JPS59226255A - Control apparatus for internal-combustion engine - Google Patents
Control apparatus for internal-combustion engineInfo
- Publication number
- JPS59226255A JPS59226255A JP58101884A JP10188483A JPS59226255A JP S59226255 A JPS59226255 A JP S59226255A JP 58101884 A JP58101884 A JP 58101884A JP 10188483 A JP10188483 A JP 10188483A JP S59226255 A JPS59226255 A JP S59226255A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- negative pressure
- valve
- air
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/05—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using mechanical means
- F02P5/14—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using mechanical means dependent on specific conditions other than engine speed or engine fluid pressure, e.g. temperature
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Control Of The Air-Fuel Ratio Of Carburetors (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、通常は理論空燃比より希薄な空燃比の混合気
により運転される形式の内燃機関の制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for an internal combustion engine that is normally operated with an air-fuel mixture having an air-fuel ratio leaner than the stoichiometric air-fuel ratio.
従来、上記形式の内燃機関においては、その運転条件に
より混合気の空燃比を略理論空燃比まで濃厚にして燃焼
の安定化及び出力性能の向上を図ることは行われて(・
るが、燃費及びドライバビリティ等の面で尚一層の改善
の余地がある。Conventionally, in the above-mentioned type of internal combustion engine, the air-fuel ratio of the air-fuel mixture was enriched to approximately the stoichiometric air-fuel ratio depending on the operating conditions in order to stabilize combustion and improve output performance.
However, there is still room for further improvement in terms of fuel efficiency, drivability, etc.
本発明は、そのような改善を達成し得る有効な前記内燃
機関の制御装置を提供するもので、その特徴は、機関の
低温状態または高負荷状態に応じて混合気の空燃比を略
理論空燃比に濃厚化すべく吸気系への供給燃料を増量さ
せるように作動する燃料増量装置と、点火時期の進角限
界を該燃料増量装置の作動時には第1の限界に規制し不
作動時には該第1の限界より進んだ第2の限界に規制す
るように該燃料増量装置と連動する点火時期制御装置と
を備えたところにある。The present invention provides an effective control device for the internal combustion engine that can achieve such improvements, and its feature is to adjust the air-fuel ratio of the air-fuel mixture to approximately stoichiometric depending on the low temperature state or high load state of the engine. A fuel increasing device that operates to increase the amount of fuel supplied to the intake system in order to enrich the fuel ratio, and regulating an ignition timing advance limit to a first limit when the fuel increasing device is activated and to the first limit when the fuel increasing device is not activated. The ignition timing control device is provided with an ignition timing control device that interlocks with the fuel increase device so as to regulate the fuel amount to a second limit that is advanced from the limit of the ignition timing control device.
以下、図面により本発明を自動車用内燃機関に適用した
一実施例について説明すると、先ず第1図において、機
関Eのシリンダヘッド−側に吸気マニホールドM乙、他
側に排気マニホールドA/ eが結着され、吸気マニホ
ールドMiの上流端に気化器Cが装着され、この気化器
Cは、機関の通常運転時には理論空燃比よりも希薄な空
燃比の混合気を生成するように調整されている。さらに
気化器Cの入口にはエアクリーナAが取付けられている
。An embodiment in which the present invention is applied to an automobile internal combustion engine will be described below with reference to the drawings. First, in FIG. 1, an intake manifold M B is connected to the cylinder head side of the engine E, and an exhaust manifold A/e is connected to the other side. A carburetor C is installed at the upstream end of the intake manifold Mi, and the carburetor C is adjusted to produce an air-fuel mixture with an air-fuel ratio leaner than the stoichiometric air-fuel ratio during normal operation of the engine. Further, an air cleaner A is attached to the inlet of the carburetor C.
一方、排気マニホールドAl eに接続される排気管に
は排気浄化装置Tが装着される。On the other hand, an exhaust purification device T is attached to an exhaust pipe connected to the exhaust manifold Ale.
気化器Cの吸気道1には、中央のベンチュ1J1aを挟
んでその上流側にチョーク弁2、下流側に絞弁3がそれ
ぞれ設置され、ベンチュリ1αには、燃料ノズル4が開
口する。In the intake path 1 of the carburetor C, a choke valve 2 is installed on the upstream side and a throttle valve 3 is installed on the downstream side of the central venturi 1J1a, and a fuel nozzle 4 is opened in the venturi 1α.
さらに吸気道1において、絞弁3の近傍部に第1負圧検
出孔り、が、またベンチュリ1aに第2負圧検出孔D2
が開口し、第1負圧検出孔り、は、絞弁3のアイドル開
度位置でその上流に位置し、絞弁3が開き始めるとその
下流側に移るようになっている。Furthermore, in the intake passage 1, there is a first negative pressure detection hole D2 in the vicinity of the throttle valve 3, and a second negative pressure detection hole D2 in the venturi 1a.
is opened, and the first negative pressure detection hole is located upstream of the throttle valve 3 at the idle opening position, and moves to the downstream side when the throttle valve 3 starts to open.
吸気マニホールドM iにはエンジンEの排気マニホー
ルドΔieより分岐して延出する排気還流路5が接続さ
れており、その途中に還流量制御弁6が設けられる。こ
の弁6は、排気還流路50開度調節を行う弁体7にダイ
ヤフラム8を連結し、そのダイヤフラム8の上側に形成
した負圧室9に上記弁体7を閉じ側に付勢する弁ばね1
0を縮設して負圧応動型に構成される。An exhaust gas recirculation path 5 branching and extending from the exhaust manifold Δie of the engine E is connected to the intake manifold M i, and a recirculation amount control valve 6 is provided in the middle thereof. This valve 6 has a diaphragm 8 connected to a valve body 7 that adjusts the opening degree of the exhaust gas recirculation passage 50, and a valve spring that urges the valve body 7 toward the closing side in a negative pressure chamber 9 formed above the diaphragm 8. 1
0 is shortened to form a negative pressure responsive type.
この還流量制御弁6の負圧室9には第1および第2負圧
検出孔D1 、D2から延出する第1および第2負圧通
路り、、L2が接続され、第1負圧通路L1には感温弁
11とその下流側に位置するオリアイスJθとが直列に
設けられる。感温弁11は、所定の機関温度(例えば冷
却水温で70C)未満で第1負圧通路L1の上流側を不
通にすると共に下流側をフイルク付大気開放口13に連
通し、その温度以上では第1負圧通路L1を導通させる
と共に大気開放口13を閉鎖するように動作する。First and second negative pressure passages extending from first and second negative pressure detection holes D1 and D2 are connected to the negative pressure chamber 9 of this return amount control valve 6, and the first negative pressure passage L1 is provided with a temperature-sensitive valve 11 and an oriice Jθ located downstream thereof in series. The temperature-sensitive valve 11 closes the upstream side of the first negative pressure passage L1 when the engine temperature is lower than a predetermined engine temperature (for example, 70C in terms of cooling water temperature), and communicates the downstream side with the atmosphere opening port 13 with a film, and when the temperature exceeds the predetermined temperature, the temperature-sensitive valve 11 closes the upstream side of the first negative pressure passage L1. It operates to make the first negative pressure passage L1 conductive and to close the atmosphere opening port 13.
第2負圧通路L2には負圧制御弁Vが設けられ、それは
第2負圧通路L2を開閉制御する負圧応動型調整弁V、
と、還流量制御弁6の作動負圧をフィードバックされて
調整弁V1を制御する同じく負圧応動型の空気弁V2と
よりなっており、6弁の構成を順次説明する。The second negative pressure passage L2 is provided with a negative pressure control valve V, which includes a negative pressure responsive regulating valve V that controls opening and closing of the second negative pressure passage L2;
and an air valve V2 which is also a negative pressure responsive type and controls the regulating valve V1 by receiving feedback of the operating negative pressure of the recirculation amount control valve 6.The configuration of the six valves will be explained in sequence.
先ず調整弁V1は、第2負圧通路L2の途中に形成され
る弁室20と、その上側にダイヤフラム21を介して隣
接する負圧室22と、上記ダイヤフラム21に付設され
て第1負圧通路り、の下流側弁口25を開閉し得る弁体
23と、その弁体23を閉じ側に付勢する弁ばね24と
より構成されている。First, the regulating valve V1 includes a valve chamber 20 formed in the middle of the second negative pressure passage L2, a negative pressure chamber 22 adjacent to the upper side of the valve chamber through a diaphragm 21, and a first negative pressure chamber attached to the diaphragm 21. It is composed of a valve body 23 that can open and close a downstream valve port 25 of the passage, and a valve spring 24 that biases the valve body 23 toward the closing side.
次に空気弁V2は、吸気マニホールドMiより延出して
フィルタ付大気開放口14に至る制御吸気路LCの途中
に形成される弁室30と、その上側にダイヤフラム31
を介して隣接する負圧室32と、上記ダイヤフラム31
に付設されて制御吸気路LCの下流側の弁口35を開閉
し得る弁体33と、その弁体33を閉じ側に付勢する弁
ばね34とより構成される。而して、負圧室32は連通
路36及び、調整弁V、の弁口25よりも下流側の第2
負圧通路L2を介して還流量制御弁6の負圧室9と連通
する。Next, the air valve V2 includes a valve chamber 30 formed in the middle of a control intake passage LC extending from the intake manifold Mi and reaching the filtered atmosphere opening 14, and a diaphragm 31 above the valve chamber 30.
The adjacent negative pressure chamber 32 and the diaphragm 31
The valve body 33 includes a valve body 33 that is attached to the control intake passage LC and can open and close a valve port 35 on the downstream side of the control intake passage LC, and a valve spring 34 that biases the valve body 33 toward the closing side. Thus, the negative pressure chamber 32 is connected to the communication passage 36 and the second valve downstream of the valve port 25 of the regulating valve V.
It communicates with the negative pressure chamber 9 of the reflux control valve 6 via the negative pressure passage L2.
前記調整弁V1の負圧室22は、空気弁V2の弁室30
の上流で制御吸気路LCに介入するようにして形成され
、この負圧室22を間に挟む一対のオリフィスJ、、J
2が制御吸気路LCに設けられ、それらの絞り開度は同
等、若しくは上流側のものJ、を下流側のもの12より
小さく設定される。The negative pressure chamber 22 of the regulating valve V1 is the valve chamber 30 of the air valve V2.
A pair of orifices J, , J are formed so as to intervene in the control intake passage LC at the upstream side of the
2 are provided in the control intake passage LC, and their throttle opening degrees are set to be the same, or the one on the upstream side J is set smaller than the one on the downstream side 12.
また第2負圧通路L2には調整弁V1の上流側にオリフ
ィスJ3が設けられ、またこのオリフィスJ3と調整弁
V1との間に、第1電磁弁Vs。Further, an orifice J3 is provided in the second negative pressure passage L2 on the upstream side of the regulating valve V1, and a first electromagnetic valve Vs is provided between the orifice J3 and the regulating valve V1.
に至る第1逃し通路Ll、が接続される。A first relief passage Ll leading to is connected.
前記気化器Cにおいて、燃料ノズル4は並列する第1及
び第2燃料ジェット60+、602と、第2燃料ジエツ
ト60□の直下に設けられる燃料増量弁61とを介して
フロート室62の燃料油面下に連通ずる。燃料増量弁6
1は、第2燃刺ジエツト602の下部に連設された弁筒
63と、この弁筒63内に昇降自在に収納されて弁筒6
3下端の弁座と協働する弁体64と、フロート室62の
底壁に張設されて弁体64と連結するダイヤフラム65
と、このダイヤフラム65の外側に形成された負圧室6
6と、この負圧室66に縮設されてダイヤフラム65を
弁体64の開き方向に弾発する戻しばね67とより構成
され、負圧室66は吸気マニホールドAIi内に第3負
圧通路L3を介して連通される。In the carburetor C, the fuel nozzle 4 controls the fuel oil level in the float chamber 62 via the parallel first and second fuel jets 60+, 602 and a fuel increase valve 61 provided directly below the second fuel jet 60□. It connects to the bottom. Fuel increase valve 6
1 includes a valve cylinder 63 connected to the lower part of the second fuel jet 602, and a valve cylinder 6 that is housed in the valve cylinder 63 so as to be movable up and down.
3. A valve body 64 that cooperates with the valve seat at the lower end, and a diaphragm 65 that is stretched over the bottom wall of the float chamber 62 and connected to the valve body 64.
and a negative pressure chamber 6 formed outside this diaphragm 65.
6, and a return spring 67 that is contracted in the negative pressure chamber 66 and urges the diaphragm 65 in the opening direction of the valve body 64.The negative pressure chamber 66 has a third negative pressure passage L3 in the intake manifold AIi. communicated via.
而して、絞弁3が低開度域におかれる機関の低負荷運転
時には、絞弁3の下流側に発生する比較的高い負圧が第
3負圧通路L3を通して負圧室66に伝達し、戻しばね
67の力に抗してダイヤフラム65を引き下げるので、
弁体64は下降して弁筒63の弁座に着座し、燃料増量
弁61を閉弁状態にする。したがって、低負荷運転時に
は、フロート室62から燃料ノズル4への燃料の供給量
は第1燃料ジエツト601のみにより少な目に計量され
るため、燃料ノズル4からの燃料噴出量は比較的少ない
。これに対して、絞弁3が高開度域におかれる機関の高
負荷運転時には、絞弁3の下流側の負圧の低下に伴い負
圧室66の負圧も低下し、戻しばね67がダイヤフラム
65を押し上げるので、弁体64を前記弁座から離間さ
せ、燃料増量弁61を開弁状態にする。したがって、高
負荷運転時には、フロート室62から燃料ノズル4への
燃料供給量が並列関係の第1及び第2燃料ジエツ)60
..602により冬目に計量されるため、燃料ノズル4
からの燃料噴出量は増量される。以上において、第2燃
料ジエツト602及び燃料増量弁61は本発明の燃料増
量装置を構成する。Therefore, during low load operation of the engine in which the throttle valve 3 is placed in a low opening range, relatively high negative pressure generated downstream of the throttle valve 3 is transmitted to the negative pressure chamber 66 through the third negative pressure passage L3. However, since the diaphragm 65 is pulled down against the force of the return spring 67,
The valve body 64 descends and seats on the valve seat of the valve cylinder 63, closing the fuel increase valve 61. Therefore, during low load operation, the amount of fuel supplied from the float chamber 62 to the fuel nozzle 4 is measured to a small extent only by the first fuel jet 601, so that the amount of fuel ejected from the fuel nozzle 4 is relatively small. On the other hand, during high-load operation of the engine in which the throttle valve 3 is placed in a high opening range, the negative pressure in the negative pressure chamber 66 also decreases as the negative pressure downstream of the throttle valve 3 decreases, and the return spring 67 Since the diaphragm 65 is pushed up, the valve body 64 is separated from the valve seat, and the fuel increase valve 61 is opened. Therefore, during high-load operation, the amount of fuel supplied from the float chamber 62 to the fuel nozzle 4 is set to the first and second fuel jets (60) in a parallel relationship.
.. .. 602, the fuel nozzle 4 is metered in winter.
The amount of fuel ejected from is increased. In the above, the second fuel jet 602 and the fuel increase valve 61 constitute the fuel increase device of the present invention.
第3負圧通路L3には感温弁40と、これよりも上流側
に位置するオリフィスJ4とが直列に介装される。感温
弁40は、所定の機関温度(例えば冷却水温度で50C
)未満では第3負圧通路L3を遮断し、その温度以上で
は導通ずるように動作するO
上記オリフィスJ4 より上流の第3負圧通路L3には
前記第1電磁弁VS1に連なる第2逃し通路L12が接
続される。さらに第1電磁弁11s には前記大気開放
口13に連なる共通逃し通路Llcが接続される。A temperature-sensitive valve 40 and an orifice J4 located upstream of the temperature-sensitive valve 40 are interposed in series in the third negative pressure passage L3. The temperature-sensitive valve 40 operates at a predetermined engine temperature (for example, a cooling water temperature of 50C).
), the third negative pressure passage L3 is shut off, and above that temperature, the third negative pressure passage L3 operates to be conductive. L12 is connected. Further, a common relief passage Llc connected to the atmosphere opening port 13 is connected to the first solenoid valve 11s.
第1電磁弁VS1は、消磁状態では第1逃し通路Ll、
を遮断して第2逃し通路L12を共通逃し通路Llcに
連通し、また励磁状態では第2逃し通路L12を遮断し
て第1逃し通路Ll、を共通逃し通路Llcに連通ずる
ように動作する。In the demagnetized state, the first solenoid valve VS1 includes a first relief passage Ll,
In the energized state, the second relief passage L12 is shut off and the first relief passage L1 is communicated with the common relief passage Llc.
機関Eは公知の点火配電器5oを備えており、この配電
器50は、作動杆51を図で左方へ変位させると点火時
期を進角させ、右方へ変位させると遅角させることがで
きる。The engine E is equipped with a known ignition power distributor 5o, and this power distributor 50 can advance the ignition timing by moving the operating rod 51 to the left in the figure, and can retard the ignition timing by moving it to the right. can.
作動杆51にはこれを制御するための点火時期制御装置
52が連結される。この装置52は固定のハウジング5
3を有し、このハウジング53には、前記作動杆51と
結合された第1グイヤフラム541及び、この第1ダイ
ヤフラム541に作動杆51と反対側で対向する第2ダ
イヤフラム542によって第1負圧室55.が、また第
2ダイヤフラム542及び該ハウジング53の左端壁に
よって第2負圧室552が画成される。両ダイヤ77ム
54+ 、542間にはハウジング53と一体のスト
ッパ壁56が配設され、このストッパ壁56を貫通して
第1ダイヤフラム54.に対面するストッパピン57が
第2ダイヤフラム542に固着される。このストッパピ
ン57は第1ダイヤフラム54.の左動を規制して点火
時期に進角限界を与えるもので、第2ダイヤフラム54
2がストッパ壁56に当接した前進位置で第1の限界を
与え、第2ダイヤフラム54□がストッパ壁56から離
隔した後退位置では第1の限界より更に進角した第2の
限界を与える。第1負圧室55.には第1ダイヤフラム
54.を遅角方向に弾発するばね58が、また第2負圧
室552には第2ダイヤフラム542をストッパ壁56
に向って弾発するばね59がそれぞれ縮設される。An ignition timing control device 52 for controlling the operating rod 51 is connected to the operating rod 51. This device 52 has a fixed housing 5
3, the housing 53 has a first negative pressure chamber formed by a first diaphragm 541 coupled to the operating rod 51 and a second diaphragm 542 facing the first diaphragm 541 on the opposite side from the operating rod 51. 55. However, a second negative pressure chamber 552 is defined by the second diaphragm 542 and the left end wall of the housing 53. A stopper wall 56, which is integral with the housing 53, is disposed between the two diamonds 77m 54+, 542, and the first diaphragm 54. A stopper pin 57 facing the second diaphragm 542 is fixed to the second diaphragm 542. This stopper pin 57 connects to the first diaphragm 54. The second diaphragm 54 controls the leftward movement of
A first limit is provided in the forward position where the second diaphragm 54 is in contact with the stopper wall 56, and a second limit is provided which is further advanced than the first limit in the retracted position where the second diaphragm 54 is separated from the stopper wall 56. First negative pressure chamber 55. has a first diaphragm 54. A spring 58 springs the second diaphragm 542 in the retard direction, and a second diaphragm 542 is connected to the stopper wall 56 in the second negative pressure chamber 552.
A spring 59 that springs toward is compressed.
第1及び第2負圧室55□ 、55□には第4及び第5
負圧通路L4 、L5がそれぞれ接続される。The first and second negative pressure chambers 55□, 55□ have fourth and fifth negative pressure chambers.
Negative pressure passages L4 and L5 are connected to each other.
第4負圧通路L4は吸気マニホールドAft及び空気弁
12間の制御吸気路Lcから延出している。The fourth negative pressure passage L4 extends from the control intake passage Lc between the intake manifold Aft and the air valve 12.
第5負圧通路L5の上流端には、吸気マニホールドMi
及び空気弁12間の制御吸気路LCより延出する第6負
圧通路L6と、感温弁11及びオリフィス12間の第1
負圧通路L1 より延出する第7負圧通路L7とが第2
電磁弁VS2を介して接続される。第2電磁弁V82は
、消磁状態で第6負圧通路L6を遮断して第5及び第7
負圧通路L5.L7間を連通し、励磁状態では第7負圧
通路L7を遮断して第5及び第6負圧通路り6.LLI
間を連通するように動作する。At the upstream end of the fifth negative pressure passage L5, an intake manifold Mi
and a sixth negative pressure passage L6 extending from the control intake passage LC between the temperature-sensitive valve 11 and the orifice 12;
A seventh negative pressure passage L7 extending from the negative pressure passage L1 is a second
It is connected via a solenoid valve VS2. The second solenoid valve V82 shuts off the sixth negative pressure passage L6 in a demagnetized state and
Negative pressure passage L5. L7 are communicated with each other, and in the excited state, the seventh negative pressure passage L7 is shut off and the fifth and sixth negative pressure passages are connected.6. LLI
It works to communicate between the two.
第2図に示すように、電磁弁VSIのソレノイドは並列
する第1及び第2回路70,71、並びに点火スイッチ
72を介してバッテリ73に接続され、第1回路70に
は車速が所定の低速値(例えば20 K m/A )
以上になると閉じる第1車速検知スイツチSυ1と、機
関Eが所定の低負荷状態に入ると閉じる負荷検知スイッ
チSLと、負荷検知スイッチStから第2電磁弁VS2
のソレノイドへの方向を順方向とするダイオード74と
が直列に挿入され、第2回路71には車速が所定の高速
値(例えば50 Kml” )以上になると閉じる第2
車速検知スイツチSυ2が挿入される。そして、負荷検
知スイッチStとダイオード74間の第1回路70に第
2電磁弁f1..2のソレノイドが接続される。As shown in FIG. 2, the solenoid of the solenoid valve VSI is connected to a battery 73 via parallel first and second circuits 70, 71 and an ignition switch 72. value (e.g. 20 Km/A)
A first vehicle speed detection switch Sυ1 that closes when the speed exceeds the specified speed, a load detection switch SL that closes when the engine E enters a predetermined low load state, and a second electromagnetic valve VS2 that closes from the load detection switch St.
A diode 74 whose forward direction is directed toward the solenoid is inserted in series, and the second circuit 71 has a second diode 74 that closes when the vehicle speed exceeds a predetermined high speed value (for example, 50 Kml).
Vehicle speed detection switch Sυ2 is inserted. A second solenoid valve f1. .. 2 solenoids are connected.
前記負荷検知スイッチSLは、機関Eのプルスト負圧の
増大をその負荷の減少どして検知する負圧応動型に構成
される。即ちその負圧室75には、機関Eのブースト負
圧を導入するために、吸気マニホールドM i及び空気
弁12間の制御吸気路LCから分岐させた第8負圧通路
L8(第1図)が接続される。The load detection switch SL is configured to be a negative pressure responsive type that detects an increase in the pull stroke negative pressure of the engine E by detecting a decrease in its load. That is, in order to introduce the boost negative pressure of the engine E into the negative pressure chamber 75, an eighth negative pressure passage L8 (see FIG. 1) is branched from the control intake passage LC between the intake manifold M i and the air valve 12. is connected.
次にこの実施例の作用を説明する。Next, the operation of this embodiment will be explained.
く混合気の空燃比制御〉
機関温度が比較的低い場合には、感温弁40は第3負圧
通路L3を遮断しているので、燃料増量弁61の負圧室
66に吸気マニホールドAf i内の負圧は伝達されな
い。その結果、ダイヤフラム65が戻しばね67の弾発
力をもって上方へ変位し、弁体64を開放するので、前
述のようにして燃料ノズル4からの燃料噴出量が増量さ
れ、吸気道1でつくられろ混合気の空燃比は、機関Eの
暖機運転に適した略理論空燃比、即ち理論空燃比または
それより若干希薄若しくは濃厚な空燃比へと濃厚化され
る。When the engine temperature is relatively low, the temperature-sensitive valve 40 blocks the third negative pressure passage L3, so the negative pressure chamber 66 of the fuel increase valve 61 is connected to the intake manifold Af i Negative pressure inside is not transmitted. As a result, the diaphragm 65 is displaced upward by the elastic force of the return spring 67 and opens the valve body 64, so that the amount of fuel jetted from the fuel nozzle 4 is increased as described above, and the amount of fuel ejected from the intake passage 1 is increased. The air-fuel ratio of the filtered air-fuel mixture is enriched to a substantially stoichiometric air-fuel ratio suitable for warm-up operation of the engine E, that is, an air-fuel ratio that is slightly leaner or richer than the stoichiometric air-fuel ratio.
機関温度が比較的高(、且つ車速が所定の高速値未満の
場合には、感温弁40は第3負圧通路L3を導通させる
けれども、第1電磁弁IIs、は、第1車速検知器5v
、の開放によりソレノイドが消磁していて、負圧室66
に連なる第2逃し通路LL2と大気開放口13に連なる
共通逃し通路LICとを連通ずるので、吸気マニホール
ド11から第3負圧通路L3に進入した負圧はオリフィ
スJ4を通過した後、逃し通路L12.LLCを経由し
て大気開放口13に放出される。したがって、負圧室6
6には依然負圧が作用しないので、燃料増量弁61(ま
開弁状態に保たれ、略理論空燃比の混合気が得られる。When the engine temperature is relatively high (and the vehicle speed is less than a predetermined high speed value), the temperature-sensitive valve 40 makes the third negative pressure passage L3 conductive; 5v
, the solenoid is demagnetized by the opening of the negative pressure chamber 66.
Since the second relief passage LL2 connected to the air passage LL2 and the common relief passage LIC connected to the atmosphere opening port 13 are communicated with each other, the negative pressure entering the third negative pressure passage L3 from the intake manifold 11 passes through the orifice J4 and then passes through the relief passage L12. .. It is discharged to the atmosphere opening 13 via the LLC. Therefore, the negative pressure chamber 6
Since no negative pressure is still applied to the fuel increase valve 61, the fuel increase valve 61 is kept open, and a mixture having a substantially stoichiometric air-fuel ratio is obtained.
これによって、低車速域にお(・て機関Eは良好な加速
性を発揮することができる。As a result, the engine E can exhibit good acceleration performance in the low vehicle speed range.
機関温度が比較的高く、且つ車速か所定の高速値以上の
場合には、第3負圧通路L3の導通状態は変らず、第1
屯磁弁Vs、は、第2車速検知スイツチSυ2の開成に
より第2回路71より通電されてソレノイドを励磁され
、第2逃し通路L12を閉鎖するので、オリフィスJ4
を通過した吸気マニホールドMi内の負圧は負圧室66
に作用する。When the engine temperature is relatively high and the vehicle speed is higher than a predetermined high speed value, the conduction state of the third negative pressure passage L3 remains unchanged and the first
When the second vehicle speed detection switch Sυ2 is opened, the solenoid valve Vs is energized by the second circuit 71 to energize the solenoid and close the second relief passage L12, so that the orifice J4
The negative pressure inside the intake manifold Mi that has passed through the negative pressure chamber 66
It acts on
ところで、吸気マニホールドM乙内の負圧(ま、絞弁3
の開・閉、即ち負荷の増・減に応じて減・増するもので
あるから、低負荷域では負圧室66に高い負圧が作用し
てダイヤフラム65を戻し61 J267の力に抗して
下方へ変位させ弁体64を閉鎖する。その結果、前述の
ようにして燃料ノズル4からの燃料噴出量が減量され、
混合気は通常の希薄な空燃比に戻され、燃費の低減が図
らfする。By the way, the negative pressure inside the intake manifold M (well, throttle valve 3)
In other words, in the low load range, high negative pressure acts on the negative pressure chamber 66 and returns the diaphragm 65 to resist the force of 61 J267. to close the valve body 64. As a result, the amount of fuel jetted from the fuel nozzle 4 is reduced as described above,
The air-fuel mixture is returned to the normal lean air-fuel ratio, thereby reducing fuel consumption.
これとは反対に高負荷域では負圧室66の負圧が低下す
るので、弁体64が開放されて燃料ノズル4からの・燃
料噴出量が増量され、機関Eは略理論空燃比の混合気を
供給されて高出力を発揮することができる。On the contrary, in a high load range, the negative pressure in the negative pressure chamber 66 decreases, so the valve body 64 is opened and the amount of fuel jetted from the fuel nozzle 4 is increased, so that the engine E has a substantially stoichiometric air-fuel ratio. It can produce high output when supplied with Qi.
また車速か所定の低速値ないし高速値の範囲にあり、且
つ機関Eが所定の低負荷状態にある場合には、第1車速
検知スイッチSv、の閉成と共に負荷検知スイッチSt
も吸気マニホールドM i内の高負圧を負圧室75に受
けて閉成されるため、第1電磁弁VS1は第1回路70
より通電されてソレノイドを励磁され、第2逃し通路L
t2を閉鎖する。したがって、オリフィスJ4を通j関
した吸気マニホールドhr =内の高負圧はすべて負圧
室66に導入されるので、燃料増量弁61は閉弁状態と
なり、混合気を通常の希薄な空燃比に戻し、燃費の低減
が図られる。Further, when the vehicle speed is within a predetermined low speed value or high speed value range and the engine E is in a predetermined low load state, the first vehicle speed detection switch Sv is closed and the load detection switch St
Since the negative pressure chamber 75 receives the high negative pressure in the intake manifold M i and is closed, the first solenoid valve VS1 is closed by the first circuit 70.
The solenoid is energized and the second relief passage L is energized.
Close t2. Therefore, all the high negative pressure in the intake manifold hr that has passed through the orifice J4 is introduced into the negative pressure chamber 66, so the fuel increase valve 61 is closed and the air-fuel mixture is returned to the normal lean air-fuel ratio. This will reduce fuel consumption.
〈排気還流制御〉
機関温度が比較的低い場合には、感温弁11カー還流量
制御弁6の負圧室9に連なる第1負圧通路L1 の下流
側を大気開放口13に連通ずるので、負圧室9には大気
圧が作用し、還流量制御弁6(ま11弁して排気の還流
を停止している。<Exhaust recirculation control> When the engine temperature is relatively low, the downstream side of the first negative pressure passage L1 connected to the negative pressure chamber 9 of the temperature sensing valve 11 car recirculation amount control valve 6 is communicated with the atmosphere opening 13. Atmospheric pressure acts on the negative pressure chamber 9, and the recirculation amount control valve 6 (or 11) is activated to stop the recirculation of exhaust gas.
機関温度が比較的高い場合には、感温弁11h−大気開
放口13を閉鎖して第1負圧通路L1を導通状態にする
。このとき車速が所定の高速値未満であれば、第2車速
検知スイツチSυ2の開放により第1電磁弁VS1は第
1逃し通路LL、を遮断している。そこで、機関Eの運
転により絞弁3の近傍に生起する負圧が第1負圧検出孔
D1 に検出されると、その負圧1) Cは感温弁11
、オリフィス12及び連通路36を経て空気弁V2の負
圧室32に伝達し、それが弁ばね34のセット荷重に打
勝ったときダイヤフラム31を介して弁体33を引き上
げ、制御吸気路Lcを導通させる。制御吸気路LCが導
通すると、大気開放口13に外気が吸込まれ、そして−
整弁V1の負圧室22前後のオリフィスJ1 、J2に
より流量を規制された後、空気弁V2の弁室30、弁口
35を経て機関Eの吸気路に吸込まれていく。これに伴
い調整弁V。When the engine temperature is relatively high, the temperature-sensitive valve 11h and the atmosphere opening port 13 are closed to bring the first negative pressure passage L1 into a conductive state. At this time, if the vehicle speed is less than a predetermined high speed value, the second vehicle speed detection switch Sυ2 is opened, and the first solenoid valve VS1 blocks the first relief passage LL. Therefore, when the negative pressure generated near the throttle valve 3 due to the operation of the engine E is detected in the first negative pressure detection hole D1, the negative pressure 1)C is the temperature-sensitive valve 11.
, is transmitted to the negative pressure chamber 32 of the air valve V2 via the orifice 12 and the communication path 36, and when it overcomes the set load of the valve spring 34, the valve body 33 is pulled up via the diaphragm 31, and the control intake path Lc is Make conductive. When the control air intake path LC becomes conductive, outside air is sucked into the atmosphere opening port 13, and -
After the flow rate is regulated by orifices J1 and J2 before and after the negative pressure chamber 22 of the air regulating valve V1, it is sucked into the intake path of the engine E via the valve chamber 30 and valve port 35 of the air valve V2. Along with this, adjustment valve V.
の負圧室22および空気弁V2の弁室30に負圧P12
よびP2がそれぞれ生じ、それらの負圧比はオリフィス
Jl 、J2の絞り比により決定される。Negative pressure P12 is applied to the negative pressure chamber 22 of the air valve V2 and the valve chamber 30 of the air valve V2.
and P2 are generated, and their negative pressure ratio is determined by the throttle ratio of the orifices Jl and J2.
而して、調整弁V1 において、負圧室22の負圧P、
と第2負圧検出孔D2の検出負圧Pυとの差圧によるダ
イヤフラム21の上動力が弁ばね240セット荷重に打
勝てば、ダイヤフラム21を介して弁体23を引き上げ
、弁口25を開くので、負圧pvの一部が弁口25を通
過して、先にオリフィス12を通過した負圧を希釈して
負圧peとなし、それが還流量制御弁6の作動負圧とし
てその負圧室9に作用する。Thus, in the regulating valve V1, the negative pressure P in the negative pressure chamber 22,
If the upward force of the diaphragm 21 due to the differential pressure between the negative pressure Pυ and the detected negative pressure Pυ of the second negative pressure detection hole D2 overcomes the set load of the valve spring 240, the valve body 23 is pulled up via the diaphragm 21 and the valve port 25 is opened. Therefore, a part of the negative pressure pv passes through the valve port 25 and dilutes the negative pressure that previously passed through the orifice 12 to form a negative pressure pe, which is used as the operating negative pressure of the reflux control valve 6. It acts on the pressure chamber 9.
上記負圧の希釈によれば、作動負圧1) eの低下が連
通路36を通して空気弁V2の負圧室32にフィードバ
ックされ、該室32の負圧が低下する。According to the above-mentioned dilution of the negative pressure, a decrease in the operating negative pressure 1)e is fed back to the negative pressure chamber 32 of the air valve V2 through the communication passage 36, and the negative pressure in the chamber 32 decreases.
それに応じて空気弁V2の弁口35が弁体33によって
急速に遮断されるので、負圧室22の負圧P1および弁
室30の負圧P2が低下し、これに伴い弁体23が弁口
25を閉じる。すると、作動負圧peが上昇し、これが
空気弁V2にフィードバックされて、上記と反対の作用
により弁体23が弁口25を開き、以下同様の作用が繰
返され、この繰返しが非常に早く行われるので、負圧P
υとpeに、負圧P1とP2の圧力比に等l−(・一定
の圧力比を与えることができる。Accordingly, the valve port 35 of the air valve V2 is rapidly shut off by the valve body 33, so the negative pressure P1 in the negative pressure chamber 22 and the negative pressure P2 in the valve chamber 30 decrease, and accordingly, the valve body 23 closes to the valve body 33. Close mouth 25. Then, the operating negative pressure pe rises, which is fed back to the air valve V2, causing the valve body 23 to open the valve port 25 by an action opposite to the above, and the same action is repeated thereafter, and this repetition is performed very quickly. , so the negative pressure P
A constant pressure ratio can be given to υ and pe, which is equal to the pressure ratio of negative pressures P1 and P2.
そこで、機関Eの吸気量が少なければ、負圧PIは負圧
Pυよりも高いため、調整弁V1の弁体23は開き側に
位置し、還流量制御弁6の作動負圧1)gは低く、これ
とは反対に吸気量が多(なれば負圧Pυが上昇するので
上記弁体23は閉じ側に移行し、作動負圧pCは上昇す
る。かくして空気弁〆2は負圧peに応じて開放状態の
時間と閉鎖状態の時間とを制御され、還流量制御弁6は
その同一負圧peで開口面積を制御されるので、制御吸
気路Lcを流れる空気量と排気還流量とは実質的に比例
し、また機関Eの吸気量と排只還流量は比例し、機関E
に常に一定の還流率を以て排気を吸入させることができ
る。換言すればJ−11気の還流量は機関Eの負荷の増
加に応じて増量される。上記排気還流率はl) vとp
eの圧力比、したがってオリフィスJ、、J2の絞り比
により予め決定される。Therefore, if the intake air amount of the engine E is small, the negative pressure PI is higher than the negative pressure Pυ, so the valve body 23 of the regulating valve V1 is located on the opening side, and the operating negative pressure 1) g of the reflux control valve 6 is On the other hand, if the intake air amount is large (on the contrary, the negative pressure Pυ rises, the valve body 23 moves to the closing side, and the operating negative pressure pC rises. Thus, the air valve 2 becomes the negative pressure pe). The open state time and closed state time are controlled accordingly, and the opening area of the recirculation amount control valve 6 is controlled by the same negative pressure pe, so the amount of air flowing through the control intake path Lc and the amount of exhaust gas recirculation are In fact, the intake air amount and exhaust recirculation amount of engine E are proportional, and engine E
The exhaust gas can be sucked in at a constant reflux rate. In other words, the amount of J-11 air recirculated is increased in accordance with the increase in the load on the engine E. The above exhaust gas recirculation rate is l) v and p
It is predetermined by the pressure ratio of e and thus the restriction ratio of the orifices J, , J2.
次に車速が所定の高速値以上となる高速運転時には、第
2車速検知スイツチSU2の閉成により第1電磁弁I’
Slは第2回路71より通電されてソレノイドを励磁
され、第1逃し通路Ll、と共通逃し通路Llc とを
連通ずる。その結果、第2負圧通路L2の下流側が大気
開放口13と連通ずるので、調整弁V1の弁室20が大
気圧に保たれ、弁体23を開き側に位置させるため、作
動負圧1) cが低下して還流量制御弁6の開度が減少
し、くれに伴い排気還流率が減少し、機関の出力増強に
寄与する。Next, during high-speed operation when the vehicle speed exceeds a predetermined high-speed value, the second vehicle speed detection switch SU2 is closed and the first solenoid valve I'
Sl is energized by the second circuit 71 to excite the solenoid, thereby communicating the first relief passage Ll and the common relief passage Llc. As a result, since the downstream side of the second negative pressure passage L2 communicates with the atmosphere opening port 13, the valve chamber 20 of the regulating valve V1 is maintained at atmospheric pressure, and the valve body 23 is positioned on the open side, so that the operating negative pressure 1 ) As c decreases, the opening degree of the recirculation amount control valve 6 decreases, and the exhaust gas recirculation rate decreases as a result of the decrease, contributing to an increase in the output of the engine.
また、車速が所定の低速値ないし高速値の範囲にあり、
且つ機関Eが所定の低負荷状態にある場合には、第1車
速検知スイツチSvI及び負荷検知スイッチStが共に
閉成されることにより第1電磁弁Vs、は第1回路70
より通電されてソレノイドを励磁される。したがって上
記高速運転時と同様に排気還流率は減少され、混合気の
燃焼の安定化が図られろ。In addition, the vehicle speed is within a predetermined low speed value or high speed value range,
In addition, when the engine E is in a predetermined low load state, both the first vehicle speed detection switch SvI and the load detection switch St are closed, so that the first solenoid valve Vs is in the first circuit 70.
energizes the solenoid. Therefore, as in the case of high-speed operation, the exhaust gas recirculation rate is reduced and the combustion of the air-fuel mixture is stabilized.
く黒人時期制御〉
点火時期制御装置52の第1負圧室55□には吸気マニ
ホールド+lf i内の負圧が制御吸気路Lcの下流側
及び第4負圧通路L4を経て導入される。Negative pressure in the intake manifold +lf i is introduced into the first negative pressure chamber 55□ of the ignition timing control device 52 via the downstream side of the control intake passage Lc and the fourth negative pressure passage L4.
したがって、第1負圧室55.の負圧は、機関Eの負荷
の増・誠に応じて減・増するから、高負荷時には第1ダ
イヤフラム541がばね58の弾発力で右動して作動杆
51を遅角方向へ作動し、機関Eの点火時期を遅らせる
。また低負荷時には、これとは反対に、上記負圧による
吸引力かばね58の力に打勝って第1ダイヤフラム54
.を左動して作動杆51を進角方向へ作動し、点火時期
を進める。そして、第1ダイヤフラム541がストッパ
ピン57に当接して左動を抑止されたときが点火時期の
進角限界となる。Therefore, the first negative pressure chamber 55. The negative pressure decreases or increases as the load on the engine E increases, so when the load is high, the first diaphragm 541 moves to the right by the elastic force of the spring 58 and operates the operating rod 51 in the retard direction. , the ignition timing of engine E is delayed. In contrast, when the load is low, the first diaphragm 54 overcomes the suction force due to the negative pressure or the force of the spring 58.
.. is moved to the left to operate the operating rod 51 in the advance direction to advance the ignition timing. When the first diaphragm 541 contacts the stopper pin 57 and is prevented from moving to the left, the ignition timing reaches its advance limit.
ところで、機関温度が比較的低い場合には、感温弁11
が第1負圧通路L1 の下流側を大気開放口13に連通
ずるので、大気圧が大気開放口13から第1負圧通路り
8、第7負圧通路L7及び第5負圧通路L5を経て点火
時期制御装置52の第2負圧室552に作用する。この
ため第2ダイヤフラム54□はばね59の力でストッパ
壁56との当接位置まで右動してストッパピン57を前
進位置に保持する。したがって、この場合の点火進角限
界は第1の限界に留められる。By the way, when the engine temperature is relatively low, the temperature-sensitive valve 11
communicates the downstream side of the first negative pressure passage L1 with the atmosphere opening port 13, so atmospheric pressure flows from the atmosphere opening port 13 through the first negative pressure passage 8, the seventh negative pressure passage L7, and the fifth negative pressure passage L5. Then, it acts on the second negative pressure chamber 552 of the ignition timing control device 52. Therefore, the second diaphragm 54□ moves to the right by the force of the spring 59 to a position where it contacts the stopper wall 56, thereby holding the stopper pin 57 in the forward position. Therefore, the ignition advance limit in this case remains at the first limit.
機関温度が比較的高い場合には、感温弁11が第1負圧
通路り、を導通状態にするので、吸気道1の第1負圧検
出孔り、で検出された負圧が第1負圧通路”I、第7負
圧通路L7及び第5負圧通路L5を経て第2負圧室55
.に導入される。第1負圧検出孔D1で検出される負圧
は、絞弁3のアイドル開度位置では低く、アイドル開度
を超えた低開度域では高く、また高開度域に入ると再び
低くなる性質を有するので、機関のアイドリンク時及び
高負荷時には第2負圧室55□の負圧は低く、したがっ
て紀2ダイヤフラム542は低温時と同様に右動してス
トッパピン57を前進位置に保持し、点火進角限界を第
1の限界に留めるが、低負荷時にはz2負圧室552の
負圧が高められ、その負圧を受けて第2ダイヤフラム5
42は左動してストッパピン57を後退させ、点火進角
限界を第1の限界から第2の限界へと進める。When the engine temperature is relatively high, the temperature-sensitive valve 11 brings the first negative pressure passage into a conductive state, so that the negative pressure detected by the first negative pressure detection hole in the intake passage 1 becomes the first negative pressure passage. The second negative pressure chamber 55 passes through the negative pressure passage "I, the seventh negative pressure passage L7, and the fifth negative pressure passage L5.
.. will be introduced in The negative pressure detected by the first negative pressure detection hole D1 is low at the idle opening position of the throttle valve 3, high in the low opening range exceeding the idle opening, and becomes low again when entering the high opening range. Therefore, when the engine is idle or under high load, the negative pressure in the second negative pressure chamber 55□ is low, so the second diaphragm 542 moves to the right in the same way as when the temperature is low to maintain the stopper pin 57 in the forward position. The ignition advance limit is kept at the first limit, but when the load is low, the negative pressure in the z2 negative pressure chamber 552 is increased, and in response to the negative pressure, the second diaphragm 5
42 moves to the left to retreat the stopper pin 57 and advance the ignition advance limit from the first limit to the second limit.
車速が所定の低速(直な℃・し高速値の範囲にあり、且
つ機関Eが所定の低負荷状態にある場合には、第1車速
検知スイツチSv1及び負荷検知スイッチSLが共に閉
成されるので、第2電磁弁V、92は第1回路70より
通電されてソレノイドを励磁され、第5及び第6負圧通
路り、、、1.6間を連通ずる。このため吸気マニホー
ルドML内の高い負圧が制御吸気路Lc、第6負圧通路
り。及び第5負圧通路L5を経て第2負圧室55□に導
入され、これによっても第2ダイヤフラム542は左動
してストッパピン57を後退させるので、点火進角限界
を第2の限界まで進める。When the vehicle speed is within a predetermined low speed (a range of direct °C and high speed values) and the engine E is in a predetermined low load state, both the first vehicle speed detection switch Sv1 and the load detection switch SL are closed. Therefore, the second solenoid valve V, 92 is energized by the first circuit 70 to excite the solenoid, and communicates between the fifth and sixth negative pressure passages. High negative pressure is introduced into the second negative pressure chamber 55□ via the control intake passage Lc, the sixth negative pressure passage, and the fifth negative pressure passage L5, and this also causes the second diaphragm 542 to move to the left and close the stopper pin. 57, the ignition advance limit is advanced to the second limit.
上記三つの制rdlの連動関係を分かり易くするために
次表を作る。The following table is created to make it easier to understand the interlocking relationship of the three RDLs mentioned above.
かくして、機関の低温時には、混合気の濃厚化と排気還
流の停止とにより良好な燃焼が得られ、しかも点火進角
限界を纂1の限界に抑えることによって部分ノッキング
の発生を未然に防止ずろことができるので、暖機を促進
し得るのみならず円滑な暖機走行が可能となる。また高
温低負荷時には混合気の空燃比の希薄化と少量の排気還
流とにより燃費の低減と排ガス中のNOxの発生抑制と
が図られ、しかも点火進角限界を第2の限界まで進める
ことによって希薄混合気の遅い燃焼速度を補うことにな
るから、出力をノ獲大限に引出ずことができる。さらに
高温高負荷時には、混合気の空燃比の濃厚化と多量の排
気還流とにより高出力化と排ガス中のNOxの発生抑制
とが図られ、しかも点火進角限界を第1の限界に抑える
ことによってノッキングの発生を防止することができる
。さらにまた減速時には混合気の空燃比の希薄化、排気
還流の少計化若しくは停止、並びに点火進角の第1限界
規制によって燃費の低減、と燃焼の安定を図ることがで
きる。In this way, when the engine is at a low temperature, good combustion can be achieved by enriching the air-fuel mixture and stopping exhaust recirculation, and by suppressing the ignition advance limit to the limit of 1, it is possible to prevent the occurrence of partial knocking. This not only facilitates warm-up, but also enables smooth warm-up running. In addition, at high temperatures and low loads, the air-fuel ratio of the air-fuel mixture is diluted and a small amount of exhaust gas is recirculated, reducing fuel consumption and suppressing the generation of NOx in exhaust gas.Moreover, by advancing the ignition advance limit to the second limit, Since it compensates for the slow combustion speed of a lean mixture, it is possible to maximize the power output. Furthermore, at high temperatures and high loads, the air-fuel ratio of the air-fuel mixture is enriched and a large amount of exhaust gas recirculates to achieve high output and suppress the generation of NOx in the exhaust gas, and to suppress the ignition advance limit to the first limit. This can prevent knocking from occurring. Furthermore, during deceleration, it is possible to reduce fuel consumption and stabilize combustion by diluting the air-fuel ratio of the air-fuel mixture, reducing or stopping exhaust gas recirculation, and regulating the ignition advance to the first limit.
以上のように本発明によれば、機関の低温時または高負
荷時には混合気の空燃比を略理論空燃比まで濃厚にする
と共に点火進角限界を第1の限界に留めるようにしたの
で、燃焼の安定化、出力の増強、ノッキングの防止等が
図られ、暖機の促進、加速性及びドライバビリティの向
上をもたらすことができ、また低負荷時には混合気の空
燃比を希薄化すると共に点火進角限界を第2の限界まで
進めるようにしたので、出力を最大限引き出しつつ燃費
の低減を図ることができ、しかもドライバビリティを損
うこともない。As described above, according to the present invention, when the engine is at low temperature or under high load, the air-fuel ratio of the air-fuel mixture is enriched to approximately the stoichiometric air-fuel ratio, and the ignition advance limit is kept at the first limit. It stabilizes the air-fuel mixture, increases output, and prevents knocking, which promotes warm-up, improves acceleration and drivability, and also dilutes the air-fuel ratio of the mixture and improves ignition speed at low loads. Since the angular limit is advanced to the second limit, it is possible to reduce fuel consumption while maximizing output, without impairing drivability.
第1図は本発明装置の一実施例を示す全体概要図、第2
図はそれにおける第1.第2電磁弁の制御電気回路図で
ある。
C・・・気化器、E・・・内燃機関、Mi・・・吸気マ
ニホールド、Sυl+Sv2・・・第1.第2車速検知
スイツチ、Vs、 、Vs2−第1.第2電磁弁、5l
=−負荷検知スイッチ、
3・・絞弁、5・・・排気還流路、6 ・還流量制御弁
、11・・・感温弁、40・・感温弁、50・・配電器
、52・・・点火時期側側1装置、602・・第2燃料
ジエツト(燃料増量装置の一要素)、61・・・燃料増
量弁(燃料増量装置の一要素)
特許出願人 本田技研工業株式会社FIG. 1 is an overall schematic diagram showing one embodiment of the device of the present invention, and FIG.
The figure is the first in it. It is a control electric circuit diagram of a 2nd electromagnetic valve. C... Carburetor, E... Internal combustion engine, Mi... Intake manifold, Sυl+Sv2... 1st. 2nd vehicle speed detection switch, Vs, , Vs2-1st. 2nd solenoid valve, 5l
=-Load detection switch, 3. Throttle valve, 5. Exhaust recirculation path, 6. Reflux flow control valve, 11. Temperature sensing valve, 40. Temperature sensing valve, 50. Power distributor, 52. ...Ignition timing side 1 device, 602...Second fuel jet (one element of the fuel increase device), 61...Fuel increase valve (one element of the fuel increase device) Patent applicant Honda Motor Co., Ltd.
Claims (1)
より運転される内燃機関において、機関の低温状態また
は高負荷状態に応じて混合気の空燃比を略理論空燃比に
濃厚化すべく吸気系への供給燃料を増量させるように作
動する燃料増量装置と、点火時期の進角限界を該燃料増
量装置の作動時には第1の限界に規制し不作動時には該
g1の限界より進んだ第2の限界に規制するように核燃
料増量装置と連動する点火時期制御装置とを備えたこと
を特徴とする、内燃機関の制御装置。 (2、特許請求の範囲第(1)項記載のものにおいて、
前記燃料増量装置は、排気還流量を該燃料増量装置の作
動時には増量し不作動時には減量するように排気還流制
御装置とも連動している、内燃機関の制御装置。 (3)特許請求の範囲第(1)または第(2)項記載の
ものにおいて、前記燃料増量装置は低車速且つ低負荷状
態で不作動となるようにした内燃機関の制御装置。[Claims] (1) In an internal combustion engine that is normally operated with an air-fuel mixture having an air-fuel ratio leaner than the stoichiometric air-fuel ratio, the air-fuel ratio of the air-fuel mixture is adjusted to approximately the stoichiometry depending on the low temperature state or high load state of the engine. A fuel increasing device that operates to increase the amount of fuel supplied to the intake system in order to enrich the air-fuel ratio, and regulating the advance limit of ignition timing to a first limit when the fuel increasing device is activated and g1 when it is not activated. 1. A control device for an internal combustion engine, comprising: an ignition timing control device interlocking with a nuclear fuel increase device so as to regulate the fuel to a second limit that is more advanced than the limit. (2. In the item described in claim (1),
The fuel increasing device is a control device for an internal combustion engine that is also linked to an exhaust gas recirculation control device so that the amount of exhaust gas recirculation is increased when the fuel increasing device is activated and decreased when the fuel increasing device is not activated. (3) A control device for an internal combustion engine according to claim (1) or (2), wherein the fuel increase device is inoperative at low vehicle speeds and low load conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58101884A JPS59226255A (en) | 1983-06-08 | 1983-06-08 | Control apparatus for internal-combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58101884A JPS59226255A (en) | 1983-06-08 | 1983-06-08 | Control apparatus for internal-combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59226255A true JPS59226255A (en) | 1984-12-19 |
JPH0373741B2 JPH0373741B2 (en) | 1991-11-22 |
Family
ID=14312359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58101884A Granted JPS59226255A (en) | 1983-06-08 | 1983-06-08 | Control apparatus for internal-combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59226255A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5146885A (en) * | 1990-01-31 | 1992-09-15 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio control device for an engine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS512809A (en) * | 1974-06-25 | 1976-01-10 | Nippon Soken | NAINENKIKAN |
JPS523930A (en) * | 1975-06-28 | 1977-01-12 | Nippon Soken Inc | Engine and its operation process |
JPS55119969A (en) * | 1979-03-08 | 1980-09-16 | Nissan Motor Co Ltd | Ignition timing controller for internal combustion engine |
JPS5614897A (en) * | 1979-07-13 | 1981-02-13 | Hitachi Ltd | Pump sealing water transfer device |
JPS5614837A (en) * | 1979-07-14 | 1981-02-13 | Fuji Heavy Ind Ltd | Vacuum controlling apparatus used for purifying exhaust gas of internal combustion engine |
-
1983
- 1983-06-08 JP JP58101884A patent/JPS59226255A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS512809A (en) * | 1974-06-25 | 1976-01-10 | Nippon Soken | NAINENKIKAN |
JPS523930A (en) * | 1975-06-28 | 1977-01-12 | Nippon Soken Inc | Engine and its operation process |
JPS55119969A (en) * | 1979-03-08 | 1980-09-16 | Nissan Motor Co Ltd | Ignition timing controller for internal combustion engine |
JPS5614897A (en) * | 1979-07-13 | 1981-02-13 | Hitachi Ltd | Pump sealing water transfer device |
JPS5614837A (en) * | 1979-07-14 | 1981-02-13 | Fuji Heavy Ind Ltd | Vacuum controlling apparatus used for purifying exhaust gas of internal combustion engine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5146885A (en) * | 1990-01-31 | 1992-09-15 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio control device for an engine |
Also Published As
Publication number | Publication date |
---|---|
JPH0373741B2 (en) | 1991-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4484549A (en) | 4-Cycle internal combustion engine | |
US4563990A (en) | Fuel supply control system for engine carburetors | |
US4429676A (en) | Exhaust gas recirculation control system for vehicle engines | |
JPS59226255A (en) | Control apparatus for internal-combustion engine | |
US4010723A (en) | Exhaust gas cleaning apparatus for an internal combustion engine for a vehicle | |
US4349006A (en) | Suction mixture control system for vehicle engines | |
JPS6053653A (en) | Supply device of secondary intake air internal- combustion engine | |
JPS6145052B2 (en) | ||
US4336784A (en) | Exhaust gas recirculation control system for engines | |
JPS59229044A (en) | Exhaust gas return control device for internal- combustion engine | |
JPS6032370Y2 (en) | Exhaust recirculation control device | |
JPS6339404Y2 (en) | ||
JPS6136768Y2 (en) | ||
JPS638840Y2 (en) | ||
JPS5913343Y2 (en) | Vehicle internal combustion engine | |
JPS64587B2 (en) | ||
JPH0236929Y2 (en) | ||
JPS6041217B2 (en) | Enrichment device for internal combustion engine carburetor | |
JPS5882044A (en) | Idling operation controlling apparatus for internal- combustion engine | |
JPS58200051A (en) | Exhaust gas purifying device for engine | |
JPH06200834A (en) | Air-fuel ratio control device of internal combustion engine | |
JPS6040848Y2 (en) | Engine exhaust gas recirculation device | |
JPS6181552A (en) | Exhaust gas cleaning device for car-mounted internal-combustion engine | |
JPS63201334A (en) | Fuel control method for engine | |
JPS605782B2 (en) | Internal combustion engine intake control device |