Nothing Special   »   [go: up one dir, main page]

JPS5940187B2 - Light oil manufacturing method - Google Patents

Light oil manufacturing method

Info

Publication number
JPS5940187B2
JPS5940187B2 JP12679577A JP12679577A JPS5940187B2 JP S5940187 B2 JPS5940187 B2 JP S5940187B2 JP 12679577 A JP12679577 A JP 12679577A JP 12679577 A JP12679577 A JP 12679577A JP S5940187 B2 JPS5940187 B2 JP S5940187B2
Authority
JP
Japan
Prior art keywords
gas
reactor
liquid phase
oil
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12679577A
Other languages
Japanese (ja)
Other versions
JPS5461206A (en
Inventor
透 十川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUTO KOEI KOGYO KK
Original Assignee
NITSUTO KOEI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUTO KOEI KOGYO KK filed Critical NITSUTO KOEI KOGYO KK
Priority to JP12679577A priority Critical patent/JPS5940187B2/en
Publication of JPS5461206A publication Critical patent/JPS5461206A/en
Publication of JPS5940187B2 publication Critical patent/JPS5940187B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は、混合基またはパラフィン基重質油を熱分解し
て芳香族軽質油及びオレフィンに富んだ石油化学原料ガ
スを収率よく製造する方法に関するもので特許第702
391号[内熱方式による重質油の熱分解による低粘度
重油とアスファルトの製造方法」の改良に関するもので
ある。
Detailed Description of the Invention The present invention relates to a method for producing aromatic light oil and olefin-rich petrochemical raw material gas in high yield by thermally decomposing mixed or paraffinic heavy oil, and is disclosed in Patent No. 702.
No. 391 relates to improvements in [Method for producing low viscosity heavy oil and asphalt by thermal decomposition of heavy oil using internal heating method].

去る昭和48年秋に起きたアラブ産油国の政策転換にも
とづく石油ショック以来わが国の原油の供給源の多様化
がさけばれ、中東原油のインドネシア・ミナス、中国・
大慶原油などへの切り換えが試みられているが、これら
の原油は低いおうではあるが、凝固点が30℃以上でか
つ軽質油の含有量が少なく国内の精製業者から引取を敬
遠されている。
Since the oil shock that occurred in the fall of 1971 due to policy changes in Arab oil-producing countries, diversification of Japan's crude oil supply sources has been discouraged, and Middle Eastern crude oil sources such as Indonesia, Minas, China,
Attempts are being made to switch to Daqing crude oil, but these crude oils have a freezing point of 30 degrees Celsius or higher, and a low light oil content, so domestic refiners avoid purchasing them.

したがって発電所などの生たき以外有効な用途が開発さ
れていない。
Therefore, effective uses other than living, such as power plants, have not been developed.

本発明者は、先にその対策として特許第 ・7023
91号を提案したが、1000℃以上の燃焼ガス中に液
相部分を微粉化して噴射しても100ミリ秒以下の滞留
時間では分解反応が十分進展せずタール状となり反応炉
出口付近に堆積し管路をしばしば閉塞して運転を中断せ
ざるを得なくなる場合を体験した。
As a countermeasure to this problem, the present inventor first proposed patent No. 7023.
No. 91 was proposed, but even if the liquid phase part was pulverized and injected into the combustion gas at a temperature of 1000°C or higher, the decomposition reaction did not progress sufficiently with a residence time of less than 100 milliseconds, resulting in a tar-like substance that was deposited near the reactor outlet. I have experienced cases where pipes were frequently blocked and operations had to be interrupted.

そこでまず公知の外熱式管状炉3で450℃以下の緩和
な条件下で主として高分子パラフィン分を分解し低分子
化して同温度で気相部を増加せしめ、気相部は直接また
は触媒槽1を経て内熱分解炉8に導き、液相部は液相反
応槽5(または6)において別個の条件で反応せしむる
ことにより内熱式分解反応炉内におけるタールまたはコ
ークスの堆積を防止するとともに軽質油の収率を著しく
改善することができた。
Therefore, first, the high-molecular paraffin content is mainly decomposed in a known external heating type tube furnace 3 under mild conditions of 450°C or less to reduce the molecular weight, and the gas phase is increased at the same temperature. 1 to an internal thermal cracking furnace 8, and the liquid phase is reacted under separate conditions in a liquid phase reaction tank 5 (or 6) to prevent tar or coke from accumulating in the internal thermal cracking reactor. At the same time, the yield of light oil could be significantly improved.

また液相部分は液相反応槽5または6において十分な反
応時間をかけて過熱蒸気及びまたは水素、一酸化炭素な
どを含むガス等により内熱方式により450℃以上に加
熱されるので高芳香族性の電極用バインダー、または反
応時間を延長することにより活性炭または水素原料とし
て好適なコークスを製造することが可能である。
In addition, the liquid phase portion is heated to 450°C or higher by an internal heating method using superheated steam and/or gas containing hydrogen, carbon monoxide, etc. over a sufficient reaction time in the liquid phase reaction tank 5 or 6, so that it is highly aromatic. It is possible to produce a coke suitable as activated carbon or a hydrogen raw material by using a binder for electrodes with a carbon content or by extending the reaction time.

本発明は主たる熱分解反応を液相気相を別々にその最適
条件下で内熱方式により熱分解を行わせるもので過分解
によるコークス化のおそれは全くない。
In the present invention, the main thermal decomposition reaction is carried out separately in the liquid phase and the gas phase by an internal heating method under optimal conditions, and there is no fear of coke formation due to over-decomposition.

したがって生成油の性状もダイオレフインなど重合し易
いものを含まず比較的安定で水素添加する場合も水素消
費量が少なく経済的である。
Therefore, the properties of the produced oil are relatively stable as it does not contain substances that are easily polymerized such as diolefin, and even when hydrogenated, the amount of hydrogen consumed is low and it is economical.

またアラビアンライトなど軽質原油の需給は匹迫し、大
慶、ミナスなと重質原油の増産により供給が増加する傾
向にある。
In addition, the supply and demand for light crude oil such as Arabian Light is close, and the supply tends to increase due to increased production of heavy crude oil such as Daqing and Minas.

本発明によれば如何なる石油系重質油の分解はもちろん
、石油系以外のタールサンド油、シエールオイル、石炭
系タール油なども内熱方式による熱分解反応系内の熱媒
体中の水素など還元性ガスの分圧を高めることにより熱
分解し軽質化することが可能である。
According to the present invention, it is possible to decompose not only any petroleum-based heavy oil, but also non-petroleum-based tar sand oil, shale oil, coal-based tar oil, etc., by reducing hydrogen in the heat medium in the thermal cracking reaction system using an internal thermal method. It is possible to thermally decompose the gas and make it lighter by increasing the partial pressure of the gas.

次に図面につき本発明の詳細な説明する。The invention will now be described in detail with reference to the drawings.

このフローシートは特許請求の範囲の第2項の液相部分
の3段分解法を含むものである。
This flow sheet includes the three-stage decomposition method of the liquid phase portion according to claim 2.

混合基またはパラフィン基原油O6rは図面右下より矢
印の方向にフィードされ熱交換器12゜13により20
0℃附近に加熱され沸点200℃以下のナフサ分Npを
蒸発塔1の頂部より除去し塔底油は加熱炉3に送入され
る。
Mixed base or paraffin base crude oil O6r is fed from the bottom right of the drawing in the direction of the arrow and is heated to 20° by heat exchanger 12°13.
Naphtha fraction Np heated to around 0°C and having a boiling point of 200°C or less is removed from the top of the evaporation tower 1, and the bottom oil is sent to the heating furnace 3.

加熱炉3は公知の外熱式加熱炉であるが炉の出口温度は
450℃以下におさえられ高分子パラフィン部のみを軽
度に分解する。
The heating furnace 3 is a known external heating type heating furnace, but the outlet temperature of the furnace is kept below 450° C., and only the polymeric paraffin portion is slightly decomposed.

混合基原油で炉の管路内でコークスが沈積するおそれが
ある場合は適量のスチームSTMを点線で示すように炉
の入口で加える場合もある。
If there is a risk that coke may be deposited in the furnace pipeline with mixed base crude oil, an appropriate amount of steam STM may be added at the entrance of the furnace as shown by the dotted line.

スチームSTMは水Wを廃熱ボイラー14に供給するこ
とにより発生し内熱分解反応炉8の廃熱を効果的に回収
することができる。
Steam STM is generated by supplying water W to the waste heat boiler 14, and the waste heat of the internal pyrolysis reactor 8 can be effectively recovered.

450℃附近に加熱された蒸発塔1の塔底油は気液分離
槽4に送入され気相は頂部より液相は底部より抜出され
る。
The bottom oil of the evaporation tower 1 heated to around 450° C. is sent to the gas-liquid separation tank 4, where the gas phase is extracted from the top and the liquid phase is extracted from the bottom.

気相部は固定触媒槽7を経由しまたは経由することなく
内熱式分解反応炉8にフィードされる。
The gas phase portion is fed to the internal thermal decomposition reactor 8 via or without passing through the fixed catalyst tank 7 .

内熱式分解反応炉8は過熱蒸気S T M’(7)み、
および、あるいは燃料ガスFおよび酸素または酸素を含
むガスの部分燃焼により、水素、COを主成分とする熱
ガスを生成し、これにより450℃以上に保たれた気液
分離槽4頂部から送入された気相炭化水素を171oo
秒以下の接触時間で瞬間的に熱分解し、反応炉8の底部
において送入された循環油oRにより350℃以下に急
冷される。
The internal thermal decomposition reactor 8 contains superheated steam STM' (7),
And/or, by partially burning the fuel gas F and oxygen or a gas containing oxygen, a hot gas mainly composed of hydrogen and CO is generated, which is then fed from the top of the gas-liquid separation tank 4 maintained at 450°C or higher. 171oo of gas-phase hydrocarbons
It thermally decomposes instantaneously with a contact time of seconds or less, and is rapidly cooled to 350° C. or lower by circulating oil oR fed into the bottom of the reactor 8.

他方気液分離槽4の底部より抜出された液相炭化水素は
液相反応槽5または6に入り蒸気過熱炉2を出た600
℃以上の過熱蒸気STM“を槽底より吹込まれ450℃
以上で内熱方式により10分以上1時間以下の滞留時間
で十分な分解を受ける。
On the other hand, the liquid phase hydrocarbon extracted from the bottom of the gas-liquid separation tank 4 enters the liquid phase reaction tank 5 or 6 and exits the steam superheating furnace 2.
℃ or higher superheated steam STM is blown from the bottom of the tank to 450℃.
In the above manner, sufficient decomposition is achieved with a residence time of 10 minutes or more and 1 hour or less using the internal heating method.

製品として軟ピンチを希望する場合は短時間に、コーク
スを希望する場合は長時間の反応時間を必要とする。
If a soft pinch product is desired, a short reaction time is required, while if a coke is desired, a long reaction time is required.

ピンチまたはコークス中の脱硫を望む場合は点線で示す
ように燃料ガスF′を酸素または酸素を含むガス0′に
より反応炉11内において部分燃焼を行い、水素、CO
の1000℃以上の熱混合ガスを送入することもある。
In a pinch or when desulfurization in coke is desired, the fuel gas F' is partially combusted in the reactor 11 with oxygen or oxygen-containing gas 0' as shown by the dotted line, and hydrogen, CO
In some cases, a heated mixed gas with a temperature of 1000°C or higher may be introduced.

液相反応槽5または6を出た分解気相炭化水素分はその
まま系外に取り出してもよいし図に示すごとく内熱式分
解反応炉8に送入し第3段分解を行いさらに軽質化する
こともある。
The decomposed gas phase hydrocarbons leaving the liquid phase reaction tank 5 or 6 may be taken out of the system as is, or as shown in the figure, they are sent to the internal thermal decomposition reactor 8 for third-stage decomposition and further lightening. Sometimes I do.

本図面では液相反応槽を5〜6と複数個設は切換式とし
たが連続式とすることも可能である。
In this drawing, a plurality of 5 to 6 liquid phase reaction tanks are provided in a switchable type, but a continuous type is also possible.

本発明の特徴を列挙すれば次の通りである。The features of the present invention are listed below.

(1)2段または3段分解なので如何なる重質原油(タ
ールサンド油を含む)を原料としても40%以上の高収
率で軽質油及び石油化学原料オレフィンガス(C2〜C
4)を得ることができる。
(1) Two-stage or three-stage cracking allows light oil and petrochemical raw material olefin gas (C2-C
4) can be obtained.

換言すれば原料油及び製品に対する適用範囲が広い。In other words, the range of application to raw oil and products is wide.

(2)主反応は内熱方式であるから熱効率がよく省エネ
ルギーの目的にかなう。
(2) Since the main reaction is an internal heat method, it has good thermal efficiency and serves the purpose of energy saving.

い。stomach.

(4)接触時間が短いので副反応が少く製品は安定であ
る。
(4) Since the contact time is short, there are few side reactions and the product is stable.

(5)製品を水素添加処理する場合水素消費量が少い。(5) When hydrogenating the product, the amount of hydrogen consumed is small.

また水素は副生ガスまたはコークスにより系内で自給す
ることが可能である。
Further, hydrogen can be self-supplied within the system using by-product gas or coke.

(6)オイルクエンチで熱回収が容易である。(6) Heat recovery is easy with oil quench.

次に実施例を示す。Next, examples will be shown.

中国産大慶原油を用い、オレフィンガスを主目的とした
場合の実施例を述べる。
An example will be described in which Daqing crude oil produced in China is used and the main purpose is olefin gas.

原油の性状 比重 ’ 0.855凝固点
31 ℃ワラ2フ分
28.7 wt%コンドラソンカーボン 2
.7 wt%蒸留性状 初留 71℃ 10% 180℃ 20% 280℃ 25% 300℃ 上記の全留分を原料とし、1時間当り10.31(8,
66kg)の張込で2段熱分解を行った。
Crude oil properties specific gravity '0.855 freezing point
31℃ 2 cups of straw
28.7 wt% Kondrason Carbon 2
.. 7 wt% Distillation properties Initial distillation 71°C 10% 180°C 20% 280°C 25% 300°C Using all the above fractions as raw materials, 10.31 (8,
Two-stage pyrolysis was carried out under a charging condition of 66 kg).

まず250℃に加熱し、接頭原油7.38kgを得た。First, it was heated to 250°C to obtain 7.38 kg of prefixed crude oil.

これを冷却することなく450℃で公知の管路式外熱炉
で熱分解を行ったところ、約50%づつニ分れた液相及
び気相の生成物を得た。
When this was thermally decomposed at 450° C. without cooling in a known pipe-type external heat furnace, a liquid phase product and a gas phase product separated by about 50% were obtained.

気相部は冷すことなく1200℃の過熱スチーム15k
gを加え750℃で2次分解を行って次の結果を得た。
The gas phase is 15k superheated steam at 1200℃ without cooling.
g was added and secondary decomposition was carried out at 750°C to obtain the following results.

気相部のみでC2〜C4ガスは原油に対し20,3%、
BTXは3.0%、〜300℃(白油留分)は6.35
%となり、これに直留油14.35%を加えると小計4
4%となる。
In the gas phase only, C2 to C4 gas is 20.3% of crude oil,
BTX is 3.0%, ~300℃ (white oil fraction) is 6.35
%, and if you add straight-run oil 14.35% to this, the subtotal is 4.
It becomes 4%.

さらに液相部(比重0.911 ) 3.6851より
その過熱蒸気分解により〜300℃以下留分が25%4
09 gr得られた。
Furthermore, from the liquid phase (specific gravity 0.911) 3.6851, the fraction below ~300°C is 25%4 due to superheated steam decomposition.
09 gr was obtained.

これは原油に対し4.73%となり上記の気相部2次分
解による白油およびC2〜C4ガスBTXの合計収率4
4%を加えると総計48.73%が高附加価値の生成品
となる。
This is 4.73% based on crude oil, and the total yield of white oil and C2 to C4 gas BTX due to the above secondary cracking in the gas phase is 4.
When 4% is added, a total of 48.73% becomes high value-added products.

その外的20%のA重油と15%のピッチが得られ、1
5%の燃料ガス(メタン、水素を主成分とし、「カロリ
ー」は6000Kcal )が得られるが大部は系内で
消費される。
Its external 20% A heavy oil and 15% pitch are obtained, 1
Although 5% of fuel gas (mainly composed of methane and hydrogen, ``calorie'' is 6000 Kcal) is obtained, most of it is consumed within the system.

2次分解の条件を600℃附近に低下すれば02〜C4
ガスの収率は半減し、BTXおよび、〜300℃(白油
)の収率は倍増し、BTX5〜6%、〜300℃留分(
白油)の収率は23〜25%となる。
If the conditions for secondary decomposition are lowered to around 600℃, 02~C4
The gas yield was halved, the yield of BTX and ~300°C (white oil) was doubled, and the yield of BTX and ~300°C (white oil) was reduced to 5-6% BTX and ~300°C fraction (white oil).
The yield of white oil is 23-25%.

上記の収率関係をまとめると次図となる。The following figure summarizes the above yield relationship.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明を実施するのに好適な一例の工程を示すも
のである。 1:蒸発塔、2:蒸気過熱炉、3:加熱炉、4:気液分
離槽、5,6:液相反応槽、7二固定触媒槽、8:内熱
式分解反応炉、9:気液分離槽、10:蒸発塔、1に還
元ガス製造用反応炉、12及び13:熱交換器、14:
廃熱ボイラー、N、ニナフサ分、STM:過熱水蒸気(
STM’、STM″同じ)、F:燃料ガス、0:酸素又
は酸素を含むガス、0or=重質原料油、OR:循環油
、W:水。
The drawings illustrate one example of steps suitable for carrying out the invention. 1: Evaporation tower, 2: Steam superheating furnace, 3: Heating furnace, 4: Gas-liquid separation tank, 5, 6: Liquid phase reaction tank, 7 Two fixed catalyst tanks, 8: Internal heating type decomposition reactor, 9: Gas Liquid separation tank, 10: Evaporation tower, 1 Reactor for producing reducing gas, 12 and 13: Heat exchanger, 14:
Waste heat boiler, N, Ninaphtha, STM: Superheated steam (
STM', STM'' (same), F: fuel gas, 0: oxygen or oxygen-containing gas, 0or=heavy raw material oil, OR: circulating oil, W: water.

Claims (1)

【特許請求の範囲】 1 混合基またはパラフィン基軽質油を、まず450℃
以下の低温度において常圧または50kg/crA以下
の加圧下に外熱方式の加熱炉3にて緩和な熱分解を行い
、その生成物を気液分離槽4にて気液を分離し、気相部
は触媒槽7を経て内熱反応炉8に導き、液相部は液相反
応槽5(または6)に導入し、前記内熱反応炉8及び液
相反応槽5゜6中において、それぞれ過熱蒸気のみまた
は水素、一酸化炭素を含む還元性ガスあるいは過熱蒸気
に上記還元性ガスの混じたもの(以後これらのガスを一
括して熱媒体と略称)によって昇温し、気相及び液相成
分を内熱方式により2次分解を行うことを特徴とする混
合基またはパラフィン基重質油の2段熱分解による軽質
油の製造方法。 2 前項2段熱分解法において液相反応槽5(または6
)において液相部分が前記熱媒体の作用により分解発生
せる気相部分を冷却することなく前記熱媒体とともに内
熱式反応炉8に導き第3次分解を行い軽質油の収量を向
上することを特徴とするパラフィン系重質油の3段熱分
解による特許請求の範囲第1項記載の軽質油の製造方法
[Claims] 1. Mixed group or paraffin group light oil is first heated at 450°C.
Mild thermal decomposition is carried out in an external heating furnace 3 under normal pressure or a pressure of 50 kg/crA or less at the following low temperature, and the product is separated into gas and liquid in a gas-liquid separation tank 4. The phase part is introduced into the internal heat reactor 8 through the catalyst tank 7, and the liquid phase part is introduced into the liquid phase reactor 5 (or 6), and in the internal heat reactor 8 and the liquid phase reactor 5.6, The temperature is raised using only superheated steam, a reducing gas containing hydrogen and carbon monoxide, or a mixture of superheated steam and the above-mentioned reducing gases (hereinafter these gases are collectively referred to as heat carriers) to form a gas phase and a liquid. A method for producing light oil by two-stage thermal decomposition of mixed or paraffin-based heavy oil, characterized in that phase components are subjected to secondary decomposition using an internal thermal method. 2 In the two-stage pyrolysis method described above, liquid phase reaction tank 5 (or 6
), the liquid phase portion is decomposed by the action of the heat transfer medium, and the gas phase portion is guided to the internal heating reactor 8 together with the heat transfer medium for tertiary cracking without cooling, thereby improving the yield of light oil. A method for producing light oil according to claim 1, characterized by three-stage thermal decomposition of paraffinic heavy oil.
JP12679577A 1977-10-24 1977-10-24 Light oil manufacturing method Expired JPS5940187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12679577A JPS5940187B2 (en) 1977-10-24 1977-10-24 Light oil manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12679577A JPS5940187B2 (en) 1977-10-24 1977-10-24 Light oil manufacturing method

Publications (2)

Publication Number Publication Date
JPS5461206A JPS5461206A (en) 1979-05-17
JPS5940187B2 true JPS5940187B2 (en) 1984-09-28

Family

ID=14944126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12679577A Expired JPS5940187B2 (en) 1977-10-24 1977-10-24 Light oil manufacturing method

Country Status (1)

Country Link
JP (1) JPS5940187B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960083U (en) * 1982-10-16 1984-04-19 安立 久雄 bicycle rear basket
JPH0381196U (en) * 1989-12-06 1991-08-20

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116450B2 (en) * 1987-05-30 1995-12-13 富士石油株式会社 Pyrolysis treatment method for heavy oil
JP5769859B1 (en) 2014-11-03 2015-08-26 日本エアロフォージ株式会社 Hydraulic forging press apparatus and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960083U (en) * 1982-10-16 1984-04-19 安立 久雄 bicycle rear basket
JPH0381196U (en) * 1989-12-06 1991-08-20

Also Published As

Publication number Publication date
JPS5461206A (en) 1979-05-17

Similar Documents

Publication Publication Date Title
US6709573B2 (en) Process for the recovery of hydrocarbon fractions from hydrocarbonaceous solids
CA1219005A (en) Thermal cracking process for selectively producing olefins and aromatic hydrocarbons from hydrocarbons
EP0130932B1 (en) Thermal cracking process for selectively producing petrochemical products from hydrocarbons
JPH1135950A (en) Process for generation of electric power and power generation apparatus
CN104232147B (en) A kind of heavy oil lightweight treatment technique
JPS60219292A (en) Selective production of petrochemicals
JPS59159887A (en) Thermal cracking of hydrocarbon to produce olefin
WO2013169461A1 (en) Production of olefins and aromatics
CA1110191A (en) Processing of tar sands
JPH0416512B2 (en)
JPS59152992A (en) Thermal decomposition for producing olefin from hydrocarbon
CN102453510A (en) Combined processing method of copyrolysis of heavy oil and coal
US3712800A (en) Method for converting residual oils into fuel gas
JPS5940187B2 (en) Light oil manufacturing method
CN111116292A (en) Method and device for preparing low-carbon olefin from petroleum hydrocarbon
US4043897A (en) Oil shale retorting
JPH0147517B2 (en)
US20060076275A1 (en) Process for the recovery of hydrocarbon fractions from hydrocarbonaceous solids
US2977299A (en) Production of chemical products from coal products
CN206089583U (en) High wax crude oil processing device
CN102453511B (en) Method for preparing synthesis gas by coupled processing of coal and heavy oil
CN102453512B (en) Processing method for heavy oil and coal copyrolysis
US2130596A (en) Method for treating a plurality of heavy hydrocarbon oils for subsequent cracking
JPS6011957B2 (en) Gasification method for solid carbon feedstock containing hydrocarbons
JPS59168091A (en) Thermal cracking process to produce olefin and synthetic cas from hydrocarbon