Nothing Special   »   [go: up one dir, main page]

JPS59227726A - Grinding material of alumina-zirconia-titania system - Google Patents

Grinding material of alumina-zirconia-titania system

Info

Publication number
JPS59227726A
JPS59227726A JP58102289A JP10228983A JPS59227726A JP S59227726 A JPS59227726 A JP S59227726A JP 58102289 A JP58102289 A JP 58102289A JP 10228983 A JP10228983 A JP 10228983A JP S59227726 A JPS59227726 A JP S59227726A
Authority
JP
Japan
Prior art keywords
zirconia
grinding
alumina
yttrium oxide
titania
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58102289A
Other languages
Japanese (ja)
Other versions
JPH0236152B2 (en
Inventor
Akira Iwata
岩田 昭
Masahiro Tamamaki
玉巻 雅弘
Masaaki Taniguchi
正明 谷口
Koji Tsuda
津田 幸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KENMAZAI KOGYO KK
Original Assignee
NIPPON KENMAZAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KENMAZAI KOGYO KK filed Critical NIPPON KENMAZAI KOGYO KK
Priority to JP58102289A priority Critical patent/JPS59227726A/en
Publication of JPS59227726A publication Critical patent/JPS59227726A/en
Publication of JPH0236152B2 publication Critical patent/JPH0236152B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • C09K3/1427Abrasive particles per se obtained by division of a mass agglomerated by melting, at least partially, e.g. with a binder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:The titled grinding material applicable to heavy grinding fields, having improved grinding performances, obtained by adding ZrO2, TiO2 and Y2O3 or a mineral of rare earth element containing or Y2O3 as a melting additional matter to Al2O3, melting them, cooling them rapidly. CONSTITUTION:In a grinding material of Al2O3-ZrO2-TiO2 system obtained by adding ZrO2 and TiO2 to Al2O3, melting them, cooling them rapidly, preferably 0.05-7wt% Y2O3 or a mineral of rare earth element containing Y2O3 as another melting additional matter based on the total amounts of Al2O3, ZrO2, and TiO2 is added to them, so that grinding performances are improved and this grinding material is applicable to especially light grinding among heavy grinding, and applicable well to Ti alloy. The addition of Y2O3 or the mineral of rare earth element containing Y2O3 in the range crystallizes tetragonal system crystal of ZrO2 in about 70-100% remaining ratio, precipitation ratio of alpha-Al2O3 of initial crystal is suppressed to <= about 5%, and grinding performances can be improved.

Description

【発明の詳細な説明】 この発明はアルミナ−ジルコニア−チタニア系研削材に
おける研削性能の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to improvements in the grinding performance of alumina-zirconia-titania based abrasives.

一般にアルミナ−ジルコニア系砥粒は、ここ数年間にお
いて特殊鋼やステンレス鋼等のεス鋼材別のスナッキン
グ用として急速に伸びてきた砥粒である。すなわちアル
ミナ系砥粒に比して耐摩耗性並びに抗破砕性等の研削性
能に優れ、高圧下において優秀な研削力を発揮すること
がその主因であるが、本発明者が先に開示した 特公昭
48−35594号公報所載の発明では、それにも増し
てさらに一層すぐれた研削性能を具備するアルミナ−ジ
ルコニア−チタニア系研削材を提供し得たものであった
In general, alumina-zirconia based abrasive grains are abrasive grains that have been rapidly gaining popularity in recent years for use in snacking ε steel materials such as special steels and stainless steels. That is, the main reason for this is that it has superior grinding performance such as wear resistance and anti-fracture properties compared to alumina-based abrasive grains, and exhibits excellent grinding power under high pressure. The invention disclosed in Publication No. 48-35594 was able to provide an alumina-zirconia-titania-based abrasive material having even better grinding performance.

すなわち、アルミナにジルコニアを加えるとどもに、そ
のジルコニア聞に対し5〜30wt%の酸化チタンをさ
らに添加して溶融し、急冷するというもので、ジルコニ
ア本来の転移現象に着目し、高温型正方品結晶を常温に
おいて25〜30%程度残存させ、もって耐摩耗性、抗
破砕性等の研削性能の向上に寄与せしめたものであった
In other words, when zirconia is added to alumina, 5 to 30 wt% of titanium oxide is further added to the zirconia, melted, and rapidly cooled. Focusing on the inherent transition phenomenon of zirconia, high-temperature square products are produced. Approximately 25 to 30% of the crystals remained at room temperature, thereby contributing to improvements in grinding performance such as wear resistance and crush resistance.

ところで近時では研削方法も次第に変化する傾向にあっ
て、重研削という分野においても細分化され、その中で
も特に重研削の中の軽研削分野への転換が技術の進歩に
従い顕著になりつつある外、チタン合金に対する研削と
いった研削材上新分野への応用も増大しつつある。この
ような中にあってこれらの分野に対し良好に適応する研
削材が今日とみに要求されるところであるが、この場合
、要求される研削性能は前記アルミナ−ジルコニア−チ
タニア系研削材にも増して更にシビアーなものとならざ
るを得ないものがあり、未だ満足できる研削材を得るに
至っていないのが現状である。
By the way, in recent years, grinding methods have been gradually changing, and the field of heavy grinding has been subdivided, and in particular, the shift from heavy grinding to light grinding is becoming more prominent as technology advances. Applications to new fields of abrasive materials, such as grinding titanium alloys, are also increasing. Under these circumstances, abrasives that are well suited for these fields are required today, and in this case, the required grinding performance is even higher than that of the alumina-zirconia-titania-based abrasives. There are some things that have to be made even more severe, and the current situation is that a satisfactory abrasive has not yet been obtained.

寸なわら上記のごとき用途に適応させるためには、どち
らかといえばジルコニア量を比較的多量とした例えばジ
ルコニアff140%タイプのアルミナ−ジルコニア共
晶体からなる研削材を提供する必要があるが、この場合
では、前述のチタニア添加によるアルミナ−ジルコニア
−チタニア系も)l貞11材であっても高温型正方品結
晶の残存率は未だ極めて低く、添加効果は乏しいもので
あり、また結晶混合物中に結晶の大きさがmax20μ
もある初品のα−AI203が10〜15%程度の比率
で析出することから、所定の共晶混合物を得られないと
いった問題魚を有していたものである。
However, in order to be adapted to the above uses, it is necessary to provide an abrasive material made of alumina-zirconia eutectic with a relatively large amount of zirconia, such as the zirconia FF140% type. In the case of alumina-zirconia-titania system by addition of titania mentioned above, the residual rate of high-temperature type tetragonal crystals is still extremely low even in the 11 material, the addition effect is poor, and the addition effect is poor. Crystal size is max 20μ
However, since α-AI203, which is a first product, precipitates at a rate of about 10 to 15%, there was a problem in that it was not possible to obtain a predetermined eutectic mixture.

そこでこの発明の目的とするところは、重研削の中でも
特にその軽研削に対し、またさらにチタン合金に対して
格別に良好に適応して使用することができるようにする
為、正方品結晶の残存率を飛躍的に高め、かつ初品のα
−AI203の析出率を減少させ、もって研削性能が一
段と向上したアルミナ−ジルコニア−チタニア系研削材
を提供しようとするところにあり、その特徴とするとこ
ろは、アルミナ−ジルコニア−チタニア系研削材におい
て、さらに他の添加物として酸化イツトリウムまたは酸
化イツトリウムを含む稀土類鉱物を含有させた、いわば
アルミナ−ジルコニア−チタニア−イツトリア系研削材
としたところにある。
Therefore, the purpose of this invention is to make it possible to use it particularly well for light grinding even in heavy grinding, and furthermore, to make it particularly suitable for use with titanium alloys. Dramatically increase the rate and increase the α of the first product.
-The aim is to provide an alumina-zirconia-titania-based abrasive material that reduces the precipitation rate of AI203 and thereby further improves grinding performance. Furthermore, the abrasive material contains yttrium oxide or a rare earth mineral containing yttrium oxide as another additive, so to speak, as an alumina-zirconia-titania-yttria-based abrasive material.

すなわち添加物としてチタニアの外、酸化イツトリウム
または酸化イツトリウムを含む稀土類鉱物をさらに添加
混入して溶融し、急冷化することにより上記目的を十分
かつ良好に達成した研削材を得たものであって、特に酸
化イツトリウムまたは酸化イツトリウムを含む稀土類鉱
物の添加m h<、アルミナ、ジルコニア及びチタニア
の全量に対し0.05wt%を超え7wt%に至る範囲
内におし1ては、ジルコニアの正方晶結晶を70〜10
0%の残存率で晶出させることができたものであり、し
かも同範囲内においては初晶のα−AI203の析出率
を5wt%以下に抑えることができたものである。
That is, in addition to titania, yttrium oxide or a rare earth mineral containing yttrium oxide is added as an additive, and the abrasive material is melted and rapidly cooled to obtain an abrasive material that satisfactorily and satisfactorily achieves the above objectives. In particular, the addition of yttrium oxide or a rare earth mineral containing yttrium oxide m h<, within the range of more than 0.05 wt% to 7 wt% with respect to the total amount of alumina, zirconia and titania; 70-10 crystals
It was possible to crystallize with a residual rate of 0%, and moreover, within the same range, the precipitation rate of primary α-AI203 could be suppressed to 5 wt% or less.

なお熱論7wt%以上もしくは0.05wt%以下の添
加量であってもジルコニア正方品結晶の残存率は従来に
比して比較的大きな値を示し、かつ初晶のα−へ120
3の析出率を若干抑制する傾向はあるが、7wt%以上
の添加では研削性能の向上の点から好ましくない立方結
晶の析出につながり、0.05wt%以下では著しい効
果は現われないことから、0.05wt%を越え7wt
%に至る範囲内が適切で、特に1〜5wt%の範囲内が
最もOYましい。
Furthermore, even if the additive amount is 7wt% or more or 0.05wt% or less, the residual rate of zirconia tetragonal crystals shows a relatively large value compared to conventional crystals, and the primary crystal α-120
Although there is a tendency to slightly suppress the precipitation rate of 3, adding 7wt% or more leads to the precipitation of cubic crystals, which is undesirable from the viewpoint of improving grinding performance, and adding 0.05wt% or less does not have a significant effect. More than .05wt% and 7wt
%, most preferably 1 to 5 wt%.

なおまた、比較的少間のジルコニア■、例えば25%タ
イプのアルミナ−ジルコニア共結晶体を含む研削Hに対
しても、上述の比較的多量のジルコニア量のアルミナ−
ジルコニア共晶体からなる研削材と同じく、正方品ジル
コニアの残存率が極めて高いことから、ジルコニアの転
移貞にお(Jる容積変化が少なく、まlζ残存した正方
晶形ジルコニアが内部エネルギーを十分保有するに至り
、良好な抗破砕性等の特性の向上が認められlζもので
ある。
Furthermore, even for grinding H containing a relatively small amount of zirconia (2), for example, a 25% type alumina-zirconia cocrystal, the above-mentioned alumina with a relatively large amount of zirconia
Similar to abrasive materials made of zirconia eutectic, the residual rate of tetragonal zirconia is extremely high, so there is little change in volume due to zirconia transition, and the remaining tetragonal zirconia retains sufficient internal energy. As a result, improvements in properties such as good crush resistance were observed.

次に本発明の実施例について説明覆る。Next, embodiments of the present invention will be explained.

なお、本発明の実施例において使用する酸化イツトリウ
ム並びに酸化イツトリウムを含む稀土類鉱物は第1表に
示した分析値のものを用いた。
The yttrium oxide and the rare earth mineral containing yttrium oxide used in the examples of the present invention had the analytical values shown in Table 1.

第1表 実施例1゜ 砥粒中のジルコニアが40%となるように配合計算を行
ない、バイヤー法アルミナ(99,6%Al 203)
50 kg、 ジルコニア(96%Zr02)32.6
  kgk:、ジルコニア ニ対シ重量パーセントで2
.5%に相当する酸化チタン(95%Ti 02 )0
.8 kqを混合し、さらに酸化イツトリウム(99,
9%Y203 )を前3種の全量に対し0.05.0.
1.0.5.1.2.5.5.10wt%添加して、電
気炉において95V300kwで溶融し、しかる後急冷
固化して各種添加量についての溶融鋳造物を得た。
Table 1 Example 1 The composition was calculated so that the zirconia in the abrasive grains was 40%, and Bayer method alumina (99.6% Al 203) was used.
50 kg, Zirconia (96% Zr02) 32.6
kgk: Zirconia 2 to 2 weight percent
.. Titanium oxide (95% Ti 02 ) corresponding to 5% 0
.. 8 kq and further yttrium oxide (99,
9% Y203) to 0.05.0% of the total amount of the previous three types.
1.0.5.1.2.5.5.10 wt% was added, melted in an electric furnace at 95V300kW, and then rapidly solidified to obtain molten castings with various addition amounts.

なお比較のために酸化イツトリウムの添加間が0wt%
である溶融鋳造物も同条件で鋳造した。
For comparison, the addition period of yttrium oxide was 0 wt%.
A molten cast product was also cast under the same conditions.

これらの鋳造物の分析値を第2表に示ツー。The analytical values of these castings are shown in Table 2.

(以下次頁) 第2表 次にこの得られた鋳造物をインペラーブレーカ−及びロ
ールクラッシV−を用いて繰り返し粉砕を行ない、J 
l5R−6001に定められた粒曵#24、#60で各
々採取した。
(See next page) Table 2 Next, the obtained casting was repeatedly crushed using an impeller breaker and a roll crusher V-.
The grains were collected using grain scoops #24 and #60 specified in I5R-6001.

粒度#24についてX線回折によるジルコニアの結晶形
の比率を第3表に示づ。
Table 3 shows the ratio of zirconia crystal forms determined by X-ray diffraction for particle size #24.

(以下次頁) 第 3 表 X線回折の結果明らかなように、酸化イツトリウムを添
加すれば、添加しない従来のアルミナ−ジルコニア−チ
タニア系砥粒(試F4番月1)に比1ノ、正方晶の結晶
が戟しく増大づる傾向にあることが認められ、特に1〜
5wt%の添加量では100%の正方晶結晶が晶出して
いることが認められた。また添加量が0.05wj%で
は一応正方品の晶出の増大傾向はあるものの、従来のも
とあまり大差はなく、また10wt%を超えると立方晶
の析出が認められた。
(See next page) Table 3 As is clear from the results of X-ray diffraction, when yttrium oxide is added, the abrasive grains are 1 no. It was observed that the crystals tended to increase dramatically, especially in the case of 1-
It was observed that 100% of tetragonal crystals were crystallized when the amount added was 5 wt%. Furthermore, when the amount added was 0.05 wt%, although there was a tendency for the crystallization of tetragonal crystals to increase, there was not much difference from the conventional method, and when the amount exceeded 10 wt%, precipitation of cubic crystals was observed.

一方、この同じ粒度#24のものであって、例えば従来
のもの(試料番@1)と酸化イン1〜リウム添加ff1
0.5wt%(試料番号3)のものとについて全屈顕微
鏡を用いて初晶のα−AI203の析出状態を観察した
ところ、第1図(A>(13)及び第2図<A)(B)
に示される様な結果が出た。 いずれも倍率はX100
で、第1図(A>(B)は試料番号1のものの拡大写真
及びその模式図、第2図(A)(B)は試料番号3のも
のの拡大写真及びその模式図である。
On the other hand, the same particle size #24, for example, the conventional one (sample number @1) and the indium oxide 1 to lium addition ff1
When the precipitation state of primary α-AI203 was observed using a total refraction microscope for 0.5wt% (sample number 3), it was found that Fig. 1 (A>(13) and Fig. 2<A) ( B)
The results shown were obtained. In both cases, the magnification is X100
FIG. 1 (A>(B) is an enlarged photograph of sample number 1 and its schematic diagram, and FIG. 2 (A) and (B) are enlarged photographs of sample number 3 and its schematic diagram.

なお両図において、1はアルミナ−ジルコニア共晶体、
2はα−AI203の初晶である。
In both figures, 1 is an alumina-zirconia eutectic;
2 is the primary crystal of α-AI203.

第1図及び第2図からも明らかなごとく、酸化イツトリ
ウムを添加したものの方は茗しくα−AI203の初品
の析出が抑11i+1されており、所定の共晶混合物が
1gられていることが認められた。
As is clear from Figures 1 and 2, the precipitation of the initial product of α-AI203 was suppressed by 11i+1 in the case of the one to which yttrium oxide was added, indicating that 1g of the specified eutectic mixture was added. Admitted.

なお仙の酸化イツトリウムの添加のものにあっても同様
の傾向があることが確かめられているが、添加量が0.
05wt%ではα−At z 03の析出は10%程石
あり、従来のもが10〜15%程度であることからする
と幾分その傾向が出ているとはいうものの、あまり茗し
い差はなかった。
Furthermore, it has been confirmed that a similar tendency exists even with the addition of yttrium oxide, but the amount added is 0.
At 05 wt%, the precipitation of α-Atz 03 is about 10% rough, and considering that the conventional one is about 10 to 15%, there is a slight tendency toward this, but there is not a huge difference. Ta.

次に粒麿#60について研削性能の試験を行なった。Next, a grinding performance test was conducted on Kurumaro #60.

すなわらω1摩ベルトを作成し、研削テストを行なった
ものであり、その結果については第4表に示づ。
In other words, an ω1 friction belt was prepared and subjected to a grinding test, and the results are shown in Table 4.

なお研削テス1〜は、使用するベルトザイズを100x
2500m lto 、被研削材を5US−304とし
て、ベルトスピード150m/分、圧力5に!+で、1
0分間研削を行なったものであり、第4表はその研削に
よって得られた累積研削量をもって比較したものである
In addition, for grinding test 1~, the belt size used is 100x
2500mlto, the material to be ground is 5US-304, the belt speed is 150m/min, and the pressure is 5! + for 1
Grinding was performed for 0 minutes, and Table 4 compares the cumulative amount of grinding obtained by the grinding.

また括弧内は従来のもの(試料番号1)を100どした
場合の化較舶を示ず。
Also, the numbers in parentheses do not indicate the comparison when the conventional one (sample number 1) is set at 100.

第1I表 また第3図における曲線<8>は、この第4表における
累積研削量値をプロットしたグラフである。
Curve <8> in Table 1I and FIG. 3 is a graph plotting the cumulative grinding amount values in Table 4.

上記第4表あるいは第3図から明らかなように、酸化イ
ツトリウムを添加する共晶砥粒は酸化イツトリウムを添
加しない従来のものに比して極めて優れた研削力を発揮
することが認められた。
As is clear from Table 4 and FIG. 3 above, it was found that the eutectic abrasive grains to which yttrium oxide was added exhibited extremely superior grinding power compared to the conventional abrasive grains to which yttrium oxide was not added.

因みにこの結果は大略第3表に示したジルコニア正方晶
結晶の比率に対応しているものであって、添加ff10
.05wt%のものでは従来のものとあまり大差はなく
、1Qwt%を超えると立方晶の析出に伴い従来のもの
よりダウンする傾向がみられる。
Incidentally, this result roughly corresponds to the ratio of zirconia tetragonal crystals shown in Table 3, and the addition ff10
.. When it is 0.5 wt%, there is not much difference from the conventional one, but when it exceeds 1 Qwt%, there is a tendency for it to be lower than the conventional one due to the precipitation of cubic crystals.

しかしながら酸化イツトリウムの、添加は、全体として
は研削力の増大傾向を著しくするものであり、しかもこ
のテスト結果がわずか10分間の研削時間における比較
であることを考えたとき、実際の使用にあっては極めて
優れた研削性能の向上に寄与し得るものである。
However, the addition of yttrium oxide significantly increases the tendency of the grinding force as a whole, and considering that this test result was a comparison of only 10 minutes of grinding time, it is difficult to understand in actual use. can contribute to extremely improved grinding performance.

実施例2゜ 砥粒中のジルコニアが40%となるように配合計算を行
ない、バイヤー法アルミナ<99.6%△1zoi)5
0kq、 ジルコニア(96%Zr 02 )32.6
 knに、ジルコニアに対し中量パーセントで2.5%
に相当する酸化チタン(95%Ti 02 ) 0.8
  k!lを混合し、ざらに酸化イツトリウムを含む稀
土類鉱物(第1表に示づ“分析値のもの)を前3梗の全
量に対し1.2.5.5wt%添加して、電気炉におい
て95v1300kwで溶融し、しかる後急冷固化して
各種添加量についての溶融鋳造物を得た。
Example 2 The composition was calculated so that zirconia in the abrasive grains was 40%, and Bayer method alumina<99.6%△1zoi)5
0kq, zirconia (96% Zr 02 ) 32.6
kn, 2.5% in medium weight percentage for zirconia
Titanium oxide (95% Ti 02 ) equivalent to 0.8
k! 1,2 and 5.5 wt% of the total amount of the first three ink were added to the rare earth minerals containing yttrium oxide (analyzed values shown in Table 1), and heated in an electric furnace. It was melted at 95v1300kw and then rapidly solidified to obtain molten castings with various addition amounts.

これらの#ri造物の分析値を第5表に示J。なJ3試
料番号1は前記実施例1と同じく酸化イツトリウム無添
加の従来のものである。
The analytical values of these #ri products are shown in Table 5. Similarly to Example 1, J3 sample number 1 is a conventional sample without addition of yttrium oxide.

〈以下次頁) 第5表 1”Y20aその他稀土類 次にこの得られた鋳造物をインペラーブレーカ−及びロ
ールクラッシャーを用いて繰り返し粉砕を行ない、J 
[5R−6001に定められた粒度#24、#60で各
々採取した。
(Hereinafter on the next page) Table 5 1" Y20a Other rare earths Next, the obtained casting was repeatedly crushed using an impeller breaker and a roll crusher, and J
[Collected with particle size #24 and #60 specified in 5R-6001, respectively.

粒度#24についてX線回折によるジルコニアの結晶形
の化率を第6表に示す。
Table 6 shows the conversion rate of zirconia crystal form by X-ray diffraction for particle size #24.

(以下次頁) 第6表 ・X線回折の結果明らかなように、酸化イツトリウムを
含む稀土類鉱物を添加すれば、酸化イツトリウムの添加
の場合と同じ(、添加しないアルミナージルコニアーヂ
タニア系凪粒(試料番号′1)に比し、正方品の結晶が
著しく増大づる傾向があることが認められ、2.5〜5
wt%の添加filでは100%の正方晶結晶が晶出し
ていることが認められた。
(See next page) Table 6: As is clear from the results of X-ray diffraction, the addition of rare earth minerals containing yttrium oxide is the same as the addition of yttrium oxide (alumina zirconia ditania without addition) It was observed that the crystals of the square grain tended to increase significantly compared to the Nagi grain (sample number '1), and the crystal size of the square grain was 2.5 to 5
It was observed that 100% of tetragonal crystals were crystallized in the wt% added fil.

次に粒度#60について研削性能の試験を行なった。Next, a grinding performance test was conducted on the particle size #60.

試験条件は実施例1と同様である。イの結果については
第7表に示す。
The test conditions are the same as in Example 1. The results of b are shown in Table 7.

第7表 また第3図における曲線(b)はこの第7表におiノる
累積研削量値をプロットしたグラフである。
Curve (b) in Table 7 and FIG. 3 is a graph plotting the cumulative grinding amount values shown in Table 7.

上記第7表あるいは第3図から明らかなように、酸化イ
ツトリウム添加の実施例1の場合と同様に、酸化イツト
リウムを含む稀土類鉱物を添加する共晶砥粒においても
優れた研削力を発揮することがみとめられた。
As is clear from Table 7 or Figure 3 above, similar to the case of Example 1 with the addition of yttrium oxide, the eutectic abrasive grains to which rare earth minerals containing yttrium oxide are added exhibit excellent grinding power. This was recognized.

実施例3゜ 砥粒中のジルコニアが40%になるように配合t1mを
行ない、バイヤー法アルミナ50kq、ジルコニア32
.6kgにジルコニアに対してIJLmパーセントで5
.15wt%の酸化チタン1.7.4.9knを混合し
、酸化イツトリウムを前3種の混合物に対し重量パーセ
ントで0.5wt%添加したものについて鋳造物の分析
値、粒度#24についてのX線回折によるジルコニア結
晶形の化率及び粒度#60についての累fa 1III
rjll fAを測定した。
Example 3゜The blending t1m was carried out so that the zirconia in the abrasive grains was 40%, and Bayer method alumina 50kq, zirconia 32
.. IJLm percent for zirconia in 6kg is 5
.. Analysis values of castings for a mixture of 15 wt % titanium oxide 1.7.4.9 kn and 0.5 wt % yttrium oxide added to the previous three mixtures, X-rays for particle size #24 Cumulative fa for zirconia crystal form ratio and particle size #60 by diffraction 1III
rjll fA was measured.

その結果をそれぞれ第8表、第9表及び第10表に示す
The results are shown in Tables 8, 9 and 10, respectively.

なお化較のため、酸化チタン2.5wt%の添加量のも
の、及びそれぞれのヂタニア添jJl目iiのものにつ
いての酸化イツトリウム無添加の場合の舶もイj(記し
た。
For comparison, the results for the case where yttrium oxide was not added for the case where titanium oxide was added in an amount of 2.5 wt% and the case where yttrium oxide was not added for each case containing ditania are also shown.

゛ また試験方法はいずれも実施例1及び実施1+!l
 2と同様である。
゛ Also, the test methods are both Example 1 and Example 1+! l
It is the same as 2.

(以下次頁) 第8表 第9表 第10表 上記表からも明らかなように、酸化チタンの添加量の増
加に従い正方晶Zr 02の残存率は増大傾向を示して
いるが、それにも増して酸化イツトリウムの添加による
箸しい増大傾向が認められた。
(See next page) Table 8 Table 9 Table 10 As is clear from the above table, the residual rate of tetragonal Zr 02 shows an increasing tendency as the amount of titanium oxide added increases; A significant tendency for increase was observed with the addition of yttrium oxide.

またこれに対応して研削力の増大傾向が累積研削旦の数
値結果から認められる。
Correspondingly, a tendency for the grinding force to increase is recognized from the numerical results of cumulative grinding days.

実施例4゜ 砥粒中のジルコニアが25%並びに32%になるように
配合計算を行ない、バイヤー法アルミナ(99,6%A
lzO3>50kq並びに24.5kq、ジルコニア〈
96%7rO2)16.6k<+並びに11.51u+
に、ジルコニアにス4して、車間パーセントでO12,
5,5,10,15,20,30,40%の酸化チタン
〈95%Ti 02 )を各々添加したものと、砥粒中
のジルコニアが25%になるように配合割算を行ない、
バイヤー法アルミナ(99,6%Δ1zox >50 
k(+、;ジルコニア〈96%Zr 02 )16.6
 kgに、ジルコニアに対して重量パーヒントでO15
,10,15,20,30,40%の酸化チタン(95
%TtO2)を添加し、さらに酸化イツトリウムを前3
f!!の物質全量に対して0.5wt%添加したものを
それぞれ、電気炉を用いてアーク熱で溶融・急冷固化し
、これを一般的な砥粒の生産方式に従って整粒し、JI
S#12の砥粒とした。
Example 4: The composition was calculated so that the zirconia in the abrasive grains was 25% and 32%, and Bayer method alumina (99.6% A
lzO3>50kq and 24.5kq, zirconia<
96%7rO2) 16.6k<+ and 11.51u+
Then, the zirconia was replaced with 4, and the distance between the vehicles was O12,
5, 5, 10, 15, 20, 30, 40% titanium oxide (95% Ti 02 ) was added, and the abrasive grains were mixed with zirconia at 25%,
Bayer method alumina (99,6%Δ1zox >50
k(+, ; Zirconia <96% Zr 02 ) 16.6
kg, O15 in weight per tip for zirconia
, 10, 15, 20, 30, 40% titanium oxide (95
%TtO2) and further added yttrium oxide.
f! ! 0.5wt% added to the total amount of each substance was melted and rapidly solidified by arc heat using an electric furnace, and then sized according to a general abrasive grain production method, and JI
The abrasive grains were S#12.

これらのもの、すなわち酸化イツトリウム無添加のジル
コニア25%タイプ及び32%タイプのものど、酸化イ
ツトリウム添加のジルコニア25%タイプのものについ
て抗破砕性測定試験を行なった。抗破砕性測定には単粒
圧壊強度を用いた。1この方法は、試料を1680〜2
000ミクロンに整粒して、縮分法により小試料とし、
その中からランダムに100個採取して、これを2トン
アムスラー圧縮器で1個ずつ耐圧強1&を測定して、そ
の平均値を単粒圧壊強度とし1.:。
A fracture resistance measurement test was conducted on these materials, ie, zirconia 25% type and 32% type without yttrium oxide, and zirconia 25% type with yttrium oxide added. Single grain crushing strength was used to measure crush resistance. 1 This method uses a sample of 1680~2
The particles are sized to 000 microns and made into small samples by the reduction method.
100 pieces were randomly sampled from among them, and the compressive strength 1& of each piece was measured using a 2-ton Amsler compressor, and the average value was taken as the single-grain crushing strength.1. :.

これらの砥粒の単粒圧壊強度を第11表に、131粒圧
壊強度とTi 02 /Zr 02との関係を第4図に
示す。
The single grain crushing strength of these abrasive grains is shown in Table 11, and the relationship between the 131 grain crushing strength and Ti 02 /Zr 02 is shown in FIG.

tff11表 第4図より明らかな様に、いずれのタイプにJ3いても
Ti O2/Zr 02が重量パーセントで10〜20
%の範囲内で、 wax値を示し、/lo%になると低
下するが、特に酸化イツトリウムを添加したものについ
ては、Zr0225%タイプにあっては勿論、32%タ
イプと化較しても更にづぐれた抗破砕性を発揮υ゛るこ
とが認められた。
As is clear from Table 4 of tff11, TiO2/Zr02 is 10 to 20% by weight in any type of J3.
The wax value is shown within the range of % and decreases when it reaches /lo%, but especially for those with yttrium oxide added, the wax value is even lower when compared to the 32% type as well as the 25% Zr02 type. It was recognized that it exhibited excellent crush resistance.

以上のごとくこの発明は、アルミナにジルコニア及びチ
タニアを添加溶融し、急冷1ノでイrるアルミナ−ジル
コニア−チタニア系研削材において。
As described above, the present invention provides an alumina-zirconia-titania-based abrasive material in which zirconia and titania are added to alumina, melted, and then quenched by one cycle.

さらに他の溶融添加物として酸化イットリウ11または
酸化イツトリウムを含む稀土類鉱物を含有させることに
より、砥粒中にジルコニア正方品結晶を最大100%残
存させたものであり、また比較的ジルコニア量の多いア
ルミナ−ジルコニア共晶体からなる研削材にあって初晶
のα−へ1203の析出を5%以下に抑えたもので、研
削性能を著しく向上させた研削材茨提供し得たものであ
る。
Furthermore, by containing yttrium 11 oxide or rare earth minerals containing yttrium oxide as other melt additives, up to 100% of the tetragonal zirconia crystals remain in the abrasive grains, and the amount of zirconia is relatively large. This is an abrasive material made of an alumina-zirconia eutectic in which the precipitation of 1203 in primary α- crystals is suppressed to 5% or less, thereby providing an abrasive material with significantly improved grinding performance.

従って■研削の中でも特にその軽研削に対し、またさら
にチタン合金に対して格別に良好E iiI応して使用
できるものである。
Therefore, it can be used especially for light grinding in (1) grinding, and also for titanium alloys as it has an exceptionally good EIII performance.

また比較的ジルコニア量の少ないアルミナ−ジルコニア
共晶体を含む研削材にあっても従来に比較ザればその抗
破砕性等の特性において一段と向上し得たものである。
Furthermore, even in the case of an abrasive material containing an alumina-zirconia eutectic with a relatively small amount of zirconia, its properties such as crush resistance can be further improved when compared with conventional materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A>(B)は従来の酸化イツトリウム無添加の
アルミナ−ジルコニア共晶混合物(試料番@1)の拡大
写真及びその模式図、 第2図(A> <8)はこの発明の一実施例である酸化
イツトリウム添加のアルミナ−ジルコニア共晶混合物〈
試料番号3)の拡大写真及びその4賛成図、 第3図は同実施例及び他実施例である酸化イツトリウム
添加の研削材及び酸化イツトリウムを含む稀土類鉱物添
加の研削材における酸化イツトリウム等の添加量と累積
研削量の関係図、第4図はジルコニア量が比較的少ない
研削材における酸化チタンの添加量と単粒圧壊強度との
関係図である。 第2図 (A) 第3図 Y20JgL<KYa05に’dr41p土順*LQs
t>4.ho量(wy>〔α)−・−Y2O5a>:*
n。 (b)−・・Y2Dsk*も44:r、−1’fJu’
4j;aoh、h。
Figure 1 (A>(B) is an enlarged photograph and schematic diagram of a conventional alumina-zirconia eutectic mixture (sample number @ 1) without the addition of yttrium oxide, and Figure 2 (A><8) is an enlarged photograph of the conventional alumina-zirconia eutectic mixture (sample number @ 1). An example of an alumina-zirconia eutectic mixture with addition of yttrium oxide
An enlarged photograph of sample number 3) and a similar view of sample number 4. Figure 3 shows the addition of yttrium oxide, etc. in the same example and other examples, such as abrasives containing yttrium oxide and abrasives containing rare earth minerals containing yttrium oxide. Figure 4 is a diagram showing the relationship between the amount of titanium oxide added and the single grain crushing strength in an abrasive material with a relatively small amount of zirconia. Figure 2 (A) Figure 3 Y20JgL<KYa05 'dr41p earth order*LQs
t>4. ho amount (wy>[α)-・-Y2O5a>:*
n. (b) -...Y2Dsk* is also 44:r, -1'fJu'
4j; aoh, h.

Claims (3)

【特許請求の範囲】[Claims] (1)  アルミナにジルコニア及びチタニアを添加溶
融し、急冷してなるアルミナ−ジルコニア−チタニア系
研削材において、さらに他の溶融添加物として酸化イツ
トリウム又は酸化イツトリウムを含む稀土類鉱物を含有
するアルミナ−ジルコ千アーチタニア系研削材。
(1) An alumina-zirconia-titania-based abrasive material made by adding and melting zirconia and titania to alumina and rapidly cooling the alumina-zirconia-based abrasive material, which further contains yttrium oxide or a rare earth mineral containing yttrium oxide as another molten additive. Thousand archtania type abrasive material.
(2)  酸化イツトリウムの添加量が、アルミナ、ジ
ルコニア、及びチタニアの全量に対し0.05Vt%を
超え7wt%に至る特許請求の範囲第1項記載のアルミ
ナ−ジルコニア−チタニア系研削材。
(2) The alumina-zirconia-titania-based abrasive material according to claim 1, in which the amount of yttrium oxide added exceeds 0.05 Vt% and reaches 7 wt% based on the total amount of alumina, zirconia, and titania.
(3)酸化イツトリウムを含む稀土類鉱物の添加量が、
アルミナ、ジルコニア及びチタニアの全量に対し0.0
5wt%を超え7wt%に至る特許請求の範囲第1項記
載のアルミナ−ジルコニア−チタニア系研削材。
(3) The amount of rare earth minerals including yttrium oxide added is
0.0 for the total amount of alumina, zirconia and titania
The alumina-zirconia-titania-based abrasive material according to claim 1, which has a content of more than 5 wt% and up to 7 wt%.
JP58102289A 1983-06-07 1983-06-07 Grinding material of alumina-zirconia-titania system Granted JPS59227726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58102289A JPS59227726A (en) 1983-06-07 1983-06-07 Grinding material of alumina-zirconia-titania system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58102289A JPS59227726A (en) 1983-06-07 1983-06-07 Grinding material of alumina-zirconia-titania system

Publications (2)

Publication Number Publication Date
JPS59227726A true JPS59227726A (en) 1984-12-21
JPH0236152B2 JPH0236152B2 (en) 1990-08-15

Family

ID=14323449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58102289A Granted JPS59227726A (en) 1983-06-07 1983-06-07 Grinding material of alumina-zirconia-titania system

Country Status (1)

Country Link
JP (1) JPS59227726A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099567A (en) * 1983-09-29 1985-06-03 ノ−トン カンパニ− Alumina/zirconia abrasive grain, abrasive cloth paper and grinding wheel
US5061665A (en) * 1989-01-13 1991-10-29 The Japan Carlit Co., Ltd. Process for producing an improved alumina-zirconia composite sintered material
JPH04300242A (en) * 1991-01-16 1992-10-23 Nippon Kenmazai Kogyo Kk Fused alumina-zirconia-yttria based refractory material having excellent high-temperature resistance and corrosion resistance and production thereof
EP0595081A1 (en) * 1992-10-19 1994-05-04 H.C. Starck GmbH & Co. KG Zirconia-Corundum abrasive grains, process for their production, and use thereof
WO2002008143A3 (en) * 2000-07-19 2002-05-02 3M Innovative Properties Co Fused al2o3-y2o3-zro2 eutectic abrasive particles, abrasive articles, and methods of making and using the same
EP1255710A1 (en) * 2000-02-02 2002-11-13 3M Innovative Properties Company Fused al2o3-y2o3 eutectic abrasive particles, abrasive articles and methods of making and using the same
WO2003072678A1 (en) * 2002-02-21 2003-09-04 3M Innovative Properties Company Abrasive particles containing sintered, polycrystalline zirconia
EP1483351A2 (en) * 2001-08-02 2004-12-08 3M Innovative Properties Company Abrasive particles, and methods of making and using the same
WO2011015995A2 (en) 2009-08-05 2011-02-10 Saint-Gobain Centre De Recherches Et D'etudes Europeen Molten grains of alumina-zirconia
WO2011141037A1 (en) * 2010-05-10 2011-11-17 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Abrasive grains based on zirconia alumina
EP1257512B1 (en) * 2000-02-02 2012-02-22 3M Innovative Properties Company Fused abrasive particles, abrasive articles, and methods of making and using the same
JP2012520231A (en) * 2009-03-11 2012-09-06 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Melted alumina / zirconia particle mixture
JP2014514998A (en) * 2011-03-31 2014-06-26 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン ATZ fused particles
WO2021260094A1 (en) * 2020-06-25 2021-12-30 Imertech Sas Abrasive zirconium corundum grains having a high sio2 content

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099567A (en) * 1983-09-29 1985-06-03 ノ−トン カンパニ− Alumina/zirconia abrasive grain, abrasive cloth paper and grinding wheel
JPH0312597B2 (en) * 1983-09-29 1991-02-20 Norton Co
US5061665A (en) * 1989-01-13 1991-10-29 The Japan Carlit Co., Ltd. Process for producing an improved alumina-zirconia composite sintered material
JPH04300242A (en) * 1991-01-16 1992-10-23 Nippon Kenmazai Kogyo Kk Fused alumina-zirconia-yttria based refractory material having excellent high-temperature resistance and corrosion resistance and production thereof
EP0595081A1 (en) * 1992-10-19 1994-05-04 H.C. Starck GmbH & Co. KG Zirconia-Corundum abrasive grains, process for their production, and use thereof
US5525135A (en) * 1992-10-19 1996-06-11 H. C. Starck Gmbh & Co. Kg Abrasive material based on zirconium corundum a process for its production and its use
EP1257512B1 (en) * 2000-02-02 2012-02-22 3M Innovative Properties Company Fused abrasive particles, abrasive articles, and methods of making and using the same
EP1255710A1 (en) * 2000-02-02 2002-11-13 3M Innovative Properties Company Fused al2o3-y2o3 eutectic abrasive particles, abrasive articles and methods of making and using the same
WO2002008143A3 (en) * 2000-07-19 2002-05-02 3M Innovative Properties Co Fused al2o3-y2o3-zro2 eutectic abrasive particles, abrasive articles, and methods of making and using the same
JP2004504447A (en) * 2000-07-19 2004-02-12 スリーエム イノベイティブ プロパティズ カンパニー Molten Al2O3-Y2O3-ZrO2 eutectic abrasive particles, abrasive articles, and methods of making and using them
EP1483351A2 (en) * 2001-08-02 2004-12-08 3M Innovative Properties Company Abrasive particles, and methods of making and using the same
CN1328012C (en) * 2002-02-21 2007-07-25 3M创新有限公司 Abrasive particles containing sintered, polycrystalline zirconia
WO2003072678A1 (en) * 2002-02-21 2003-09-04 3M Innovative Properties Company Abrasive particles containing sintered, polycrystalline zirconia
JP2012520231A (en) * 2009-03-11 2012-09-06 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Melted alumina / zirconia particle mixture
AU2010280429B2 (en) * 2009-08-05 2015-07-02 Saint-Gobain Centre De Recherches Et D'etudes Europeen Molten grains of alumina-zirconia
US9212097B2 (en) 2009-08-05 2015-12-15 Saint-Gobain Centre De Recherches Et D' Etudes Europeen Molten grains of alumina-zirconia
FR2948934A1 (en) * 2009-08-05 2011-02-11 Saint Gobain Ct Recherches FROZEN ALUMINA-ZIRCONE GRAINS.
CN102471161A (en) * 2009-08-05 2012-05-23 法商圣高拜欧洲实验及研究中心 Fused alumina-zirconia abrasive grain
WO2011015995A2 (en) 2009-08-05 2011-02-10 Saint-Gobain Centre De Recherches Et D'etudes Europeen Molten grains of alumina-zirconia
JP2013501121A (en) * 2009-08-05 2013-01-10 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Melted alumina-zirconia grit
WO2011015995A3 (en) * 2009-08-05 2011-04-21 Saint-Gobain Centre De Recherches Et D'etudes Europeen Molten grains of alumina-zirconia
CN102892856A (en) * 2010-05-10 2013-01-23 研磨剂与耐火品研究与开发中心C.A.R.R.D.有限公司 Abrasive grains based on zirconia alumina
US9005323B2 (en) 2010-05-10 2015-04-14 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Abrasive grains based on zirconia alumina
JP2013531085A (en) * 2010-05-10 2013-08-01 センター フォー アブレイシブズ アンド リフラクトリーズ リサーチ アンド ディベロップメント シー.エー.アール.アール.ディー. ゲーエムベーハー Abrasive grains based on zirconium corundum
WO2011141037A1 (en) * 2010-05-10 2011-11-17 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Abrasive grains based on zirconia alumina
JP2014514998A (en) * 2011-03-31 2014-06-26 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン ATZ fused particles
WO2021260094A1 (en) * 2020-06-25 2021-12-30 Imertech Sas Abrasive zirconium corundum grains having a high sio2 content

Also Published As

Publication number Publication date
JPH0236152B2 (en) 1990-08-15

Similar Documents

Publication Publication Date Title
JPS59227726A (en) Grinding material of alumina-zirconia-titania system
JP5270099B2 (en) Aluminum-titanium oxide-zirconia molten particles
DE60306428T2 (en) GRINDING AGENTS BASED ON ALUMINUM AND ZIRCONIUM OXYNITRIDE
Lu et al. Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique
JP3132955B2 (en) Abrasive material based on zirconium corundum, method for its production and use thereof
EP1968893B1 (en) Metal borides
JPH0312597B2 (en)
JPH0448857B2 (en)
CA1172022A (en) Method of forging spinel domes
CN102892856B (en) Abrasive grains based on zirconia alumina
AU660165B2 (en) Fused alumina-zirconia-yttria refractory materials having high-temperature heat resistance and corrosion resistance and a method for producing the same
Chen et al. Preparation and crystal structure of Nb14S5
Quaide et al. Impact metamorphism of lunar surface materials
JPS58185477A (en) High speed cutting ceramic for cutting tool
JPH04119941A (en) Production of crystallized glass
JP2852825B2 (en) Method for producing flaky potassium hexatitanate polycrystalline particles
JPS6217071A (en) Stabilized zirconia sintered body
CN113277837A (en) Preparation method of high-performance black corundum abrasive
Löffert et al. Elements of the phase diagram of YbInCu4
JP2004515598A (en) Abrasive particles based on Al2O3 and ZrO2, their production and use
JPS63223101A (en) Production of alloy powder
JPS6240340A (en) Diamond-type sintered material for cutting tool
JP2003119531A (en) Aluminum alloy superior in abrasion resistance, heat resistance and thermal conductivity, and manufacturing method thereof
JPH0214822A (en) Readily sinterable zirconia powder
KR100421541B1 (en) Be containing Al-Cu-Fe based Quasicrystalline Alloy Compositions