JPS594309A - Surface acoustic wave device - Google Patents
Surface acoustic wave deviceInfo
- Publication number
- JPS594309A JPS594309A JP57112941A JP11294182A JPS594309A JP S594309 A JPS594309 A JP S594309A JP 57112941 A JP57112941 A JP 57112941A JP 11294182 A JP11294182 A JP 11294182A JP S594309 A JPS594309 A JP S594309A
- Authority
- JP
- Japan
- Prior art keywords
- surface acoustic
- acoustic wave
- delay time
- substrate
- wave device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010897 surface acoustic wave method Methods 0.000 title claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 239000013078 crystal Substances 0.000 claims abstract description 16
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims 1
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 abstract description 5
- 238000005498 polishing Methods 0.000 abstract 1
- 230000001902 propagating effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000287462 Phalacrocorax carbo Species 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は弾性表面波の遅延時間温度係数が小さい硼酸リ
チウム単結晶基板を用いた弾性表面波装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a surface acoustic wave device using a lithium borate single crystal substrate having a small delay time temperature coefficient of surface acoustic waves.
弾性表面波装置は圧電体基板上に4m型電極を設け、そ
の形状を変えることによって任意のフィルタ特性が得ら
れるため、各種フィルタ、共振子等に広く応用されてい
る。Surface acoustic wave devices are widely applied to various filters, resonators, etc. because a 4m type electrode is provided on a piezoelectric substrate, and arbitrary filter characteristics can be obtained by changing the shape of the surface acoustic wave device.
これら応用に必要な粂件として弾性表面波エネルギーへ
の変換する効率の良さを示す電気機械結合係数に2が大
きいこと、又、温度安定度を示す遅延時間温度係数TC
Dが小さく特に共振子応用では10 ppm/’C以内
であることが望まれている。ここで遅延時間とは弾性表
面波が基板上に設けられた入力櫛型電極と出力S型電極
間を伝播するのに要する時間をいい、これが温度によっ
て変化する割合を遅延時間温度係数TCDという。一般
的な弾性表面波材料ではTCDは数十〜数百ppm/’
Cの値をもつ。例えば−94pprrv”’Oの遅延時
間温度係数を有するYカット−2伝播(Y−Z)LIN
bO,弾性表面波基板を中心周波数100 MHzのフ
ィルタに応用する場合、中心周波数の温度変化は使用温
度範囲を0〜40℃とすれば、3760 ppm 、周
波数幅で0.376MHzとなる。従りてこの周波数変
化幅よシ狭いフィルタや共振子には応用し難いという欠
点がある。さらに狭いフィルタとして用いる場合には、
周囲温度を室温よシ高い例えば25℃〜60’Oの範、
囲で一定温度に加熱制御して温度変化を少なくして用い
る。この様な理由からもTCDの変化が少ないことが望
まれる。The requirements for these applications include a large electromechanical coupling coefficient of 2, which indicates the efficiency of conversion into surface acoustic wave energy, and a delay time temperature coefficient TC, which indicates temperature stability.
It is desired that D be small, particularly within 10 ppm/'C for resonator applications. Here, the delay time refers to the time required for a surface acoustic wave to propagate between the input comb-shaped electrode and the output S-shaped electrode provided on the substrate, and the rate at which this changes depending on temperature is called the delay time temperature coefficient TCD. In general surface acoustic wave materials, TCD is several tens to hundreds of ppm/'
It has a value of C. For example, a Y-cut -2 propagation (Y-Z) LIN with a delay time temperature coefficient of -94 pprrv"'O
When applying the bO, surface acoustic wave substrate to a filter with a center frequency of 100 MHz, the temperature change in the center frequency is 3760 ppm, and the frequency width is 0.376 MHz, assuming the operating temperature range is 0 to 40°C. Therefore, it has the disadvantage that it is difficult to apply to filters and resonators whose frequency change width is narrower than this. When used as a narrower filter,
The ambient temperature is higher than room temperature, for example in the range of 25°C to 60'O,
It is used by controlling the heating to a constant temperature in a surrounding area to reduce temperature changes. For these reasons as well, it is desirable that the change in TCD be small.
ところで、硼酸リチウム単結晶(例えばL12B4O,
)は立方晶系魚群4mに属する圧電結晶で、917℃に
融点をもつ。この結晶を引上げ法で作成し、弾性表面波
基板として用い、(x−Z)基体でTCD零を有し、な
おかつ、結合係数Kが大きいことが報告されている。し
かし実際に本発明者等が実験した結果はZ−X”2B4
07単結晶基板ではTCD零は室温では存在しなかった
。By the way, lithium borate single crystal (for example L12B4O,
) is a piezoelectric crystal belonging to the cubic fish group 4m and has a melting point of 917°C. It has been reported that this crystal is produced by a pulling method and used as a surface acoustic wave substrate, and has a zero TCD with an (x-Z) substrate and a large coupling coefficient K. However, the results of experiments actually conducted by the present inventors are Z-X"2B4
In the 07 single crystal substrate, TCD zero did not exist at room temperature.
本発明は弾性表面波の伝播方向を、TCDが十分小さい
方位に設定した硼酸リチウム単結晶基板を用いた弾性表
面波装置を提供することを目的とする。An object of the present invention is to provide a surface acoustic wave device using a lithium borate single crystal substrate in which the propagation direction of surface acoustic waves is set in a direction with a sufficiently small TCD.
本発明は硼酸リチウム単結晶基板を用いて弾性表面波の
切断方位と伝播方向をオイラー角表徴とする。The present invention uses a lithium borate single crystal substrate to express the cutting direction and propagation direction of surface acoustic waves in Euler angle notation.
本発明によれば、電気機械結合係#に2は水晶等に比べ
て十分大きく、しかもTCDが±10ppm/℃以内の
温度安定性に優れた弾性表面波装置チ初られる。従って
本発明は共振子応用や狭帯域フィルタ応用にとって極め
て有用である。According to the present invention, a surface acoustic wave device is developed which has an electromechanical coupling coefficient #2 which is sufficiently large compared to quartz crystal, etc., and which has excellent temperature stability with a TCD of within ±10 ppm/°C. Therefore, the present invention is extremely useful for resonator applications and narrowband filter applications.
本発明の詳細な説明する前に、第1図を用いてオイラー
角表示による一般的基板表示法を説明する。Before explaining the present invention in detail, a general substrate display method using Euler angle display will be explained using FIG.
表面波伝播方向をX1m結晶基板面に垂直な方向をXl
、それらに垂直な方向をX、とし、基準方位(o、o、
o)としテxl =x 、x、=y 。The surface wave propagation direction is X1m, and the direction perpendicular to the crystal substrate surface is Xl.
, the direction perpendicular to them is X, and the reference orientation (o, o,
o) Assume that xl =x, x, =y.
X3=zをとる。最初にX、軸を中心にして表面波伝播
方向X1をXからY方向に向かってλだけ回転させ、次
に回転しfcX、軸を中心にして、基板面X3を2軸か
ら反時計方向にμだけ回転させ、最後に回転させたXl
軸を中心として伝播方向X1を再度反時計方向にθだけ
回転させて得られる基板面方位を含む弾性表面波伝播方
向の表示を(λ、μ、θ)で表わし、これをオイラー角
表示と1う。Take X3=z. First, the surface wave propagation direction X1 is rotated by λ from the X direction toward the Y direction around the Rotated by μ and finally rotated Xl
The representation of the surface acoustic wave propagation direction including the substrate surface orientation obtained by rotating the propagation direction cormorant.
この様なオイラー角表示を用いて以下本発明の詳細な説
明する。引上げ法で作成したLl 、B4O,単結晶を
オイラー角表示で(90+λ。The present invention will be described in detail below using such Euler angle representation. The Ll, B4O, single crystal produced by the pulling method is expressed in Euler angle (90+λ).
90+μ、90+θ)なる方位でλ、μ、θをそれぞれ
変えて切断し、鏡面研磨を行なった。ここでオイラー角
表示で(90,90,90)とはXカットZ伝播のこと
である。鏡面上に真空蒸着法でAA膜を形成しホトエツ
チング法で14対の電極をもつ正規櫛型電極を形成した
。電極周期は82μmである。遅延時間温度係数TCD
の測定は第2図に示すような発振器を構成して測定した
。即ち高周波増幅器10入力に弾性表面波基板2上の2
組の正規櫛型電極のうちの一方31を接続し、高周波増
幅器lの出方には他方の電極31を接続する。これにょ
シ一方の櫛型電極3五から他方の櫛型電極3.へ表面波
が伝播されて、増幅器1に大刀される。増幅器1では表
面波信号が増幅され一方の櫛型電極31へもどされ、正
帰還となるため、正規櫛型電極の周期に対応した周波数
で発振する。そこでこの出力信号の一部を取出して周波
数カウンタで読みとる。その発振周波数foがら次式に
ょシTCDを求めた。It was cut in the directions of 90+μ, 90+θ) while changing λ, μ, and θ, and mirror-polished. Here, (90, 90, 90) in Euler angle representation means X-cut Z propagation. An AA film was formed on the mirror surface by vacuum evaporation, and regular comb-shaped electrodes having 14 pairs of electrodes were formed by photoetching. The electrode period is 82 μm. Delay time temperature coefficient TCD
The measurement was carried out by configuring an oscillator as shown in FIG. That is, 2 on the surface acoustic wave substrate 2 is input to the high frequency amplifier 10.
One of the regular comb-shaped electrodes 31 of the set is connected, and the other electrode 31 is connected to the output side of the high frequency amplifier l. In this case, from one comb-shaped electrode 35 to the other comb-shaped electrode 3. The surface waves are propagated to the amplifier 1. In the amplifier 1, the surface wave signal is amplified and returned to one of the comb-shaped electrodes 31, resulting in positive feedback, so that it oscillates at a frequency corresponding to the period of the regular comb-shaped electrode. Therefore, a part of this output signal is extracted and read by a frequency counter. From the oscillation frequency fo, the following TCD was determined.
ここでfea25℃の時の発振周波数(Hz )Δf:
発振周波数の温度変化
ΔT:弾性表面波基板の温度変化(℃
第3図(、)”、(b)は弾性表面波基板の方位をオイ
ラー角表示で(90+λ、90,90)とした状態とそ
の時の表面波の遅延時間温度係数TCDを示した。これ
はλ=0の場合はX−2伝播でちゃ、λを増すことは2
伝播一定で、切断面がX軸からY軸の方へ回転するもの
でおる。これから分かるようにXカッ)−Z伝播ではT
CDは11 ppm/’0である。λを増すとTCD増
大しλが20°でTCD零となる。±10ppm/℃以
内にするにはλの範囲は2°から386までである。Here, the oscillation frequency (Hz) Δf when fea is 25°C:
Temperature change in oscillation frequency ΔT: Temperature change in the surface acoustic wave substrate (°C) Figure 3 (,)'', (b) shows the state in which the orientation of the surface acoustic wave substrate is (90+λ, 90,90) in Euler angle representation. The temperature coefficient of delay time TCD of the surface wave at that time is shown. This means that when λ = 0, it is X-2 propagation, and increasing λ is 2
The propagation is constant and the cut plane rotates from the X axis to the Y axis. As you can see, in the X-Z propagation, T
CD is 11 ppm/'0. As λ increases, TCD increases, and TCD becomes zero when λ is 20°. To achieve within ±10 ppm/°C, the range of λ is from 2° to 386°.
第4図(−)、 (b)は、オイラー角表示で(90゜
90+μ、90)とした状態とその時の表面波の遅延時
間温度係数TCDを示した。これはμ=OではX−Z伝
播で647、μを増すことはカット面、伝播方向をたお
すことである。μを増すとTCDは−11ppm/’O
から増大し、15°で零となる。±10 ppm/’o
以内の範囲に入るμの値はずから20’まででaるO
) 第5図(&)、(b)はオイラー角表示で(9
0゜90.90十〇)とした状態とその時の表面波の遅
延時間温度係数TCDを示した。これは、θ=0ではX
力、トz伝播であシθを増すことはカット面はX面で表
面波の伝棲方向をX面内でzIIllIから回転するこ
とである。θを増すとTCDは−1lppm/°Oから
増大し、6°で零となる・±10 ppm/’C以内の
範囲に入るθの値は1°から11’までである。FIGS. 4(-) and 4(b) show the state of (90°90+μ, 90) in Euler angle representation and the temperature coefficient of delay time TCD of the surface wave at that time. This is 647 due to X-Z propagation when μ=O, and increasing μ means defeating the cut plane and the propagation direction. When μ increases, TCD becomes -11ppm/'O
It increases from then on and becomes zero at 15°. ±10 ppm/'o
The value of μ must be within the range from 20' to a O) Figures 5 (&) and (b) are shown in Euler angles (9
0°90.9010) and the surface wave delay time temperature coefficient TCD at that time. This means that when θ=0,
Increasing θ in the force and toz propagation means that the cut plane is the X plane, and the propagation direction of the surface wave is rotated from zIIllI in the X plane. When θ is increased, TCD increases from -1 lppm/°O and becomes zero at 6°.The values of θ that fall within ±10 ppm/'C are from 1° to 11'.
上の説明ではλ、μ、θのうち二つを0とし、残シの一
つを変化した場合であるが、その等側面は第6図に示す
よりにλとμについては楕円となる。したがってλ、μ
とθの範囲を楕円量の間が望ましいことが分かる。これ
を第7図に示す。また以上では、角度を全て正方向にと
って説明したが、負方向にとった場合も全く同様でめる
。In the above explanation, two of λ, μ, and θ are set to 0, and one of the remaining values is changed, but the isolateral surface becomes an ellipse with respect to λ and μ as shown in FIG. Therefore λ, μ
It can be seen that the range of and θ is preferably between the ellipse amount. This is shown in FIG. Furthermore, although the explanation has been given above assuming that all angles are in the positive direction, the same effect can be obtained when the angles are all in the negative direction.
なお、実際の基板製造に当っては1例えばX軸で結晶引
′上げを行りてこれを引上げ方向と直交する方向に切出
すことが作業の容易さの点で好ましい・このような観点
からすると、上述の楕円表示において、λ、μ、θのい
ずれかの軸上の範囲を選ぶことが好ましい。In addition, in actual manufacturing of the board, it is preferable to pull the crystal along the X axis and cut it out in a direction perpendicular to the pulling direction for ease of operation.From this point of view, Then, in the above-mentioned ellipse representation, it is preferable to select a range on one of the axes λ, μ, and θ.
第1図は一般的なオイラー角表示を説明するための図、
第2図は弾性表面波装置を用いた発振器の構成を示す図
、第3図(九)、(b)は(90+λ。
90.90)力、トのL12B4O7単結晶基板の方位
と遅延時間温度特性を示す図、第4図(^)、(b)は
(90,90十μ、90)カットのL12B4O。
単結晶基板の方位と遅延時間温度特性を示す図、第5図
(a)、(b)は(90,90,90十〇)力。
トのLl 2B40.単結晶基板の方位と遅延時間温度
特性を示す図、第6図はλ、μに関する等遅延時間温度
係数の曲線を示す図、第7図はλ、μ。
θに関する等遅延時間温度係数の曲面を示す図である。
1・・・高周波増幅器、2・・・弾性表面波基板、31
r32・・・正規櫛型電極。
出願人代理人 弁理士 鈴 江 武 彦(a)
第
(a)
5図
θ(αシ
ロ図Figure 1 is a diagram to explain the general Euler angle display.
Figure 2 shows the configuration of an oscillator using a surface acoustic wave device. Figure 3 (9) and (b) show the (90+λ.90.90) force, the orientation of the L12B4O7 single crystal substrate, and the delay time temperature. Figures 4 (^) and (b) showing the characteristics are (90, 90 μ, 90) cut L12B4O. Figures 5(a) and 5(b) show the orientation and delay time temperature characteristics of a single crystal substrate. Ll 2B40. A diagram showing the orientation and delay time temperature characteristics of a single crystal substrate, FIG. 6 is a diagram showing a curve of equal delay time temperature coefficients with respect to λ and μ, and FIG. 7 is a diagram showing curves of equal delay time temperature coefficients with respect to λ and μ. FIG. 3 is a diagram showing a curved surface of an equal delay time temperature coefficient with respect to θ. 1... High frequency amplifier, 2... Surface acoustic wave substrate, 31
r32...Regular comb-shaped electrode. Applicant's agent Patent attorney Takehiko Suzue (a) Figure 5 θ (α white diagram)
Claims (4)
置において、弾性表面波の伝播方向をオイラー角表示で
(90+λ、90+μ、90+θ)とし囲に設定したこ
とを特徴とする弾性表面波装置。(1) A surface acoustic wave device using a lithium-lamb borate single crystal substrate, characterized in that the propagation direction of the surface acoustic wave is expressed in Euler angles (90+λ, 90+μ, 90+θ) and is set as a box. Device.
−2〜−38の範囲に伝播方向が設定された特許請求の
範囲第1項記載の弾性表面波装置。(2) μ=θ basin O, λ=2 to 38 or λ=
The surface acoustic wave device according to claim 1, wherein the propagation direction is set in the range of -2 to -38.
−1〜−11の範囲に伝播方向が設定された特許請求の
範囲第1項記載の弾性表面波装置。(3) As μ=λ=0, θ=1 to 11 or θ=
The surface acoustic wave device according to claim 1, wherein the propagation direction is set in the range of -1 to -11.
−3〜−20の範囲に伝播方向が設定された特許請求の
範囲第1項記載の弾性表面波装置。(4) θ; Assuming λ=0, μ=3 to 20 or μ−
The surface acoustic wave device according to claim 1, wherein the propagation direction is set in the range of -3 to -20.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57112941A JPS594309A (en) | 1982-06-30 | 1982-06-30 | Surface acoustic wave device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57112941A JPS594309A (en) | 1982-06-30 | 1982-06-30 | Surface acoustic wave device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS594309A true JPS594309A (en) | 1984-01-11 |
JPS6340044B2 JPS6340044B2 (en) | 1988-08-09 |
Family
ID=14599330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57112941A Granted JPS594309A (en) | 1982-06-30 | 1982-06-30 | Surface acoustic wave device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS594309A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60259012A (en) * | 1984-06-05 | 1985-12-21 | Toshiba Corp | Surface acoustic wave device |
JPS60259011A (en) * | 1984-06-05 | 1985-12-21 | Toshiba Corp | Surface acoustic wave device |
EP0166880A2 (en) * | 1984-06-05 | 1986-01-08 | Kabushiki Kaisha Toshiba | Surface acoustic wave device |
-
1982
- 1982-06-30 JP JP57112941A patent/JPS594309A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60259012A (en) * | 1984-06-05 | 1985-12-21 | Toshiba Corp | Surface acoustic wave device |
JPS60259011A (en) * | 1984-06-05 | 1985-12-21 | Toshiba Corp | Surface acoustic wave device |
EP0166880A2 (en) * | 1984-06-05 | 1986-01-08 | Kabushiki Kaisha Toshiba | Surface acoustic wave device |
Also Published As
Publication number | Publication date |
---|---|
JPS6340044B2 (en) | 1988-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4159435A (en) | Acoustic wave devices employing surface skimming bulk waves | |
JPH025327B2 (en) | ||
US4342012A (en) | Surface acoustic wave device | |
JPS594310A (en) | Surface acoustic wave device | |
JPH08288788A (en) | Surface acoustic wave element | |
JPH0213488B2 (en) | ||
JP2000216632A (en) | Surface acoustic wave oscillator | |
JPS61132935A (en) | Optical deflector of surface acoustic wave | |
GB1328481A (en) | Resonant crystals of lithium tantalate and electrical devices utilising them | |
JPS594309A (en) | Surface acoustic wave device | |
JPS5930332B2 (en) | surface acoustic wave device | |
JPS60259011A (en) | Surface acoustic wave device | |
JPH10126208A (en) | Surface acoustic wave device | |
JPS6173409A (en) | Elastic surface wave device | |
JPS6346605B2 (en) | ||
JPS6382113A (en) | Surface acoustic wave element | |
JP3276826B2 (en) | Surface acoustic wave device | |
JPS61251307A (en) | Piezoelectric vibrator | |
JPS58156215A (en) | Surface acoustic wave element | |
JPS59143411A (en) | Elastic surface wave device | |
JPS59182617A (en) | Lithium tantalate oscillator | |
JPS5837150Y2 (en) | piezoelectric crystal resonator | |
JPH02260908A (en) | Surface acoustic wave device | |
JPH04103724U (en) | surface acoustic wave device | |
JPH0683010B2 (en) | Piezoelectric vibration element |