-09-08 | Seawater power generation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57157725A JPS5946375A (en) | 1982-09-08 | 1982-09-08 | Seawater power generation device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5946375A true JPS5946375A (en) | 1984-03-15 |
Family
ID=15655997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57157725A Pending JPS5946375A (en) | 1982-09-08 | 1982-09-08 | Seawater power generation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5946375A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2464763A (en) * | 2008-10-29 | 2010-05-05 | Raffael Jovine | Method of sequestering carbon dioxide using algae |
US20110061383A1 (en) * | 2009-02-17 | 2011-03-17 | Mcalister Technologies, Llc | Increasing the efficiency of supplemented ocean thermal energy conversion (sotec) systems |
JP2013503299A (en) * | 2009-08-27 | 2013-01-31 | マクアリスター テクノロジーズ エルエルシー | Increased efficiency of supplemented ocean thermal energy conversion (SOTEC) systems |
US20130098035A1 (en) * | 2011-08-12 | 2013-04-25 | Mcalister Technologies, Llc | Systems and methods for providing supplemental aqueous thermal energy |
US20150211497A1 (en) * | 2012-08-29 | 2015-07-30 | Charles M. Grimm | Floating solar collector assisted otec generator |
US9295206B2 (en) | 2012-04-12 | 2016-03-29 | Johna Ltd | Method of culturing algae |
EP2954205A4 (en) * | 2013-02-11 | 2016-12-14 | Advanced Green Tech Llc | SYSTEMS AND METHODS FOR OBTAINING ADDITIONAL AQUEOUS THERMAL ENERGY |
WO2021168482A1 (en) * | 2020-02-19 | 2021-08-26 | Saudi Arabian Oil Company | Onshore equipped ocean thermal and hydraulic energy conversion system and method |
-
1982
- 1982-09-08 JP JP57157725A patent/JPS5946375A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2464763B (en) * | 2008-10-29 | 2010-10-27 | Raffael Jovine | Method of carbon sequestration |
GB2464763A (en) * | 2008-10-29 | 2010-05-05 | Raffael Jovine | Method of sequestering carbon dioxide using algae |
US8991182B2 (en) * | 2009-02-17 | 2015-03-31 | Mcalister Technologies, Llc | Increasing the efficiency of supplemented ocean thermal energy conversion (SOTEC) systems |
US20110061383A1 (en) * | 2009-02-17 | 2011-03-17 | Mcalister Technologies, Llc | Increasing the efficiency of supplemented ocean thermal energy conversion (sotec) systems |
JP2013503299A (en) * | 2009-08-27 | 2013-01-31 | マクアリスター テクノロジーズ エルエルシー | Increased efficiency of supplemented ocean thermal energy conversion (SOTEC) systems |
US8821602B2 (en) * | 2011-08-12 | 2014-09-02 | Mcalister Technologies, Llc | Systems and methods for providing supplemental aqueous thermal energy |
US20130098035A1 (en) * | 2011-08-12 | 2013-04-25 | Mcalister Technologies, Llc | Systems and methods for providing supplemental aqueous thermal energy |
US9617983B2 (en) | 2011-08-12 | 2017-04-11 | Mcalister Technologies, Llc | Systems and methods for providing supplemental aqueous thermal energy |
US9295206B2 (en) | 2012-04-12 | 2016-03-29 | Johna Ltd | Method of culturing algae |
US20150211497A1 (en) * | 2012-08-29 | 2015-07-30 | Charles M. Grimm | Floating solar collector assisted otec generator |
US9745966B2 (en) * | 2012-08-29 | 2017-08-29 | Charles M Grimm | Floating solar collector assisted OTEC generator |
EP2954205A4 (en) * | 2013-02-11 | 2016-12-14 | Advanced Green Tech Llc | SYSTEMS AND METHODS FOR OBTAINING ADDITIONAL AQUEOUS THERMAL ENERGY |
WO2021168482A1 (en) * | 2020-02-19 | 2021-08-26 | Saudi Arabian Oil Company | Onshore equipped ocean thermal and hydraulic energy conversion system and method |
US11111906B1 (en) | 2020-02-19 | 2021-09-07 | Saudi Arabian Oil Company | Onshore equipped ocean thermal and hydraulic energy conversion system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101737282B (en) | A high-efficiency hybrid ocean temperature difference power generation system | |
CN201301785Y (en) | High-efficiency ocean thermal energy power-generation device | |
CN104074692A (en) | Integrative System of Concentrating Solar Power Plant and Desalineation Plant | |
CN108412716A (en) | A kind of ocean energy thermo-electric generation system | |
JPS5946375A (en) | Seawater power generation device | |
KR101499810B1 (en) | Hybrid type condenser system | |
CN103206697A (en) | Cooling, heating, power supplying and water supplying combined device capable of utilizing waste heat of flue gas of gas turbine | |
CN203594565U (en) | Steam-driven driving system for solar thermal power generation large power pump | |
CN206468383U (en) | Improve the device of the Rankine cycle thermal efficiency | |
US4398392A (en) | System for separation of water from the working fluid in low temperature difference power plants | |
CN111578352B (en) | A method of using a system that can improve the heating capacity and heating temperature of a power plant | |
US4063418A (en) | Power producing system employing geothermally heated fluid | |
JP2753347B2 (en) | Steam turbine system and energy supply system | |
JPS5922043B2 (en) | Cold energy power generation plant | |
CN103939153A (en) | Integrated thermoelectric fresh water co-generation combined cooling, heating and power system | |
JPH02106665A (en) | Cogeneration system utilizing absorbing type heat pump cycle | |
CN206540237U (en) | A kind of combined-circulation water heating system | |
SU1060798A1 (en) | Steam-gas-turbine plant | |
CN117968047B (en) | Boiler structure and marine steam boiler | |
WO2014048262A1 (en) | Heat pump heat-collecting natural heat-energy generator unit | |
JPS6027317Y2 (en) | Solar thermal steam generator | |
RU6205U1 (en) | GEOTHERMAL POWER PLANT WITH COMBINED CYCLE | |
CN109354096A (en) | Fresnel lens solar carburetor method seawater desalination device | |
JPS6446501A (en) | Exhaust-gas recovery boiler | |
CN114635765A (en) | A new energy storage and energy utilization system and method using decommissioned coal-fired boilers for heat storage |