Nothing Special   »   [go: up one dir, main page]

JPS59228160A - Amylase analyzing method - Google Patents

Amylase analyzing method

Info

Publication number
JPS59228160A
JPS59228160A JP58104704A JP10470483A JPS59228160A JP S59228160 A JPS59228160 A JP S59228160A JP 58104704 A JP58104704 A JP 58104704A JP 10470483 A JP10470483 A JP 10470483A JP S59228160 A JPS59228160 A JP S59228160A
Authority
JP
Japan
Prior art keywords
amylase
glucose
electrode
enzyme
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58104704A
Other languages
Japanese (ja)
Other versions
JPH0374338B2 (en
Inventor
Toshio Tsuchida
土田 寿男
Kentaro Yoda
依田 賢太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP58104704A priority Critical patent/JPS59228160A/en
Publication of JPS59228160A publication Critical patent/JPS59228160A/en
Publication of JPH0374338B2 publication Critical patent/JPH0374338B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To make it possible to simultaneously measure the density of glucose and activity of amylase by such an arrangement wherein a hydrogen peroxide detection type polarograph is equipped with one kind of enzyme electrode which is equipped with an enzyme membrane in which two kinds of enzyme are fixed, and the speed of change of a current of the electrode is measured. CONSTITUTION:As a specimen including amylase and glucose is injected into a buffer solution including polysaccharide, an enzyme electrode composed of a membrane which selectively transmits hydrogen peroxide, wherein alpha-glucosidase and glucose oxidase are simultaneously fixed and a hydrogen peroxide electrode produces hydrogen peroxide, and due to the produced hydrogen peroxide, the primary increase A in electrode current which is proportional to the density of glucose takes place. After a period of 15-30sec, the secondary increase B in electrode current which is proportional to the activity of amylase takes place. Since the speed of the primary and secondary increase in electrode current is proportional to the density of glucose and the activity of amylase in each of (1)-(6) specimens respectively, it becomes possible to simultaneously measure the activity of glucose and amylase by one kind of enzyme electrode.

Description

【発明の詳細な説明】 本発明は、酵素電極法によるアミラーゼ活性測定用酵素
膜および分析方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an enzyme membrane and an analysis method for measuring amylase activity using an enzyme electrode method.

さらに詳しくは過酸化水素検知型ポーラレグラフ電極に
2種類の酵素を固定化した酵素膜を装着して得られる1
種類の酵素電極により、得られる電極電流の変化速度よ
りグルコース濃度およびまたはアミラーゼ活性を同時に
測定可能な酵素膜および分析方法に関するものである。
For more details, see 1.
The present invention relates to an enzyme membrane and an analytical method that can simultaneously measure glucose concentration and/or amylase activity based on the rate of change in electrode current using different types of enzyme electrodes.

従来酵素電極法による血清アミラーゼの測定法として特
開昭156−97863号公報−または特開昭57−1
77699号公報などに記載の方法がある。
Conventional enzyme electrode method for measuring serum amylase as disclosed in JP-A-156-97863 or JP-A-57-1
There is a method described in Publication No. 77699 and the like.

前者の方法は固定化グルコースオキシダーゼ膜電極と固
定化α−グルコシダーゼ/グルコースオキシダーゼ膜電
極の2本の電極を用い、70一方式にてグルコース濃度
およびα−アミラーゼの作用用で生成するマルトースに
溶液状α−グルコシダーゼを作用させ、生じるグルコー
ス凰を固定化グルコースオキシダーゼ膜電極で検知し一
電極電流増加よりa−アミラーゼ活性を求めるものであ
る。
The former method uses two electrodes, an immobilized glucose oxidase membrane electrode and an immobilized α-glucosidase/glucose oxidase membrane electrode, and uses one system to measure the glucose concentration and the maltose produced by α-amylase in a solution form. α-glucosidase is applied, the resulting glucose is detected with an immobilized glucose oxidase membrane electrode, and α-amylase activity is determined from the increase in one electrode current.

しかしながら−これらの方法は02本の電極を必要とす
る、■検出できる電極電流値が小さい、■高価で特殊な
基質や不安定な酵素試薬を必要とする、■測定系が煩雑
で測定に時間を要するなどの欠点を有する。
However, these methods require two electrodes, ■ The detectable electrode current value is small, ■ They require expensive and special substrates and unstable enzyme reagents, and ■ The measurement system is complicated and takes a long time to measure. It has disadvantages such as requiring

本発明はこれらの現行測定法をより簡便で迅ぜな測定法
に改良するためになされたもので、その目的とするとこ
ろは、測定妨害物質の影響をうけずに短い測定時間で簡
便な操作で精度よく体液中のアミラーゼ活性およびまた
はグルコース濃度を測定するための酵素膜および分析方
法を提供することである。
The present invention was made in order to improve these current measurement methods into a simpler and faster measurement method.The purpose of the present invention is to achieve simple operation in a short measurement time without being affected by measurement interfering substances. An object of the present invention is to provide an enzyme membrane and an analytical method for accurately measuring amylase activity and/or glucose concentration in body fluids.

すなわち、本発明はα−グルコシダーゼおよびグルコー
スオキシダーゼを同時に固定化させた過酸化水素選択透
過性膜と過酸化水素電極とからなる酵素電極に、アミラ
ーゼの基質を含む緩衝溶液ス濃度を測定し、続いて生成
する過酸化水素に基づく第2次電流増加速度からアミラ
ーゼ活性を測定することを特徴とするアミラーゼ分析法
である。
That is, the present invention measures the concentration of a buffer solution containing an amylase substrate on an enzyme electrode consisting of a hydrogen peroxide permselective membrane and a hydrogen peroxide electrode on which α-glucosidase and glucose oxidase are simultaneously immobilized, and then This is an amylase analysis method characterized by measuring amylase activity from the rate of increase in secondary current based on hydrogen peroxide produced.

本発明は2種の酵素を固定化した酵素膜を酵素電極に用
いるものであり、アミラーゼ活性とグルコース濃度の測
定原理は下記の酵素反応になっている。
The present invention uses an enzyme membrane on which two types of enzymes are immobilized as an enzyme electrode, and the principle of measuring amylase activity and glucose concentration is the enzyme reaction described below.

ポリサッカライド−7i2!ニー12 、 H,O,マ
ルトース+マルトトリオース+マルトテトラオース+マ
ルトペンタオース+オリゴサツカライドヱヱ−4土ヨ≧
76−竺LH,へグルコースク?≦シニ乙ま彦野6拾二
±4μi旦ノh−グルコン酸+H2O2ゝ 2H20げ→4H” +20.+ 4e−(アノード)
4H+02+4e−一2E、O(カソード)すなわち本
発明の酵素電極ではポリサッカライドから\アミラーゼ
、α−グルコシダーゼおよびグルコースオキシダーゼの
一連の酵素反応で生じた過酸化水素による電極電流の第
2次V=極電流増加速度からアミラーゼ活性を測定する
ことが可能である。さらに必要により、最初からサンプ
ル中に含まれる内因性グルコース濃度がアミラVゼ作用
が定常状態に到達するまでの第1次電極電流増加速度か
ら測定することが可能である。
Polysaccharide-7i2! Ni 12, H, O, maltose + maltotriose + maltotetraose + maltopentaose + oligosaccharide ヱヱ - 4 Satyo ≧
76-LH, Heguru Suk? ≦Shini Otoma Hikono 612 ± 4μi danh-gluconic acid + H2O2ゝ2H20 → 4H” +20.+ 4e- (anode)
4H+02+4e-12E, O (cathode), that is, in the enzyme electrode of the present invention, the secondary V of the electrode current due to hydrogen peroxide generated in a series of enzymatic reactions from polysaccharide to amylase, α-glucosidase, and glucose oxidase = polar current It is possible to measure amylase activity from the rate of increase. Furthermore, if necessary, the endogenous glucose concentration contained in the sample from the beginning can be determined from the rate of increase in the primary electrode current until the amylase action reaches a steady state.

本発明をさらに具体的に述べる。The present invention will be described in more detail.

本発明の酵素膜は例えば電極に対向する膜面側は緻密な
スキン層を形成し一過酸化水素のみを透過し、被測定物
質に接する膜面側はポーラスになっていて1このポーラ
ス部分に2種類の酵素が固定化されている。試料中に当
初から存在するグルコースあるいはアミラーゼの加水分
解作用で生成した低分子量サツカライドが膜に固定化さ
れた酵素と反応して過酸化水素を発生する。
For example, the enzyme membrane of the present invention forms a dense skin layer on the side of the membrane facing the electrode, allowing only hydrogen monoperoxide to pass therethrough, and has a porous layer on the side of the membrane that comes into contact with the substance to be measured. Two types of enzymes are immobilized. Low-molecular-weight saccharides produced by the hydrolytic action of glucose or amylase already present in the sample react with enzymes immobilized on the membrane to generate hydrogen peroxide.

本発明に使用する膜の原料としてはポリアミド、セルロ
ースアセテート1ポリビニルアルコールなどの親水性高
分子物質が好ましく、特にセルロースアセテートが適切
である。膜の製造方法としては原料となる高分子物質を
良溶媒に溶解したドープを平滑な面を有する基板上に膜
状にキャストして一定時間、溶媒を蒸発させ、基板と反
対側の膜面上に過酸化水素選択透過性のスキン層を形成
させた後為該高分子物質の貧溶媒中に浸漬して、膜中の
溶剤を除いてスキン層につづく層にポーラス層を形成さ
れる溶媒蒸発法が簡便である。
As raw materials for the membrane used in the present invention, hydrophilic polymeric substances such as polyamide and cellulose acetate-1-polyvinyl alcohol are preferred, and cellulose acetate is particularly suitable. The film is manufactured by casting a dope made by dissolving a polymer material as a raw material in a good solvent onto a smooth substrate, allowing the solvent to evaporate for a certain period of time, and then casting the dope onto the film surface on the opposite side of the substrate. After forming a hydrogen peroxide selectively permeable skin layer, the polymer material is immersed in a poor solvent to remove the solvent in the membrane and form a porous layer following the skin layer.Solvent evaporation The method is simple.

上記の方法で得られた膜のポーラス側にα−グルコシダ
ーゼとグルコースオキシダーゼを同時に固定化させる方
法としては1グルタルアルデヒド1ヘキサメチレンジイ
ソシアネートなどの2官能試薬による架橋法〜アミノ基
、アルデヒド基1イソシアネート基、酸アジド基などを
導入した担体に酵素を結合させる共有結合法・ポリアク
リルアミド−コラーゲン1ゼラチン、キトサンなどのポ
リマーによる酵素の包括法などがあり〜酵素膜の応大し
た膜をグルタルアルデヒド処理した後1醇素を結合させ
る共有結合法が最も好ましい。
A method for simultaneously immobilizing α-glucosidase and glucose oxidase on the porous side of the membrane obtained by the above method is a crosslinking method using a bifunctional reagent such as 1 glutaraldehyde 1 hexamethylene diisocyanate - amino group, aldehyde group 1 isocyanate group There are covalent bonding methods in which enzymes are bonded to carriers into which acid azide groups have been introduced, and methods for enclosing enzymes with polymers such as polyacrylamide-collagen 1 gelatin and chitosan.The enlarged enzyme membrane was treated with glutaraldehyde. Most preferred is a covalent bonding method in which the second atom is bonded.

この場合へ固定化操作上必要であるならば、こ分子電解
質などを共存させることはなんらさしつかえない。
In this case, if it is necessary for the immobilization operation, there is no problem in coexisting a molecular electrolyte or the like.

本発明に用いる過酸化水素電極としては特開昭54−1
02193号公報記載のポーラログラフ型あるいはガル
バニ型いずれを用いてもよい。酵素電極はこれらの過酸
化水素電極の電極面に固定化α−グルコシダーゼ/グル
コースオキシダーゼ膜のスキン層が接し、試料溶液側に
固定化酵素層が接するように装着して構成する。
As the hydrogen peroxide electrode used in the present invention, JP-A-54-1
Either the polarographic type or the galvanic type described in Publication No. 02193 may be used. The enzyme electrode is constructed by attaching these hydrogen peroxide electrodes so that the skin layer of the immobilized α-glucosidase/glucose oxidase membrane is in contact with the electrode surface, and the immobilized enzyme layer is in contact with the sample solution side.

本発明の酵素膜は膜面に2種類の酵素が同時に固定化さ
れているために低分子量干渉物質を完全に阻止し、かつ
脱酵素とそれらの基質の接触も良好なために精度よく目
的物質を電極電流変化として検知できるのみならず、■
膜強度が高く取扱い易い、■膜の均一性が高く測定値の
再現性が優れている、01種類の酵素電極でグルコース
濃度とアミラーゼ活性が同時に測定できる、■製造コス
トと測定コストが安い、■基質の浸透性と検知物質の拡
散性が良好で応答時間が短く、迅速に連続測定できるな
どの利点がある。
The enzyme membrane of the present invention has two types of enzymes immobilized on the membrane surface at the same time, completely blocking low-molecular-weight interfering substances, and also allows for good contact between the deenzyme and their substrates, so it can accurately target target substances. Not only can it be detected as a change in electrode current, but also
High membrane strength and easy handling; ■ High membrane uniformity and excellent reproducibility of measured values. Glucose concentration and amylase activity can be measured simultaneously with 01 types of enzyme electrodes. ■ Low manufacturing and measurement costs. ■ Advantages include good permeability of the substrate and diffusibility of the detection substance, short response time, and rapid continuous measurement.

どの体液中のアミラーゼの測定に有用であるが1ブタ悴
臓あるいはバチリス、ズブチリスなどを超厚とするアミ
ラーゼの活性測定にも適用可能である。
Although it is useful for measuring amylase in any body fluid, it can also be applied to measuring amylase activity in extremely thick samples such as pig innards, Bacillus subtilis, etc.

本発明の酵素膜を用いた酵素電極によりアミラーゼ活性
と必要によりグルコース濃度を同時に分析する方法につ
いて酵素電極の応答曲線を示した第(1)図を用いて説
明する。
A method for simultaneously analyzing amylase activity and, if necessary, glucose concentration using an enzyme electrode using the enzyme membrane of the present invention will be described with reference to FIG. 1, which shows the response curve of the enzyme electrode.

ポリサッカライドを含む緩衝液の存在下で一アミラーゼ
とグルコースを含む試料を注入すると酵素電極には、ま
ずグルコース濃度に比例した第1次電極電流増加がある
。約15〜30秒後にアミラーゼ活性に比例した第2次
電極電流の増加がある。こO第1次および第1次電極電
流増加速度は各々試料中のグルコース濃度およびアミラ
ーゼ活性に比例するため1種類の酵素電極で同時にグル
コースとアミラーゼ活性を測定することが可能である。
When a sample containing amylase and glucose is injected in the presence of a buffer containing polysaccharide, the enzyme electrode experiences a primary electrode current increase proportional to the glucose concentration. After about 15-30 seconds there is an increase in secondary electrode current proportional to amylase activity. Since the primary and primary electrode current increase rates are proportional to the glucose concentration and amylase activity in the sample, respectively, it is possible to measure glucose and amylase activity simultaneously with one type of enzyme electrode.

本発明に用いる緩衝液の種類に限定はないが・安定性と
コスト面から0.01〜0.5モル/lのリン酸緩衝液
が適している。本発明に用いる緩衝液にはアミラーゼの
活性化剤として塩化ナトリウム、α−グルコシダーゼお
よびグルコースオキシダーゼの安定化剤どしてE!DT
A %防腐剤としであるいは酵素中あるいは溶血サンプ
ル中に含まれるカタラーゼの阻害剤とじて、アジ化ナト
リウム1およびアミラーゼの基質として平均分子量66
6以上の水溶性ポリサッカライドを含んでいる。これら
の添加物質は塩化す) IJウム0.1〜2.5%(重
量/体積) 、]IcDTA O,1〜5 II mo
l/J! sアジ化ナトリウム0.1〜lo禽mol/
/そしてポリサッカライド0.5〜59/lが好ましく
、特に塩化ナトリウム0.876%、BCDTA 0.
5−2m 4o1/ムアジ化ナトリ0次反応を示すに十
分である。
Although there is no limitation on the type of buffer used in the present invention, a phosphate buffer with a concentration of 0.01 to 0.5 mol/l is suitable from the viewpoint of stability and cost. The buffer used in the present invention contains sodium chloride as an activator for amylase, and stabilizers for α-glucosidase and glucose oxidase. DT
A % As a preservative or as an inhibitor of catalase contained in the enzyme or in the hemolyzed sample, sodium azide 1 and as a substrate for amylase with an average molecular weight of 66
Contains 6 or more water-soluble polysaccharides. These additive substances are chloride) IJum 0.1-2.5% (wt/vol), ]IcDTA O,1-5 II mo
l/J! Sodium azide 0.1 to 1 mol/
/ and polysaccharides from 0.5 to 59/l are preferred, especially sodium chloride 0.876%, BCDTA 0.
5-2m 4o1/muadzide is sufficient to indicate a zero-order reaction.

本発明のアミラーゼの基質としてのボリサツカト唾液由
来アミラーゼの分別定量を目的として緩衝液中にアミラ
ーゼインヒビターを共存させることはなんらさしつかえ
ない。
There is nothing wrong with allowing an amylase inhibitor to coexist in the buffer solution for the purpose of differentially quantifying amylase derived from Borisatsukato saliva as a substrate for the amylase of the present invention.

基質透過性、安定性、酵素活性の優れた本発明特殊な基
質や高価で不安定な溶液状酵素試薬を必要とせず、しか
もただ1本の電極検知器により少量の試料を用いて血液
、尿、組織などに含まれるアミラーゼと必要によりグル
コース濃度を短時間で精度よく簡便にしかも安価に測定
することができる。
The present invention, which has excellent substrate permeability, stability, and enzyme activity, does not require special substrates or expensive and unstable solution enzyme reagents, and can detect blood and urine using a small amount of sample using a single electrode detector. , amylase contained in tissues, etc., and glucose concentration, if necessary, can be measured easily, accurately, and at low cost in a short time.

次に実施例により本発明を説明する。Next, the present invention will be explained with reference to Examples.

実施例 L セルロースアセテ−)2gをア七トン30−とシクロヘ
キサノン20−からなる混合溶媒5〇−に溶解し\ガラ
ス板上にナイフコーターを用いて厚さ300μ粛のフィ
ルム状に流延した。10分間空気中に放置した後Sn−
ヘキサン中に浸漬して溶媒を抽出した。風乾後、ガラス
板から剥離して厚さ13μ累の白色半透明膜を得た。得
られた膜は緻密なスキン層と多孔質層からなっている。
Example L 2 g of cellulose acetate was dissolved in 50 of a mixed solvent consisting of 30 of acetone and 20 of cyclohexanone, and cast onto a glass plate using a knife coater to form a film with a thickness of 300 μm. After leaving it in the air for 10 minutes, Sn-
The solvent was extracted by immersion in hexane. After air drying, it was peeled off from the glass plate to obtain a white translucent film with a thickness of 13 μm. The resulting membrane consists of a dense skin layer and a porous layer.

この膜は過酸化水素を容易に透過させるが、尿酸、ア過
性試験により確められた。α−グルコシダーゼ950工
U%グルコースオキシダーゼ250工U1牛ルデヒド水
溶液50μlを加えて酵素溶液を調製した。
This membrane is readily permeable to hydrogen peroxide, as confirmed by uric acid and peroxidity tests. An enzyme solution was prepared by adding 50 μl of an aqueous solution of α-glucosidase 950% glucose oxidase 250% U1 bovine aldehyde.

この酵素液を上記膜の多孔質側から浸透させ、4℃で1
時間放置し、固定化反応を終了させた。
This enzyme solution was permeated through the porous side of the membrane and heated to 4℃ for 1 hour.
The immobilization reaction was completed by allowing the mixture to stand for some time.

1Mグリシン溶液処理した後−0,05Mリン酸バッフ
ァーで十分洗浄した。多孔性ポリカーボネート膜でカバ
ーし、4℃で風乾した。α−グルコシダーゼ活性0.1
0工[/c++1.グルコースオキシダーゼ活性0.0
4工U/C−の固定化複合酵素膜を得た。得られた酵素
膜をクラーク型過酸化水素電極に酵素膜のスキン層側が
電極面に接するように装着し〜酵素電極を構成した。
After treatment with 1M glycine solution, the plate was thoroughly washed with -0.05M phosphate buffer. It was covered with a porous polycarbonate membrane and air dried at 4°C. α-glucosidase activity 0.1
0 engineering[/c++1. Glucose oxidase activity 0.0
An immobilized composite enzyme membrane of 4 U/C- was obtained. The obtained enzyme membrane was attached to a Clark-type hydrogen peroxide electrode so that the skin layer side of the enzyme membrane was in contact with the electrode surface to form an enzyme electrode.

この酵素電極を37℃、p!−1’r、oの0.876
%塩化ナトリウム−1111M EDTA 5111M
アジ化ナトリウムおよび19/lの可溶性澱粉を含む0
.1 Mリン酸緩衝液0.5−を入れたセルに浸漬した
。次にグルコース90〜450 m?/61およびヒト
悴α−アミラーゼo −2oootr/a!(キャラウ
ェイ単位)を含む標準溶液25μノを攪拌しながらマイ
クロピペットでセル中に注入した。
This enzyme electrode was heated to 37°C, p! -1'r, o of 0.876
% Sodium Chloride - 1111M EDTA 5111M
0 containing sodium azide and 19/l soluble starch
.. The cell was immersed in 0.5-ml of 1M phosphate buffer. Next, glucose 90-450 m? /61 and human α-amylase o-2oootr/a! 25 μm of a standard solution containing caraway units was injected into the cell with a micropipette while stirring.

この時一連の酵素反応によって生成する過酸化水素の酸
化により生じる電極電流と時間特性を第(1)図に示し
た。グルコース濃度に比例したシャープな第1次電極電
流の増加があり、約30秒でアミラーゼ活性に比例した
第2次電極電流の増加が観察された。
Figure (1) shows the electrode current and time characteristics generated by the oxidation of hydrogen peroxide produced by a series of enzymatic reactions. There was a sharp increase in primary electrode current proportional to glucose concentration, and an increase in secondary electrode current proportional to amylase activity was observed at about 30 seconds.

微分回路を用いて検出、した第2次電極電流増加速度は
グルコース濃度と良好な直線関係を示す。
The rate of increase in secondary electrode current detected using a differential circuit shows a good linear relationship with glucose concentration.

第1次電極電流増加速度はアミラーゼ活性と良好な直線
関係を示す。直線性の範囲は各々のグルコースO〜45
0 W/dt、アミラーゼ活性0〜2000U/dl 
(キャラウェイ単位)であった。
The rate of increase in primary electrode current shows a good linear relationship with amylase activity. The range of linearity is for each glucose O~45
0 W/dt, amylase activity 0-2000 U/dl
(in caraway units).

実施例 2 実施例1の酵素電極を用いて実施例1と全く同様にして
グルコース/アミラーゼ標準溶液のがわりに3種類のヒ
ト血清サンプルを用いてアミラーゼ活性とグルコース濃
度を同時に測定した。−この時グルコース標準液は90
 W/dlアミラーゼ標準液としてヒト眸臓由来α−ア
ミラーゼ3oou、、”aノから計算によって血清中の
グルコース濃度およびアミラーゼ活性を求めた。第1表
に測定結果を示した。3種類の血清中のグルコース濃度
およびアミラーゼ活性の同時再現性は良好であった。
Example 2 Using the enzyme electrode of Example 1, amylase activity and glucose concentration were simultaneously measured in exactly the same manner as in Example 1, using three types of human serum samples instead of the glucose/amylase standard solution. - At this time, the glucose standard solution is 90
Glucose concentration and amylase activity in serum were determined by calculation from α-amylase derived from human eyelid 3oou, "a" as a W/dl amylase standard solution. The measurement results are shown in Table 1. The simultaneous reproducibility of glucose concentration and amylase activity was good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はグルコースおよびアミラーゼ標準液を測定した
ときの電極電流値(縦軸)と時間(横軸)の関係を示し
た。 グラフである(〜は第1次電極電流増加、(B)は第2
次電極電流増加を示す。 (1)はグルコース90■/d/  アミラーゼOU/
d/(2)はグルコース90 I+97d1  アミラ
ーゼ400 U/61(8)はグルコース180η/e
Ll  アミラーゼ800U/dl(4)はグルコース
270岬/dl  アミラーゼ1gooU/dt(5)
はグルコース360”f/dt  アミラーゼ1600
U/dl(6)はグルコース450η7dt  アミラ
ーゼ2000U/d7!の応答曲線を示す。 特許出願人 東洋紡給株式会社
FIG. 1 shows the relationship between electrode current value (vertical axis) and time (horizontal axis) when measuring glucose and amylase standard solutions. This is a graph (~ is the increase in the primary electrode current, (B) is the increase in the second electrode current.
The following shows an increase in electrode current. (1) is glucose 90■/d/amylase OU/
d/(2) is glucose 90 I+97d1 amylase 400 U/61(8) is glucose 180η/e
Ll amylase 800U/dl (4) glucose 270 cape/dl amylase 1gooU/dt (5)
is glucose 360”f/dt amylase 1600
U/dl(6) is glucose 450η7dt amylase 2000U/d7! shows the response curve. Patent applicant: Toyobokyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] α−グルコシダーゼおよびグルコースオキシダーゼを固
定化させた過酸化水素選択透過性膜と過酸化水素電極と
からなる酵素電極に1アミラーゼの基質を含む緩衝液中
で試料を作用させ、必要により生成する過酸化水素に基
づく第1次電流増加速度からグルコース濃度を測定し、
続いて生成する過酸化水素に基づく第2次電流増加速度
からアミラーゼを測定する事を特徴とするアミラーゼ分
析法。
A sample is applied to an enzyme electrode consisting of a permselective hydrogen peroxide membrane on which α-glucosidase and glucose oxidase are immobilized and a hydrogen peroxide electrode in a buffer containing a substrate for amylase, and peroxide is generated as necessary. measuring the glucose concentration from the hydrogen-based primary current increase rate;
An amylase analysis method characterized by measuring amylase from the rate of increase in secondary current based on subsequently generated hydrogen peroxide.
JP58104704A 1983-06-10 1983-06-10 Amylase analyzing method Granted JPS59228160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58104704A JPS59228160A (en) 1983-06-10 1983-06-10 Amylase analyzing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58104704A JPS59228160A (en) 1983-06-10 1983-06-10 Amylase analyzing method

Publications (2)

Publication Number Publication Date
JPS59228160A true JPS59228160A (en) 1984-12-21
JPH0374338B2 JPH0374338B2 (en) 1991-11-26

Family

ID=14387866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58104704A Granted JPS59228160A (en) 1983-06-10 1983-06-10 Amylase analyzing method

Country Status (1)

Country Link
JP (1) JPS59228160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645480A (en) * 2012-05-11 2012-08-22 南开大学 Real time detecting method for influence of ultrasonic waves on immobilized peroxidase activity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645480A (en) * 2012-05-11 2012-08-22 南开大学 Real time detecting method for influence of ultrasonic waves on immobilized peroxidase activity

Also Published As

Publication number Publication date
JPH0374338B2 (en) 1991-11-26

Similar Documents

Publication Publication Date Title
EP0079502B1 (en) Multilayer enzyme electrode membrane, method of making same and polarographic cell structure
Eggenstein et al. A disposable biosensor for urea determination in blood based on an ammonium-sensitive transducer
AU605111B2 (en) Enzyme-electrode sensor
Mizutani et al. Amperometric L-lactate-sensing electrode based on a polyion complex layer containing lactate oxidase. Application to serum and milk samples
US4415666A (en) Enzyme electrode membrane
US5773270A (en) Three-layered membrane for use in an electrochemical sensor system
US4240889A (en) Enzyme electrode provided with immobilized enzyme membrane
US4886740A (en) Enzyme-electrode sensor with organosilane treated membrane
US5356786A (en) Interferant eliminating biosensor
Mascini et al. Amperometric acetylcholine and choline sensors with immobilized enzymes
Mizutani et al. Amperometric determination of pyruvate, phosphate and urea using enzyme electrodes based on pyruvate oxidase-containing poly (vinyl alcohol)/polyion complex-bilayer membrane
Palleschi et al. Ideal hydrogen peroxide-based glucose sensor
Mascini et al. Glucose electrochemical probe with extended linearity for whole blood
Guilbault et al. Enzyme electrodes for the determination of 1-phenylalanine
EP0859954B1 (en) Biosensors comprising a membrane
JP2003525053A (en) Enzyme-electrochemical measurement device
US4220503A (en) Stabilization of activated galactose oxidase enzyme
JPS60185153A (en) Immobilized enzyme membrane
Santoni et al. Enzyme electrode for glucose determination in whole blood
JPS59228160A (en) Amylase analyzing method
Popp et al. Sandwich enzyme membranes for amperometric multi-biosensor applications: improvement of linearity and reduction of chemical cross-talk
Eggenstein et al. Potentiometric biosensor in double matrix membrane technology
EP0078990B1 (en) Enzyme electrode membrane wherein enzyme is protectively encapsulated and method of making same
JPH08502348A (en) Sensor device
Yoda [5] Multienzyme membrane electrodes