JPS5937753B2 - Method for preventing galvanic corrosion that occurs at contact points between dissimilar metal materials - Google Patents
Method for preventing galvanic corrosion that occurs at contact points between dissimilar metal materialsInfo
- Publication number
- JPS5937753B2 JPS5937753B2 JP1313379A JP1313379A JPS5937753B2 JP S5937753 B2 JPS5937753 B2 JP S5937753B2 JP 1313379 A JP1313379 A JP 1313379A JP 1313379 A JP1313379 A JP 1313379A JP S5937753 B2 JPS5937753 B2 JP S5937753B2
- Authority
- JP
- Japan
- Prior art keywords
- metal materials
- galvanic corrosion
- occurs
- dissimilar metal
- contact points
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
- Physical Vapour Deposition (AREA)
- Prevention Of Electric Corrosion (AREA)
Description
【発明の詳細な説明】
この発明は、接触する異種金属材料において、より電位
の低い金属材料、すなわちより卑な金属材料にガルバニ
腐食が生ずるのを防止する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of preventing galvanic corrosion from occurring in a metal material with a lower potential, that is, a more base metal material, in contacting dissimilar metal materials.
一般に、例えばZnおよびZn合金、Feなどの1金属
材料は、比較的低電位の金属材料であり、これら金属材
料がより貴な金属材料と互に接触した状態(電気的に接
続された状態)で水溶液などの電解質溶液中にあると、
両金属材料によつて電池作用が構成されるため、陽極と
なつた低電位金属3材料(より卑な金属材料)は溶出し
、その腐食が急速に増大する、いわゆるガルバニ腐食さ
れるのが通常である。In general, single metal materials such as Zn, Zn alloys, and Fe are metal materials with a relatively low potential, and these metal materials are in mutual contact (electrically connected state) with more noble metal materials. When it is in an electrolyte solution such as an aqueous solution,
Since the battery action is made up of both metal materials, the three low-potential metal materials (more base metal materials) that serve as the anode are eluted, and their corrosion rapidly increases, usually resulting in so-called galvanic corrosion. It is.
特に例えばZnおよびZn合金は、周知のとおり、Fe
、Cn、およびその他の大部分の金属材料30より低電
位であるから、これら金属材料と接触状態にある場合に
はガルバニ腐食の陽極となつて溶解、腐食するため、Z
nおよびZn合金材料にとつてこのようなガルバニ腐食
が最も問題になつている。In particular, for example, Zn and Zn alloys are, as is well known, Fe
, Cn, and most other metal materials 30, and when in contact with these metal materials, it becomes an anode for galvanic corrosion and melts and corrodes.
Such galvanic corrosion is most problematic for n and Zn alloy materials.
同様に、CuおよびCu合金、Niなどの金属材料とF
eおよびAlなどの金属材料が接触した状態では、後者
の金属材料の方が低電位、すなわち前者の金属材料の方
がより貴であるため、FeおよびAlなどの金属材料は
ガルバニ作用によつて腐食されるものである。Similarly, metal materials such as Cu and Cu alloys, Ni, and F
When metal materials such as Fe and Al are in contact, the latter metal material has a lower potential, i.e., the former metal material is more noble, so the metal materials such as Fe and Al are affected by galvanic action. It corrodes.
ところで、現在、上記のような異種金属材料の接触部に
発生するガルバニ腐食を防止する方法としては、(ハ
異種金属材料相互の電位差が小さいものを選択する。By the way, currently, as a method for preventing galvanic corrosion that occurs in the contact areas of dissimilar metal materials as described above,
Select dissimilar metal materials with a small potential difference between them.
(2)異種金属材料の接触部に絶縁材や塗装材を介在さ
せて回路抵抗を大きくする。(2) Increasing the circuit resistance by interposing an insulating material or coating material at the contact portion of different metal materials.
(3)インヒビターの使用、溶存酸素の除去、およびカ
ソード分極などの手段によつて両金属の分極を大きくす
る。(3) Increasing the polarization of both metals by such means as the use of inhibitors, removal of dissolved oxygen, and cathodic polarization.
などの方法がとられているが、上記(1)方法では、異
種金属材料が材質的に制限されるのを避けることができ
ないので、機能面で満足する結果が得られる異種金属材
料の選択組合せが難しく、また使用環境によつては絶縁
材や塗装材を使用することができない場合もあり、この
ような場合には上記(2)方法を適用することができず
、さらにインヒビターの使用および溶存酸素の除去によ
る分極法では大巾な分極変更をはかることができず、ま
たカソード分極法はその適用分野がかなり制限されるな
どの問題があるため、上記(3)方法も満足な防止法と
は云えず、一方使用環境によつても腐食の抑制には制限
力功口えられることから、所望の組合せによる異種金属
材料の接触部に発生するガルバニ腐食を満足した状態で
防止することは容易なことではないのが現状である。However, in method (1) above, it is unavoidable that dissimilar metal materials are limited in terms of their material properties, so a selection combination of dissimilar metal materials that can obtain a functionally satisfactory result is adopted. In addition, depending on the usage environment, it may not be possible to use insulating materials or coating materials. In such cases, method (2) above cannot be applied, and the use of inhibitors and dissolved The polarization method by removing oxygen cannot achieve a wide change in polarization, and the cathode polarization method has problems such as the field of application is considerably limited, so method (3) above is not a satisfactory prevention method. On the other hand, since the usage environment has a limiting force in suppressing corrosion, it is easy to satisfactorily prevent galvanic corrosion that occurs at the contact area of dissimilar metal materials by a desired combination. The current situation is that this is not the case.
本発明者等は、上述のような観点から、異種金属材料の
選択組合せを自由に行なうことができると共に、何ら使
用環境に制限されることのない状態で、ガルバニ腐食を
完全に防止できる方法を見出すべく、まずガルバニ腐食
の機構に検討を加えたところ、(a)ガルバニ腐食は電
気化学的反応、すなわち電子の授受によつて結びつけら
れたアノード反応およびカソード反応の2つの並列反応
が同時に同じ速さで起る結果生ずるものであること。From the above-mentioned viewpoints, the present inventors have devised a method that allows free selection and combination of dissimilar metal materials and completely prevents galvanic corrosion without being restricted by the usage environment. In order to find out, we first investigated the mechanism of galvanic corrosion, and found that (a) galvanic corrosion is an electrochemical reaction, that is, two parallel reactions, an anode reaction and a cathode reaction, linked by the exchange of electrons, simultaneously at the same speed. It is something that occurs as a result of something that happens.
(b)ガルバニ腐食が問題になるのは、主として淡水、
海水などで代表されるPH値が中性に近い環境において
であるが、これらの腐食環境では腐食の進行はカソード
反応支配型であるため、カソード反応が律速となること
。(c)カソード反応は、溶存酸素の環元反応;および
水素の還元反応;によつて示されること。(b) Galvanic corrosion is a problem mainly in fresh water,
This occurs in environments where the pH value is close to neutral, such as seawater, but in these corrosive environments, the progress of corrosion is dominated by cathode reactions, so cathode reactions become rate-limiting. (c) The cathode reaction is represented by a ring element reaction of dissolved oxygen; and a reduction reaction of hydrogen.
以上(a)〜(c)に示される認識を得、さらに前記認
識にもとづき、研究をおし進め、(d)代表的金属材料
であるCu,Cu−Zn合金(Zn:30重量?含有)
、Ni,Zn合金(商標名MAK2および3)、Fe,
AlおよびCrメツキ材1こついて、その分極特性を測
定したところ第1図および第2図に示す結果が得られた
のである。Having obtained the recognition shown in (a) to (c) above, and further based on the above recognition, we proceeded with our research, and (d) Cu, Cu-Zn alloy (contains Zn: 30% by weight), which is a representative metal material.
, Ni, Zn alloy (trade name MAK2 and 3), Fe,
When one Al and Cr plating material was used and its polarization characteristics were measured, the results shown in FIGS. 1 and 2 were obtained.
なお、第1図は比抵抗:20Ω一?の人工海水中でのも
のであり、第2図はNa2sO4を含有させて比抵抗:
1800Ω一儂とした淡水(水道水)中のものであり、
さらにCu,Cu−Zn合金、Ni,およびCrメツキ
材はカソード分極特性を、またZn合金、FeおよびA
lはアノード分極特性をそれぞれ測定した結果のもので
ある。In addition, Figure 1 shows specific resistance: 20Ω-? Fig. 2 shows the resistivity in artificial seawater containing Na2sO4:
It is in fresh water (tap water) with a resistance of 1800Ω.
Additionally, Cu, Cu-Zn alloys, Ni, and Cr plating materials improve cathode polarization characteristics, and Zn alloys, Fe and A
1 is the result of measuring the anode polarization characteristics.
e)第1図および第2図に示す結果から明らかなように
、Crメツキ材は、Cu,Cu−Zn合金、およびN1
に比してきわめて大きいカソード分極特性をもつている
こと。e) As is clear from the results shown in Figures 1 and 2, the Cr plating material
It has extremely large cathode polarization characteristics compared to
これはCr表面に生成する極めて強固にして緻密な酸化
皮膜による抵抗分極によるものであり、また通常のCr
表面は酸化皮膜のために比較的貴な電位を示すが、本来
は飽和甘永電極基準(SCE)で−0.8とFeよりさ
らに低電位金属であつて、カソード分極がきわめて大き
く、かつ分極特性に安定性をもつ裏付けとなつている。
(f)したがつて、第1図および第2図に示される結果
にもとづいて、Zn合金(MAK−2)、Fe(鉄鋼)
、およびAl(純度99.5%)のそれぞれと、Cu,
Cu−Zn合金、NilおよびCrメツキ材とを組合せ
た状態の異種金属材料の腐食速度(腐食電流密度)を求
めると第1表に示されるようになり、第1表に示される
結果から、Cu,Cu−Zn合金、およびNiの金属材
料の表面にCrメツキを施すと、相手金属材料がZn合
金の場合には、その腐食電流密度、すなわちガルバニ腐
食量は、人工海水中においては約1/10〜1/20に
、淡水(水道水)中では約1/50に激減し、同様に相
手金属材料がFeの場合には、人工海水中で約1/50
〜1/90に、淡水中で約1/100〜1 /120に
減少し、さらに相手金属材料がAlの場合には、人工海
水中で約1/60〜1/80に淡水中で約1/55〜1
/60に減少することが明確である。This is due to the resistance polarization caused by the extremely strong and dense oxide film that forms on the Cr surface.
Although the surface exhibits a relatively noble potential due to the oxide film, it is originally a metal with a lower potential than Fe at -0.8 on the saturated Kanagai electrode standard (SCE), and has extremely large cathodic polarization. This provides evidence that the properties are stable.
(f) Therefore, based on the results shown in Figures 1 and 2, Zn alloy (MAK-2), Fe (steel)
, and Al (purity 99.5%), and Cu,
The corrosion rate (corrosion current density) of different metal materials in combination with Cu-Zn alloy, Nil and Cr plating materials is shown in Table 1. From the results shown in Table 1, it is clear that Cu When Cr plating is applied to the surface of metal materials such as , Cu-Zn alloy, and Ni, when the other metal material is Zn alloy, the corrosion current density, that is, the amount of galvanic corrosion, is about 1/1 in artificial seawater. 10 to 1/20, in fresh water (tap water) it decreases to about 1/50, and similarly when the other metal material is Fe, it decreases to about 1/50 in artificial seawater.
It decreases to ~1/90 in freshwater and approximately 1/100 to 1/120 in fresh water, and furthermore, when the partner metal material is Al, it decreases to approximately 1/60 to 1/80 in artificial seawater and approximately 1/120 in fresh water. /55~1
It is clear that the reduction is to /60.
以上(d)〜(f)に示される結論を得たのである。The conclusions shown in (d) to (f) above were obtained.
したがつて、この発明は上記認識および結論にもとづい
てなされたものであつて、接触する異種金属材料のうち
のより貴な金属材料の接触面にクロムメツキ層を形成す
ることによつて、異種金属材料の接触部におけるより卑
な金属材料、すなわ)ちより低電位の金属材料のガルバ
ニ腐食を防止する方法に特徴を有するものである。つい
で、この発明のガルバニ腐食防止法を実施例により説明
する。Therefore, the present invention has been made based on the above recognition and conclusion, and is based on the above recognition and conclusion. The present invention is characterized by a method for preventing galvanic corrosion of baser metal materials (i.e., lower potential metal materials) at material contact points. Next, the galvanic corrosion prevention method of the present invention will be explained using examples.
実施例 1
3/8インチのFe製ナツトと黄銅製ボルトとを20本
づつ用意し、このうちの10本の黄銅製.ボルトに電気
クロムメツキ(蒸着クロムメツキでもよい)を施し、こ
のように調製したナツトとボルトとを組合わせた状態で
、比抵抗:4500Ω一儂をもつた淡水(水道水)中に
14日間(336時間)浸漬し、浸漬試験後の前記ナツ
トの素材腐食減量とガルバニ腐食減量とを測定した。Example 1 Twenty 3/8-inch Fe nuts and 20 brass bolts were prepared, and 10 of them were made of brass. Electric chrome plating (vapor-deposited chrome plating is also acceptable) is applied to the bolt, and the thus prepared nut and bolt are placed in fresh water (tap water) with a resistivity of 4500Ω for 14 days (336 hours). ), and the material corrosion loss and galvanic corrosion loss of the nut after the immersion test were measured.
この測定結果を平均値(10本の平均)で第2表に示し
た。実施例 2ナツトをそれぞれZn合金(MAK−2
)およびAl製とし、浸漬試験時間を1ケ月(720時
間)とする以外は、実施例1におけると同一の条件で浸
漬試験を行ない、この試験結果を第2表に合せて示した
。The measurement results are shown in Table 2 as average values (average of 10 samples). Example 2 Nuts were each made of Zn alloy (MAK-2
) and Al, and the immersion test was conducted under the same conditions as in Example 1, except that the immersion test time was 1 month (720 hours), and the test results are shown in Table 2.
第2表に示されるように、Fe,Zn合金、およびAl
製ナツトと、これら金属材料より貴な金属材料である黄
銅製のボルトとの場合、ガルバニ腐食が著しく、この発
明にもとづいて黄銅製ボルトにCrメツキを施した場合
にはガルバニ腐食が激減し、Fe製ナツトでは約1/2
0,Zn合金製ナツトでは1/35、およびAl製ナツ
トでは1/18に減少することが明らかである。As shown in Table 2, Fe, Zn alloys, and Al
In the case of brass nuts and bolts made of brass, which is a metal material more noble than these metal materials, galvanic corrosion is significant, and when brass bolts are plated with Cr based on this invention, galvanic corrosion is drastically reduced. Approximately 1/2 for Fe nuts
It is clear that the reduction is 1/35 for the Zn alloy nut and 1/18 for the Al nut.
そのほか、実用的には例えば、プロパンガス減圧調整器
のガス圧調整弁やアルミ電線の圧着端子などにこの発明
の方法を適用した場合にもすぐれた耐ガルバニ腐食性を
示したことが確認されているO上述のように、この発明
によれば、接触する異種金属材料のうちのより貴な金属
材料の接触面に単にCrメツキを施すという簡単な操作
で、組合せ異種金属材料に材質的制限が加わることなく
、しかもどのような使用環境下においても、コスト安く
、電位差のある異種金属材料の接触部に生ずるガルバニ
腐食をほぼ完全に防止することができるのである。In addition, it has been confirmed that when the method of the present invention is applied practically to, for example, gas pressure regulating valves of propane gas pressure reducing regulators and crimp terminals of aluminum electric wires, excellent galvanic corrosion resistance is exhibited. As described above, according to the present invention, the material limitations of the combined dissimilar metal materials can be removed by simply applying Cr plating to the contact surfaces of the more noble metal materials of the dissimilar metal materials that come into contact. Moreover, it is possible to almost completely prevent galvanic corrosion that occurs at the contact portion of dissimilar metal materials with a potential difference at a low cost and under any usage environment.
第1図は人工海水中における各種金属材料の分極特性を
示す曲線図、第2図は淡水(水道水)中における各種金
属材料の分極特性を示す曲線図である。FIG. 1 is a curve diagram showing the polarization characteristics of various metal materials in artificial seawater, and FIG. 2 is a curve diagram showing the polarization characteristics of various metal materials in fresh water (tap water).
Claims (1)
の接触面にクロムメッキ層を形成したことを特徴とする
異種金属材料の接触部に生ずるガルバニ腐食の防止法。1. A method for preventing galvanic corrosion occurring at a contact portion between dissimilar metal materials, which is characterized by forming a chromium plating layer on the contact surface of a more noble metal material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1313379A JPS5937753B2 (en) | 1979-02-07 | 1979-02-07 | Method for preventing galvanic corrosion that occurs at contact points between dissimilar metal materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1313379A JPS5937753B2 (en) | 1979-02-07 | 1979-02-07 | Method for preventing galvanic corrosion that occurs at contact points between dissimilar metal materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55107785A JPS55107785A (en) | 1980-08-19 |
JPS5937753B2 true JPS5937753B2 (en) | 1984-09-11 |
Family
ID=11824650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1313379A Expired JPS5937753B2 (en) | 1979-02-07 | 1979-02-07 | Method for preventing galvanic corrosion that occurs at contact points between dissimilar metal materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5937753B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63122282A (en) * | 1986-11-12 | 1988-05-26 | Fuji Electric Co Ltd | Photovoltaic element |
-
1979
- 1979-02-07 JP JP1313379A patent/JPS5937753B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63122282A (en) * | 1986-11-12 | 1988-05-26 | Fuji Electric Co Ltd | Photovoltaic element |
Also Published As
Publication number | Publication date |
---|---|
JPS55107785A (en) | 1980-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Suzuki et al. | Nature of atmospheric rust on iron | |
US4203810A (en) | Electrolytic process employing electrodes having coatings which comprise platinum | |
Uhlig et al. | Anodic Polarization of Passive and Non-passive Chromium–Iron Alloys. | |
US4354915A (en) | Low overvoltage hydrogen cathodes | |
Singh et al. | The electrochemical corrosion and passivation behaviour of Monel (400) in concentrated acids and their mixtures | |
CA1159682A (en) | Electrode substrate titanium alloy for use in electrolysis | |
JPS6013074B2 (en) | Electrolytic cathode and its manufacturing method | |
US4414064A (en) | Method for preparing low voltage hydrogen cathodes | |
US5667649A (en) | Corrosion-resistant ferrous alloys for use as impressed current anodes | |
STERN | Fundamentals of electrode processes in corrosion | |
US4940638A (en) | Plated steel sheet for a can | |
JPS5937753B2 (en) | Method for preventing galvanic corrosion that occurs at contact points between dissimilar metal materials | |
Sarkar et al. | Mechanism of improved corrosion resistance of Zn-containing dental amalgams | |
JPH0251996B2 (en) | ||
US5547560A (en) | Consumable anode for cathodic protection, made of aluminum-based alloy | |
Tsujino et al. | The galvanic corrosion of steel in sodium chloride solution | |
US4987037A (en) | Galvanic coating with ternary alloys containing aluminum and magnesium | |
JPH0261080A (en) | Cathodic protection method for stainless steel | |
JP3116664B2 (en) | Electrode material made of Ti or Ti-based alloy with excellent corrosion resistance and current efficiency | |
WO1985000389A1 (en) | An electrode, processes for the manufacture thereof and use thereof | |
Pourbaix | The utility of thermodynamic interpretation of polarization curves | |
Chen et al. | Tin–manganese alloy electrodeposits: II. Corrosion performance studies | |
JP3269887B2 (en) | Dissolution method of metal film | |
SU461159A1 (en) | Electrolyte to precipitate ruthenium based alloy | |
JP4565734B2 (en) | Method for inhibiting corrosion of metal materials |