JPS5921386B2 - Automatic plating speed control method for electroless plating - Google Patents
Automatic plating speed control method for electroless platingInfo
- Publication number
- JPS5921386B2 JPS5921386B2 JP4162576A JP4162576A JPS5921386B2 JP S5921386 B2 JPS5921386 B2 JP S5921386B2 JP 4162576 A JP4162576 A JP 4162576A JP 4162576 A JP4162576 A JP 4162576A JP S5921386 B2 JPS5921386 B2 JP S5921386B2
- Authority
- JP
- Japan
- Prior art keywords
- plating
- electroless plating
- potential
- electrode
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Chemically Coating (AREA)
- Control Of Non-Electrical Variables (AREA)
Description
【発明の詳細な説明】
本発明は無電解メッキにおいてメッキ速度を自動的に調
整する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for automatically adjusting plating speed in electroless plating.
従来無電解メッキにおいてメッキ速度を制御する方法と
しては、被メッキ用基板の表面に形成されたメッキ被膜
の厚さを適宜の間隔で実測し、この実測値より無電解メ
ッキ液の組成を調整することにより行なつている。Conventionally, the method of controlling the plating speed in electroless plating is to actually measure the thickness of the plating film formed on the surface of the substrate to be plated at appropriate intervals, and adjust the composition of the electroless plating solution based on the measured values. This is done by doing this.
しかしながらこの方法によるものは自動的にメッキ速度
を調整することができないため、形成されるメッキ被膜
が不均一となり、特に無電解メッキ液の消耗が激しい高
速原付けメッキを行ない難いなどの欠点があつた。本発
明はかかる点に鑑み種々研究を行なつた結果、還元析出
される金属と同じ元素からなる金属電極を無電解メッキ
液中に浸漬して該電極の混成電位を測定した後、この混
成電位と予め設定された標準混成電位との電位差を求め
、しかる後この電位差が所定値、たとえば零になるよう
に無電解メッキ液の組成を調整してメッキ速度を連続且
つ自動的に制御する方法を提供することを目的とするも
のである。以下本発明を詳細に説明する。However, this method has drawbacks such as the inability to automatically adjust the plating speed, which results in uneven plating films, making it difficult to perform high-speed moped plating, which consumes a large amount of electroless plating solution. Ta. In view of the above, the present invention has been made as a result of conducting various studies. After immersing a metal electrode made of the same element as the metal to be reduced and deposited in an electroless plating solution and measuring the hybrid potential of the electrode, A method of continuously and automatically controlling the plating speed by determining the potential difference between the potential difference and a preset standard hybrid potential, and then adjusting the composition of the electroless plating solution so that this potential difference becomes a predetermined value, for example, zero. The purpose is to provide The present invention will be explained in detail below.
本発明における無電解メッキ液は元素周期表IB族およ
び■族の金属の塩と、この金属イオンの錯化剤と、還元
剤およびpH調節剤とからなるものである。The electroless plating solution in the present invention comprises a salt of a metal of Group IB or Group II of the Periodic Table of Elements, a complexing agent for the metal ion, a reducing agent, and a pH adjusting agent.
元素周期表より族および■族の金属としては銅、銀、金
、白金、ニッケル、コバルト、パラジウムなどである。
また金属イオンの錯化剤としては例えば銅の場合には酒
石酸ナトリウムカリウム、エチレンジアミン四酢酸四ナ
トリウム、またニッケルの場合にはクエン酸ナトリウム
などがある。また金属イオンを還元する還元剤としては
ホルムアルデヒド、或はホルムアルデヒドの誘導体、例
えばパラホルムアルデヒド、トリオクサン、ジメチルヒ
ダトイン、グリオキザールなどが挙げられる。また他の
還元剤としてはアルカリ金属のボロハイドライド類、ア
ミンボラン、モルホリンボラン、次亜リン酸ナトリウム
、ヒドラジンおよびその誘導体などもある。またpH調
節剤とJ しては例えば水酸化ナトリウム、水酸化アン
モニウムなどである。上記組成の無電解メッキ液に液メ
ッキ用基板を浸漬することにより、金属イオンを還元し
て基板の表面に析出させメッキ反応を行なうものであり
、フ この還元析出反応は局部アノード反応と局部カソ
ード反応の合成によるものと考えられている。Examples of metals in Groups and Group II of the periodic table of elements include copper, silver, gold, platinum, nickel, cobalt, and palladium.
Examples of complexing agents for metal ions include potassium sodium tartrate and tetrasodium ethylenediaminetetraacetate for copper, and sodium citrate for nickel. Examples of reducing agents for reducing metal ions include formaldehyde or formaldehyde derivatives such as paraformaldehyde, trioxane, dimethylhydatoin, and glyoxal. Other reducing agents include alkali metal borohydrides, amine borane, morpholine borane, sodium hypophosphite, hydrazine and derivatives thereof. Examples of the pH adjuster include sodium hydroxide and ammonium hydroxide. By immersing a substrate for liquid plating in an electroless plating solution with the above composition, metal ions are reduced and deposited on the surface of the substrate to perform a plating reaction. It is thought to be due to reaction synthesis.
この局部アノード反応は還元剤が酸化される反応であり
、また局部カソード反応は金属イオンが金属に還元する
反応であり、これら反応が被メツキ用基板の表面に形成
されたメツキ被膜を触媒として夫々反応するものと考え
らねている。一方このメツキ反応を電気的収支の観点か
ら見ると還元剤の酸化反応によるアノード部分電流と、
金属イオンの還元反応によるカソード部分電流の絶対値
は等しくなる。このような反応が行なわれる無電解メツ
キにおいて、被メツキ用基板の電位を混成電位と言い、
この混成電位は局部アノード反応か又は局部カソード反
応の何れか一方の反応を一定にすると、即ち一方の反応
における電流一電位曲線の形状を一定にすると、他方の
反応における電流一電位曲線の形状の変化につれて混成
電位も変化する。従つてメツキ速度と電流とが比例関係
にあることから、混成電位の変化を測定することにより
電流の変化、即ちメツキ速度の変化を知ることができる
。本発明はこの点に着目してなされたもので、以下その
方法を図示する説明図に基づいて詳細に説明する。図に
おいて1はメツキ槽で、このメツキ槽1には所定の組成
をなす無電解メツキ液2が入れられている。This local anodic reaction is a reaction in which the reducing agent is oxidized, and the local cathodic reaction is a reaction in which metal ions are reduced to metal, and these reactions are catalyzed by the plating film formed on the surface of the substrate to be plated. I'm not sure if it will react. On the other hand, when looking at this plating reaction from the viewpoint of electrical balance, the anode partial current due to the oxidation reaction of the reducing agent,
The absolute values of the cathode partial currents due to the reduction reaction of metal ions become equal. In electroless plating where such a reaction occurs, the potential of the substrate to be plated is called a hybrid potential,
This hybrid potential changes when either the local anodic reaction or the local cathodic reaction is held constant, that is, when the shape of the current-potential curve for one reaction is constant, the shape of the current-potential curve for the other reaction is As the voltage changes, the hybrid potential also changes. Therefore, since there is a proportional relationship between the plating speed and the current, it is possible to know the change in the current, that is, the change in the plating speed, by measuring the change in the hybrid potential. The present invention has been made with attention to this point, and the method will be described in detail below based on explanatory diagrams illustrating the method. In the figure, 1 is a plating tank, and this plating tank 1 contains an electroless plating solution 2 having a predetermined composition.
このメツキ槽1の側壁部から取出さねた無電解メツキ液
2はポンプ3を介して電極電位測定槽4に循環するよう
になつている6また電極電位測定槽4には還元析出され
る金属と同じ元素からなる金属電極5と甘永電極6とが
設けられている。前記メツキ槽1内に被メツキ用基板を
浸漬して無電解メツキを行なうと、このメツキ反応の進
行に伴い無電解メツキ液2の組成が変化して行くため、
一定のメツキ速度が得られなくなる。従つてこの組成が
変化した無電解メツキ液2を電極電位測定槽4に導き、
ここで図示しないスターラ一で攪拌を行ないながら被メ
ツキ用基板のモデルとして設けた金属電極5の表面で化
学還元メツキ反応を行なわせる。この状態における金属
電極5の混成電位を甘永電極6を基準として測定器7で
測定する。この測定値は記録計8に記録されてメツキ速
度の変化状態を知ることができる。一方測定器7では、
この測定値と、予め所定のメツキ速度に対応して設定さ
れた標準混成電位との電位差を求め、この電位は増幅器
9で増幅された後、この電位差が所定の値、たとえば零
になるまでポンプ10を作動させる。このポンプ10に
よりタンク11内に入れた無電解メツキ液2を形成する
成分溶液2aを前記メツキ槽1に供給して無電解メツキ
液2の組成を所定の割合に調整することによりメツキ速
度の制御を行なうものである。なお上記制御方法におい
て局部カソード反応における電流一電位曲線の形状を一
定にした場合、即ち無電解メツキ液2を形成する成分溶
液のうち金属イオンを含む溶液の濃度を一定とした場合
には、タンク11から供給する成分溶液2aは還元剤或
はPH調節剤である。また局部アノード反応における電
流一電位曲線の形状を一定とした場合、即ち還元剤およ
びPH調節剤の濃度を一定とした場合には、タンク11
から供給する成分溶液2aは金属イオンを含む溶液とな
る。なお説明図では、金属電極5と甘永電極6とをメツ
キ槽1と別個に設けた電極電位測定槽4内に取付けたも
のについて示したが、メツキ作業に支障のないようにメ
ツキ槽1内に取付けたものでも良い。The electroless plating solution 2 that has not been taken out from the side wall of the plating tank 1 is circulated through a pump 3 to an electrode potential measurement tank 4.6 Also, the electrode potential measurement tank 4 contains the metal to be reduced and deposited. A metal electrode 5 and a Kanagai electrode 6 made of the same element are provided. When the substrate to be plated is immersed in the plating tank 1 and electroless plating is performed, the composition of the electroless plating solution 2 changes as the plating reaction progresses.
It becomes impossible to obtain a constant plating speed. Therefore, the electroless plating solution 2 whose composition has been changed is introduced into the electrode potential measuring tank 4,
Here, while stirring with a stirrer (not shown), a chemical reduction plating reaction is carried out on the surface of the metal electrode 5 provided as a model of the substrate to be plated. The mixed potential of the metal electrode 5 in this state is measured using the measuring device 7 with the Kanaga electrode 6 as a reference. This measured value is recorded on the recorder 8 so that changes in the plating speed can be known. On the other hand, in measuring device 7,
The potential difference between this measured value and a standard hybrid potential set in advance corresponding to a predetermined plating speed is determined, and after this potential is amplified by an amplifier 9, the pump is pumped until this potential difference reaches a predetermined value, for example, zero. Activate 10. The plating speed is controlled by supplying the component solution 2a that forms the electroless plating liquid 2, which is put into the tank 11, into the plating tank 1 using the pump 10 and adjusting the composition of the electroless plating liquid 2 to a predetermined ratio. This is what we do. In addition, in the above control method, when the shape of the current-potential curve in the local cathode reaction is kept constant, that is, when the concentration of the solution containing metal ions among the component solutions forming the electroless plating solution 2 is kept constant, the tank The component solution 2a supplied from 11 is a reducing agent or a pH regulator. Furthermore, when the shape of the current-potential curve in the local anode reaction is constant, that is, when the concentrations of the reducing agent and the PH regulator are constant, the tank 11
The component solution 2a supplied from is a solution containing metal ions. Although the explanatory diagram shows the metal electrode 5 and the Kanagai electrode 6 installed in the electrode potential measuring tank 4, which is provided separately from the plating tank 1, it is important to note that the metal electrode 5 and the Kanagai electrode 6 are installed in the electrode potential measuring tank 4, which is provided separately from the plating tank 1. It may also be attached to.
次に本発明の実施例について説明する。Next, examples of the present invention will be described.
実施例 1
図に示す如き装置を用いて、予めメツキ槽1内に下記の
組成の無電解メツキ液2を1001入わておき、被メツ
キ用基板としてあらかじめ活性金属を表面に付着させた
フエノール板を浸漬して無電解銅メツキを行なつた。Example 1 Using an apparatus as shown in the figure, 100 ml of electroless plating solution 2 having the following composition was placed in a plating tank 1 in advance, and a phenol plate with an active metal adhered to the surface in advance was used as a substrate to be plated. Electroless copper plating was performed by immersing the steel.
無電解メツキ液組成
また容量0.11の電極電位測定槽4内には直径1m1
、長さ10m1!Lの銅線からなる金属電極5と、甘永
電極6とが取付けられており、この電極電位測定槽4内
に無電解メツキ液2を0.51/分の割合で供給しなが
ら金属電極5の混成電位を測定する。Electroless plating solution composition and electrode potential measuring tank 4 with a capacity of 0.11 have a diameter of 1 m1.
, length 10m1! A metal electrode 5 made of L-sized copper wire and a Kanaga electrode 6 are attached to the metal electrode 5 while supplying electroless plating solution 2 into the electrode potential measuring tank 4 at a rate of 0.51/min. Measure the hybrid potential of
一方予め−0.615mに設定された標準混成電位と、
測定した混成電位との電位差を求め、この電位差が零に
なるまでポンプ10を作動させてタンク11からホルム
アルデヒドをメツキ槽1内に供給してメツキ速度を制御
した。このように局部カソード反応、即ち銅イオンの酸
化反応における電流一電位曲線の形状を一定にして、ホ
ルムアルデヒドの添加量でメツキ速度を制御しながら、
1日あたり3μの厚さで8m2の銅メツキを行なつたと
ころ、メツキ速度を8.0〜8.5μ/時の範囲で連続
且つ自動的に制御することができた。On the other hand, a standard hybrid potential set in advance to -0.615m,
The potential difference with the measured hybrid potential was determined, and the pump 10 was operated until this potential difference became zero, and formaldehyde was supplied from the tank 11 into the plating tank 1 to control the plating speed. In this way, while keeping the shape of the current-potential curve constant in the local cathode reaction, that is, the oxidation reaction of copper ions, and controlling the plating rate by the amount of formaldehyde added,
When 8 m2 of copper was plated at a thickness of 3 microns per day, the plating speed could be continuously and automatically controlled in the range of 8.0 to 8.5 microns/hour.
実施例 2
上記実施例1において無電解メツキ液を下記の組成とし
、局部アノード反応を一定にして硫酸銅の添加量でメツ
キ速度を制御した。Example 2 In the above Example 1, the electroless plating solution had the following composition, the local anode reaction was kept constant, and the plating rate was controlled by the amount of copper sulfate added.
無電解メツキ液組成
この結果、1日あたり3μの厚さで8m2の銅メツキに
おいて、メツキ速度を8.0〜8,5μ/時に制御する
ことができた。Electroless plating solution composition As a result, it was possible to control the plating rate from 8.0 to 8.5 μ/hour in copper plating of 8 m 2 with a thickness of 3 μ per day.
実施例 3
上記実施例1において無電解メツキ液を下記の組成とし
、水酸化ナトリウムを可変量としてメツキ速度を制御し
た。Example 3 In Example 1 above, the electroless plating solution had the following composition, and the plating speed was controlled by varying the amount of sodium hydroxide.
このように水酸化ナトリウムの添加量を変えてメツキ液
のPHを調整することによりホルムアルデヒドの局部ア
ノード反応を制御することができる。無電解メツキ液組
成
\l口 固赫この結果
、1日あたり3μの厚さで8m2の銅メツキを行なつた
ところ、メツキ速度を7,5〜8.5μ5/時の範囲で
制御することができた。In this way, by adjusting the pH of the plating solution by changing the amount of sodium hydroxide added, the local anodic reaction of formaldehyde can be controlled. Electroless plating solution composition \ 口 偵 As a result, when 8 m2 of copper was plated with a thickness of 3 μ per day, it was possible to control the plating speed within the range of 7.5 to 8.5 μ5/hour. did it.
以上説明した如く、本発明に係る無電解メツキのメツキ
速度自動制御方法によれば、極めて簡単な方法によりメ
ツキ速度を連続的且つ自動的に制御することができ、特
に無電解メツキ液の消耗が激しい高速厚付けメツキ法に
好適であるなど顕著な効果を有するものである。As explained above, according to the method for automatically controlling the plating speed of electroless plating according to the present invention, the plating speed can be continuously and automatically controlled by an extremely simple method, and in particular, the consumption of the electroless plating solution is reduced. It has remarkable effects, such as being suitable for intense high-speed thick plating methods.
図面は本発明方法における装置の概略を示す説明図であ
る。
1・・・・・・メツキ槽、2・・・・・・無電解メツキ
液、2a・・・・・・成分溶液、4・・・・・・電極電
圧測定槽、5・・・・・・金属電極、6・・・・・・甘
永電極、7・・・・・・測定器、11・・・・・・タン
ク。The drawing is an explanatory diagram showing an outline of the apparatus in the method of the present invention. 1... Plating tank, 2... Electroless plating solution, 2a... Component solution, 4... Electrode voltage measurement tank, 5...・Metal electrode, 6... Kanaga electrode, 7... Measuring device, 11... Tank.
Claims (1)
無電解メッキ液中に浸漬して該電極の混成電位を測定し
た後、この混成電位と予め設定された標準混成電位との
電位差を求め、しかる後この電位差が所定値となるよう
に無電解メッキ液の組成を調整してメッキ速度を制御す
るようにしたことを特徴とする無電解メッキのメッキ速
度自動制御方法。1. After immersing a metal electrode made of the same element as the metal to be reduced and deposited in an electroless plating solution and measuring the hybrid potential of the electrode, determining the potential difference between this hybrid potential and a preset standard hybrid potential, An automatic plating speed control method for electroless plating, characterized in that the plating speed is controlled by adjusting the composition of the electroless plating solution so that the potential difference becomes a predetermined value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4162576A JPS5921386B2 (en) | 1976-04-13 | 1976-04-13 | Automatic plating speed control method for electroless plating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4162576A JPS5921386B2 (en) | 1976-04-13 | 1976-04-13 | Automatic plating speed control method for electroless plating |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS52124429A JPS52124429A (en) | 1977-10-19 |
JPS5921386B2 true JPS5921386B2 (en) | 1984-05-19 |
Family
ID=12613502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4162576A Expired JPS5921386B2 (en) | 1976-04-13 | 1976-04-13 | Automatic plating speed control method for electroless plating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5921386B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA775495B (en) * | 1976-11-22 | 1978-07-26 | Kollmorgen Tech Corp | Method and apparatus for control of electroless plating solutions |
JPS58136761A (en) * | 1982-02-10 | 1983-08-13 | Chiyuushiyou Kigyo Shinko Jigyodan | Controlling method of electroless plating liquid |
JP2005206931A (en) | 2003-12-26 | 2005-08-04 | Sumitomo Electric Ind Ltd | Method for producing metal powder |
-
1976
- 1976-04-13 JP JP4162576A patent/JPS5921386B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS52124429A (en) | 1977-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6042889A (en) | Method for electrolessly depositing a metal onto a substrate using mediator ions | |
EP0564780B1 (en) | Methods and apparatus for maintaining electroless plating solutions | |
US3532519A (en) | Electroless copper plating process | |
US5182131A (en) | Plating solution automatic control | |
AU8326987A (en) | Control of electroless plating baths | |
CA1112523A (en) | Method and apparatus for control of electroless plating solutions | |
US4654126A (en) | Process for determining the plating activity of an electroless plating bath | |
EP0180090A2 (en) | System and method for automatically monitoring and maintaining desired concentrations of metal plating baths | |
JPH0227434B2 (en) | ||
Lambert et al. | Analysis of films on Copper by Coulometric reduction | |
Steinmetz et al. | Electroless deposition of pure nickel, palladium and platinum | |
JPS5921386B2 (en) | Automatic plating speed control method for electroless plating | |
US4391841A (en) | Passivation of metallic equipment surfaces in electroless copper deposition processes | |
US4808431A (en) | Method for controlling plating on seeded surfaces | |
Bełtowska-Lehman et al. | An investigation of the electrodeposition kinetics of Permalloy thin films using a rotating disc electrode | |
Ohno | Electroless copper plating from an iminodiacetate bath | |
US5200047A (en) | Plating solution automatic control | |
US4284482A (en) | Palladium treatment procedure | |
Duda | Effect of isomeric dipyridyls on electroless copper deposition from EDTA solutions | |
JPH0830274B2 (en) | Method for analyzing copper ion concentration in electroless tin, lead or their alloy plating bath | |
JPH0331789B2 (en) | ||
US4065363A (en) | Process for the electrometric measurement of cyanide ions in solutions containing metal ions | |
DE1621294C3 (en) | Process for regulating the bath condition of an electroless copper plating bath | |
JPH0633251A (en) | System for automatically controlling copper electroless-plating bath | |
JPS583999A (en) | Electric alloy plating method |