Nothing Special   »   [go: up one dir, main page]

JPS5925338B2 - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS5925338B2
JPS5925338B2 JP51013270A JP1327076A JPS5925338B2 JP S5925338 B2 JPS5925338 B2 JP S5925338B2 JP 51013270 A JP51013270 A JP 51013270A JP 1327076 A JP1327076 A JP 1327076A JP S5925338 B2 JPS5925338 B2 JP S5925338B2
Authority
JP
Japan
Prior art keywords
battery
fine
gas
particles
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51013270A
Other languages
Japanese (ja)
Other versions
JPS5297130A (en
Inventor
和夫 吉田
晋作 多田
克郎 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP51013270A priority Critical patent/JPS5925338B2/en
Publication of JPS5297130A publication Critical patent/JPS5297130A/en
Publication of JPS5925338B2 publication Critical patent/JPS5925338B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明は燃料電池の構造に関するものであり、詳しくは
新規な軽量隔板を使用した気体燃料電池に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a fuel cell, and more particularly to a gaseous fuel cell using a novel lightweight diaphragm.

気体燃料電池の隔板の作用は、その両面に刻まれた溝を
もつて電気化学的反応にかかわる活性ガスを保持すると
ともに、ガス拡散電極と電解質を挾持して電池の基本単
位を形成し、さらにこれら単電池を電気的に結合するこ
とにある。
The function of the diaphragm in a gas fuel cell is to hold the active gas involved in the electrochemical reaction by having grooves carved on both sides, and also to sandwich the gas diffusion electrode and electrolyte to form the basic unit of the battery. Another objective is to electrically connect these single cells.

これらの役割から隔板およびその素材には以下の性能が
要求される。
Due to these roles, the following performance is required of the diaphragm and its material.

すなわち第一に単電池間の電気的結合における電力損失
を低減させるために、高い導電性を持たねばならないわ
けで、その目安は面積あたク抵抗率の値でほぼ0.5Ω
C!n″以下とするのが望ましい。第二にリン酸や濃厚
アルカリ水溶液などの液体または蒸気に触れる場所に使
用されしかも最高150℃程度の温度にさらされるので
、高度の耐腐食性が必要とされる。
In other words, first of all, in order to reduce power loss in electrical coupling between cells, they must have high conductivity, and the standard for this is approximately 0.5Ω in terms of resistivity per area.
C! It is desirable that it be less than n''.Secondly, it is used in places that come into contact with liquids or vapors such as phosphoric acid and concentrated aqueous alkaline solutions, and is exposed to temperatures of up to 150°C, so a high degree of corrosion resistance is required. Ru.

第三に両面にガス車用の細溝を刻むことから、加工が容
易でなければならない。
Third, since narrow grooves for gas vehicles are carved on both sides, it must be easy to process.

事実電池部品の製造においてこの部分の加工に要する労
力は他の部品に比べて格段に大きいのが普通である。さ
らにガス室内を相当量のガスが通過するのを容易にし、
ガスの移動に要するエネルギーを電池出力に対して極力
低くく抑えるために溝の深さを一定値以上に保たねばな
らず、ガス室に至るガス流路をも隔離板内に内蔵させね
ばならぬので、隔離板の厚みをむやみに減少させること
は困難である。このことから電池全体の容積と重量を決
めるのは隔離板であると言える。したがつて電池全体の
重量を軽減させるために、隔板の素材は低比重であるこ
とが望まし、い。従来隔離板の素材としてステンレス鋼
やアルミニウムなどが試験的に利澤されたことがあるが
、容易に腐食されて比較的短期間の使用にすら耐えなか
つた。
In fact, in manufacturing battery parts, the labor required to process this part is usually much greater than that of other parts. Furthermore, it facilitates the passage of a considerable amount of gas through the gas chamber,
In order to keep the energy required for gas movement as low as possible relative to the battery output, the depth of the groove must be kept above a certain value, and the gas flow path leading to the gas chamber must also be built into the separator. Therefore, it is difficult to reduce the thickness of the separator unnecessarily. From this, it can be said that the separator plate determines the volume and weight of the entire battery. Therefore, in order to reduce the weight of the entire battery, it is desirable that the material for the diaphragm has a low specific gravity. Previously, materials such as stainless steel and aluminum have been experimentally used as materials for separators, but they corrode easily and cannot withstand even relatively short-term use.

これらの金属材を加工したのち金メッキを施したもの、
あるいはタンタルやニオビウム材が使用される例も多い
が、貴金属あるいは希有金属の大量消費自体、、現今の
資源事情から見て好ましいことではなく、また軍池の設
備費用を著しく増加させる。燃料電離が清浄なエネルギ
ー変換システムとして着目され4がらも民需用途での実
用化がなかなか進ま夕い原因のまたるものは、その経済
的見通しがいまだに不廚瞭であることにあるとされてい
るだけに、設備費用の低減は急務であると言える。いわ
ゆる焼結グラファイトは鵬離板素材に要求される特性の
多くを満たすが、脆い材質のゆえに複雑な力江が難かし
く、複雑な加工を加える場合には応力集中を避けるため
に隔板の厚みを十分に大きくとらねばならない。
These metal materials are processed and then plated with gold.
Alternatively, there are many cases in which tantalum or niobium materials are used, but mass consumption of precious or rare metals itself is not desirable in view of the current resource situation, and it also significantly increases the cost of equipment for military ponds. Although fuel ionization has attracted attention as a clean energy conversion system,4 it has been difficult to put it into practical use for civilian use, which is said to be due to the fact that its economic prospects are still unclear. Therefore, it can be said that reducing equipment costs is an urgent need. So-called sintered graphite satisfies many of the properties required for a separating plate material, but because it is a brittle material, it is difficult to create complex tensioning, and when complex machining is required, the thickness of the separating plate must be adjusted to avoid stress concentration. must be large enough.

その結果、比重が比較的大きいこともあいまつて電池全
体の重量の減少が困難になる。さらには一般にこの素材
は規格寸法品から切v出して加工するので、材料の歩留
ま9がきわめて不良であり、また切削は比較的容易であ
るが、硬質鋼製の工具刃先の磨耗が著しいなど加エ工作
能率上の欠点を含んでいる。上記の欠点のゆえに従来の
素材は隔離板用素材として理想的でなく、新しい素材の
出現が望まれていた。
As a result, combined with the relatively high specific gravity, it becomes difficult to reduce the weight of the entire battery. Furthermore, since this material is generally cut and processed from a product with standard dimensions, the material yield9 is extremely poor, and although it is relatively easy to cut, the cutting edge of the hard steel tool is subject to significant wear. This includes drawbacks in terms of processing efficiency. Because of the above-mentioned drawbacks, the conventional materials are not ideal as materials for separators, and the emergence of new materials has been desired.

本発明の目的は上記の要望に応えて、軽量、低コストで
しかも高い導電性を有し、かつ加工性にすぐれた炭素系
の新規複合材料を、電池単位を電気的に結合する隔板と
して用いた燃料電池システムを提供することにある。
The purpose of the present invention is to meet the above-mentioned needs by using a new carbon-based composite material that is lightweight, low cost, has high conductivity, and has excellent workability as a diaphragm that electrically connects battery units. An object of the present invention is to provide a fuel cell system using the present invention.

さらに別の目的はこのような隔板を用いて多数の電池単
位を結合することによつて、高性能で小型軽量化された
低コストの燃料電池システムを与えることにある。本発
明のこのような目的は、ポリォレフィン系重合体から成
る微細フィフリル状粒子の表面に炭素質粒子が付着した
複合粒子を基本単位として持ち、各粒子が部分的に融着
して形態を保持している導電性複合材料の両面に多数の
ガス通路用の溝を切り、この板を双極性隔離板として備
えた燃料電池によリ有効に達成される。
Still another object is to provide a high performance, compact, lightweight, and low cost fuel cell system by combining a large number of cell units using such a diaphragm. Such an object of the present invention is to have a composite particle as a basic unit in which carbonaceous particles are attached to the surface of fine fibrillar particles made of a polyolefin polymer, and each particle is partially fused to maintain its shape. This is effectively achieved by a fuel cell in which a large number of gas passage grooves are cut on both sides of a conductive composite material and the plates are provided as bipolar separators.

すなわち本発明は重合体フィフリル粒子の表面に炭素微
粒子が効率よく付着する事実を利用し、それによつて形
成される微細フィフリル状複合粒子を重合体の融点以上
に加熱し、同時に加圧することにより得られる導電性複
合材料を電池用隔板とする放電特性のすぐれた、軽量、
安価な燃料電池を提供するものである。ここでいうフィ
フリルとは不規則な形状を有する微細な繊維状物のこと
であり、通常の微細な粒子等に比べ重量あたvの表面積
が格段に大きく、又その不規則な形状の故に相互に絡み
合つて集合体を形成しやすいという性質をもつものであ
る。
That is, the present invention takes advantage of the fact that carbon fine particles are efficiently attached to the surface of polymer fifurl particles, and heats the resulting fine fifurl-like composite particles to a temperature higher than the melting point of the polymer and simultaneously applies pressure. A lightweight battery with excellent discharge characteristics that uses a conductive composite material as a battery diaphragm.
This provides an inexpensive fuel cell. The term "fifryl" here refers to a fine fibrous material with an irregular shape.It has a much larger surface area (v) per weight than ordinary fine particles, and because of its irregular shape, It has the property of easily intertwining with each other to form aggregates.

この電池用隔板材料を製造する一例をあげると次のごと
きものである。オレフイン重合体などからなる微細フィ
フリルを水中に分散し、これに炭素微粒子を加え、撹拌
混合すると重合体フィフリル表面に炭素微粒子が多量か
つ均一に付着し、微細フィフリル状の複合粒子が形成さ
れ、水中に分散する。
An example of manufacturing this battery partition material is as follows. When fine fifriles made of an olefin polymer are dispersed in water, carbon particles are added thereto, and the mixture is stirred and mixed, a large amount of carbon particles are uniformly attached to the surface of the polymer fifrils, forming fine fifrill-shaped composite particles, which are then submerged in water. dispersed into

この炭素粒子と重合体フィフリルの付着は強固であジ、
放置あるいは機械的刺激を加えても脱落する炭素微粒子
はほとんど認められない。この複合粒子を水から分離す
る方法には、静置減圧乾燥、加熱乾燥、水分の瀘過、遠
心分離等、通常の分離方法を用いることができる。
The adhesion between the carbon particles and the polymer fibrils is strong and
Almost no carbon particles are observed to fall off even when left alone or when mechanical stimulation is applied. The composite particles can be separated from water using conventional separation methods such as static vacuum drying, heat drying, water filtration, and centrifugation.

こうして微細フィフリル状複合体、或いはそれらが弱く
凝集したケーキが分離される。この粉末或いはケーキを
熱融着するには重合体の融点以上に加熱し加圧すること
が必要であるが、電池用隔板に適する強靭な成型物を得
るためには冷却時に強く加圧することが重要である。
In this way, the fine fibrillar composites or their weakly agglomerated cakes are separated. To heat-fuse this powder or cake, it is necessary to heat it above the melting point of the polymer and pressurize it, but in order to obtain a strong molded product suitable for battery diaphragms, it is necessary to apply strong pressure during cooling. is important.

加熱する際は、加熱、加圧を同時に行なう、いわゆるホ
ツト・プレスであつてもよいし、又は単に加熱だけを行
なつてもよい。以上のようにして得られた導電性複合材
料を用いて電池用隔板を製作するには、板状成型物の両
面に種々の形状のみぞを作製し、ガス流通部を形成しな
ければならないが、これは通常のみぞ切り加工や穴あけ
加工によつて作製することができる。
When heating, a so-called hot press, in which heating and pressurization are performed simultaneously, may be used, or only heating may be performed. In order to manufacture a battery diaphragm using the conductive composite material obtained as described above, grooves of various shapes must be created on both sides of the plate-shaped molded material to form gas flow areas. However, this can be produced by conventional groove cutting or drilling.

しかし、本発明の特徴を発揮せしめるためには基本とな
る複合体微細フィフリルを加熱、加圧する過程において
、予め隔板のみぞ形状に合わせた凹凸構造を形成した金
型を用いることが好ましい。すなわちこの方法によれば
加熱プレスと同時に目的とするみぞが形成されるため、
加工工程を大幅に短縮でき、あとは若干の穴あけ程度で
隔板を完成させることができるわけである。本発明に用
いられるポリオレフイン系重合体フィフリルは熱融解性
を有するものであればなんでもよいが、特に好ましいも
のとしては、ポリエチレン、ポリプロピレン、ポリブデ
ン一1、ポリ一3−メチルブデン、ポリメチルベンゼン
などがあげられる。
However, in order to bring out the features of the present invention, it is preferable to use a mold in which a concavo-convex structure has been formed in advance to match the shape of the grooves of the partition plate in the process of heating and pressurizing the basic composite fine fibrils. In other words, according to this method, the desired grooves are formed at the same time as hot pressing, so
The machining process can be significantly shortened, and the bulkhead can be completed with just a few holes drilled. The polyolefin polymer fifuryl used in the present invention may be of any kind as long as it has heat melting properties, but particularly preferred ones include polyethylene, polypropylene, polybutene-1, poly-3-methylbutene, and polymethylbenzene. It will be done.

また、これら単独重合体組成の他に、これら重合体の単
量体成分相互あるいは他種の単量体成分との間にランダ
ム共重合、ブロツク共重合、グラフト共重合などを行な
つて得られた各種重合体を用いることも可能である。又
、このような微細フィフリル状の重合体を製造する方法
には種々のものがある。
In addition to these homopolymer compositions, monomer components of these polymers can also be obtained by random copolymerization, block copolymerization, graft copolymerization, etc. with each other or with other types of monomer components. It is also possible to use various polymers. Furthermore, there are various methods for producing such fine fifrilled polymers.

たとえばフラツシユ紡糸、エマルジヨンフラツシユ紡糸
、溶液剪断法:スプリツトフアイバ法、ダイレクトフア
プリケーシヨン法、溶融紡糸法、湿式紡糸法などの方法
によりフィフリルの原料になる長・短繊維状物、或いは
直接フィフリル状物を得ることができる。これら繊維状
物はさらに必要に応じて延伸され、適当な長さに切断さ
れた後、叩解機にかけられフィフリル状物になる。本発
明に用いられる炭素微粒子としては、活性炭、アセチレ
ンブラツク等が可能であるが、電池用隔板はガス流通路
を形成する必要上から、その厚みは略々5〜15m1z
であると考えられるので、その体積抵抗率は0.5Ω儂
以下であることが望ましく、この意味ではアセチレンブ
ラツクを用いる方が低抵抗率を達成できるという点で有
利である。
For example, long and short fibrous materials that can be used as raw materials for fifrills by methods such as flash spinning, emulsion flash spinning, solution shearing method: split fiber method, direct fiber application method, melt spinning method, and wet spinning method, or directly Fifurils can be obtained. These fibrous materials are further stretched as necessary, cut into appropriate lengths, and then subjected to a beating machine to form fifrilled materials. Activated carbon, acetylene black, etc. can be used as the carbon particles used in the present invention, but the thickness of the battery diaphragm is approximately 5 to 15 m1z because it is necessary to form a gas flow path.
Therefore, it is desirable that the volume resistivity is 0.5Ω or less, and in this sense, it is advantageous to use acetylene black in that a low resistivity can be achieved.

従来の粉末同志の混合方式、すなわち炭素微粒子と熱融
着性重合体粉末を混合し、加熱、加圧する方法において
は、粉末同志の均一混合が困難な上に、強固な成型物を
得ようとして重合体粉末の割合を増せば炭素微粒子同志
の接触が不良となり電気抵抗率が増大し、逆に低抵抗率
を達成しようとして炭素微粒子の割合を増せば、重合体
同志の結着性が絶たれ、強固な成型物とはなv得ず、従
つて電池用隔板に要求される程度の低抵抗率を持つと同
時に機械的強度をも保つことは困難であつた。しかるに
本発明ではポリオレフイン系重合体フィフリルの表面の
大部分を炭素微粒子で覆つた微細フィフリル複合体を基
本としているため、基本複合フィフリルを加圧・加熱す
る過程でも、元の重合体フィフリルの表面は導電性良好
な炭素微粒子で覆われているのであるから、加圧、加熱
後も炭素質微粒子同志の接触は保たれ、導電性は損われ
ない。
In the conventional method of mixing powders, that is, mixing fine carbon particles and heat-fusible polymer powder, heating, and pressurizing, it is difficult to mix the powders uniformly, and it is difficult to obtain a strong molded product. If the proportion of polymer powder is increased, the contact between the carbon particles becomes poor and the electrical resistivity increases.On the other hand, if the proportion of carbon particles is increased in an attempt to achieve low resistivity, the cohesion between the polymer particles is broken. However, it is not possible to form a strong molded product, and therefore it is difficult to maintain mechanical strength as well as a low resistivity required for a battery diaphragm. However, since the present invention is based on a fine fifurl composite in which most of the surface of the polyolefin polymer fifril is covered with carbon fine particles, even in the process of pressurizing and heating the basic composite fifryl, the surface of the original polymer fifryl remains unchanged. Since it is covered with carbon fine particles having good conductivity, the contact between the carbonaceous fine particles is maintained even after pressurization and heating, and the conductivity is not impaired.

同時に本来フィフリル形状であるため、加圧、加熱過程
で重合体フィフリルは隣接するフィフリル同志で部分的
に融着し、均一で微細なネツトワークを形成することに
なP1その結果、形態保持性は良好である。このように
して形態保持性一強度的要求をみたすと同時に高い導電
性を示す新規な材料が得られるのである。また大量処理
の場合も、炭素微粒子は重合体フィフリルに単に撹拌す
るのみで付着するため、自ずから均一混合が達成される
わけで、均一性を失わない大量処理プロセスも容易であ
る。
At the same time, since it is originally in the shape of a fibril, during the pressurization and heating process, the polymer fifrils partially fuse with adjacent fifriles, forming a uniform and fine network.P1 As a result, the shape retention is In good condition. In this way, a new material can be obtained that satisfies the requirements for shape retention, strength, and at the same time exhibits high electrical conductivity. Furthermore, even in the case of large-scale processing, since the carbon fine particles are attached to the polymer fifrils simply by stirring, uniform mixing is naturally achieved, making it easy to carry out large-scale processing without losing uniformity.

さらに電池用隔板として機能するのに必要な、ガス通適
用のみぞも、金型プレスによつて容易に形成でき、従来
この種の電池用隔板によく用いられてきたグラフアイト
プロツクにみぞを切るというような方法に?べるとはる
かに工程を簡単化できる。
Furthermore, the grooves for gas passage necessary to function as a battery diaphragm can be easily formed by mold pressing, and the graphite block, which has been commonly used for this type of battery diaphragm, can be easily formed. How about cutting a groove? The process can be made much easier by doing so.

以下実施例を述べる。Examples will be described below.

実施例 特公昭47−32133の方法に従つてポリプロピレン
の繊維状物を作製した。
EXAMPLE A polypropylene fibrous material was prepared according to the method disclosed in Japanese Patent Publication No. 47-32133.

すなわちポリプロピレン、トリクロロエチレン、水を各
々重量比率で4%、33%、63%となるように混合し
、これを内径181LW,、深さ1001Jmの鋼製オ
ートクレーブに密封し、シリコンオイル中で150℃、
30分加熱後、このオートクレーブをと9出してノズル
(直径2.0m1、長さ2010のバルブを解放し、オ
ートクレープ内部から原液を自らの圧力で噴出させ、ポ
リプロピレンの繊維状物を得た。さらにこれを適当な長
さに切断した後、叩解機にかけることによりポリプロピ
レンの微細なフィフリルを得た。このような微細フィフ
リルは通例合成パルプと呼ばれるものである。このよう
にして作製したポリプロピレン合成パルブ一水分散系に
パルブ含有量で30%になるようにアセチレンブラツク
を加え、ミキサーで約5分間攪拌、混合した後、水分を
瀘過し、熱風乾燥器中100℃で1時間乾燥した。
That is, polypropylene, trichlorethylene, and water were mixed at weight ratios of 4%, 33%, and 63%, respectively, and the mixture was sealed in a steel autoclave with an inner diameter of 181LW and a depth of 1001Jm, and heated at 150°C in silicone oil.
After heating for 30 minutes, the autoclave was vented and a nozzle (diameter 2.0 m, length 201 mm valve) was opened, and the stock solution was jetted out from inside the autoclave under its own pressure to obtain a polypropylene fibrous material. Furthermore, after cutting this into an appropriate length, fine fifrills of polypropylene were obtained by subjecting it to a beating machine.Such fine fifrills are commonly called synthetic pulp. Acetylene black was added to the pulp-aqueous dispersion system so that the pulp content was 30%, and after stirring and mixing with a mixer for about 5 minutes, water was filtered off and dried at 100° C. for 1 hour in a hot air dryer.

こうして得られた複合微細フィフリルを400m9/d
となるように金型に仕込み、170℃、60kg/Cf
L2で15分間加熱加圧した後、冷却プレスに移し、2
50kg/dに加圧したまま15分間で室温にまで冷却
した。第1図はここで用いた金型の直径方向の断面図で
ある。1は上型、2は下型で各々共、直径6cmである
400 m9/d of composite fine fifrills obtained in this way
Fill the mold so that it becomes 170℃, 60kg/Cf
After heating and pressurizing in L2 for 15 minutes, transfer to a cooling press and press 2.
The mixture was cooled to room temperature in 15 minutes while being pressurized to 50 kg/d. FIG. 1 is a diametrical cross-sectional view of the mold used here. 1 is an upper mold, and 2 is a lower mold, each having a diameter of 6 cm.

それぞれ高さ1詣、幅111ピツチ4婁mの同心円状の
凸部が形成されておリ、その最大のものの直径は3CT
I1である。第2図は以上のようにして製作した円盤状
成型物に反応ガス流入口と反応ガス流出口を設けたもの
で、直径方向の断面図を示してある。なおこの隔板の他
の面に通する他の1組のガス流入口と流出口は図面から
は省略した。3は電池用隔板、4は金型プレスによつて
形成されたガス通適用のみで、5は反応ガス流入口、6
は反応ガス流出口である。
Each concentric convex part is 1 m in height, 111 m in width and 4 m in width, and the diameter of the largest one is 3 CT.
It is I1. FIG. 2 shows a diametrical cross-sectional view of the disc-shaped molded product produced as described above, provided with a reactive gas inlet and a reactive gas outlet. Note that another set of gas inlets and outlets that pass through the other surface of this partition plate is omitted from the drawing. 3 is a battery diaphragm, 4 is a gas passage formed by mold press, 5 is a reaction gas inlet, and 6
is the reaction gas outlet.

この電池用隔板の体積抵抗率は0.35Ω礪比重は1.
1であつた。この隔板を用いて3個の単電池を積み重ね
た積層型電池を作製し、その放電特性を調べると第3図
のようになつた。
The volume resistivity of this battery partition plate is 0.35Ω and the specific gravity is 1.
It was 1. A stacked battery consisting of three single cells stacked together was fabricated using this diaphragm, and its discharge characteristics were investigated, as shown in Figure 3.

第4図はこの積層型電池を横から見たものである。7は
燃料極、8は酸化極、9は電解液をしみこませたマトリ
ツクス、10は電池用隔板である。
FIG. 4 is a side view of this stacked battery. 7 is a fuel electrode, 8 is an oxidation electrode, 9 is a matrix impregnated with electrolyte, and 10 is a battery diaphragm.

ガスの配管は図から省略した。電解液には濃リン酸を用
い、燃料極に水素ガス酸化極に空気を送り、又作動温度
は130℃とした。このように本発明で作られる導電性
複合材料は化学的耐性、軽量性、加工性、工程の簡単化
、低抵抗率という多くの長所を持ち、電池用隔板として
特に好ましいものである。
Gas piping is omitted from the diagram. Concentrated phosphoric acid was used as the electrolyte, air was sent to the fuel electrode and the hydrogen gas oxidizing electrode, and the operating temperature was 130°C. As described above, the conductive composite material produced according to the present invention has many advantages such as chemical resistance, light weight, workability, process simplification, and low resistivity, and is particularly preferable as a battery diaphragm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は金型の断面図である。 第2図は電池用隔板の断面図である。第3図は積層型電
池の放電特性を示す。第4図は積層型電池のモデル図で
ある。1・・・上型、2・・・下型、3・・・電池用隔
板、4・・・ガス通適用のみぞ、5・・・反応ガス流入
口、6・・・反応ガス流出口、7・・・燃料極、8・・
・酸化極、9・・・マトリツクス、10・・・電池用隔
板。
FIG. 1 is a sectional view of the mold. FIG. 2 is a cross-sectional view of the battery diaphragm. FIG. 3 shows the discharge characteristics of the stacked battery. FIG. 4 is a model diagram of a stacked battery. DESCRIPTION OF SYMBOLS 1... Upper mold, 2... Lower mold, 3... Battery partition, 4... Groove for gas passage, 5... Reactant gas inlet, 6... Reactant gas outlet , 7... Fuel electrode, 8...
- Oxidation electrode, 9... Matrix, 10... Battery partition plate.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリオレフィン系重合体から成る微細フィプリル状
粒子の表面に炭素質粒子が付着した複合粒子を基本単位
として持ち、各粒子が部分的に融着して形態を保持して
いる導電性複合材料の両面に多数のガス通路用の溝を切
り、この板を双極性隔離板として備えたことを特徴とす
る燃料電池。
1 Both sides of a conductive composite material that has as its basic unit a composite particle in which carbonaceous particles are attached to the surface of fine fibrillar particles made of a polyolefin polymer, and each particle is partially fused to maintain its shape. A fuel cell characterized in that a number of grooves for gas passages are cut in the plate and the plate is provided as a bipolar separator.
JP51013270A 1976-02-12 1976-02-12 Fuel cell Expired JPS5925338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51013270A JPS5925338B2 (en) 1976-02-12 1976-02-12 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51013270A JPS5925338B2 (en) 1976-02-12 1976-02-12 Fuel cell

Publications (2)

Publication Number Publication Date
JPS5297130A JPS5297130A (en) 1977-08-15
JPS5925338B2 true JPS5925338B2 (en) 1984-06-16

Family

ID=11828514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51013270A Expired JPS5925338B2 (en) 1976-02-12 1976-02-12 Fuel cell

Country Status (1)

Country Link
JP (1) JPS5925338B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128996B2 (en) * 2001-05-11 2006-10-31 Kureha Corporation Separator for solid polymer fuel cells, and production process thereof
JP4716649B2 (en) * 2003-09-22 2011-07-06 旭有機材工業株式会社 Conductive molding material, fuel cell separator using the same, and method for producing the same

Also Published As

Publication number Publication date
JPS5297130A (en) 1977-08-15

Similar Documents

Publication Publication Date Title
US3442715A (en) Method of making diffusion membrane electrodes from visco elastic dough
CN100570925C (en) The manufacture method of pem fuel cell separator plate
WO1999036980A1 (en) Material for electrode
US3676222A (en) Conductive carbon membrane electrode
JPH08329962A (en) Polymer solid electrolyte film/electrode integrally molded body and manufacture thereof
CN106165170A (en) Fuel cell collector and fuel cell
US3385736A (en) Method of making electrode from viscoelastic dough
CN107208294A (en) The manufacture method of nickel alloy porous body
US11283082B2 (en) Gas diffusion electrode and production method therefor
CN109910259A (en) Fuel battery pole board forming method based on expanded graphite
CA1173790A (en) Asymmetric current distributor
US3328205A (en) Fuel cell containing a metallized paper electrode
JPH02265169A (en) Sealing structure of electrochemical cell stack and its manufacture
US3228798A (en) Gas electrode
JPS5925338B2 (en) Fuel cell
JPS6132358A (en) Electrode for battery
US4468362A (en) Method of preparing an electrode backing layer
JPH11354136A (en) Fuel cell, separator for fuel cell, and manufacture therefor
JP4716649B2 (en) Conductive molding material, fuel cell separator using the same, and method for producing the same
US3711336A (en) Ceramic separator and filter and method of production
CN101218699A (en) Electrolyte membrane and process for producing the same
EP0053162A1 (en) Integrated carbon/insulator structure and method for fabricating same.
US3411954A (en) Method of making electrodes
EP0051435B1 (en) Three-layer laminated matrix electrode
GB2386467A (en) Bipolar plates