JPS59212693A - Heat conducting fin - Google Patents
Heat conducting finInfo
- Publication number
- JPS59212693A JPS59212693A JP8573583A JP8573583A JPS59212693A JP S59212693 A JPS59212693 A JP S59212693A JP 8573583 A JP8573583 A JP 8573583A JP 8573583 A JP8573583 A JP 8573583A JP S59212693 A JPS59212693 A JP S59212693A
- Authority
- JP
- Japan
- Prior art keywords
- fin
- louver
- louvers
- heat transfer
- heat conducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/126—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
- F28F1/128—Fins with openings, e.g. louvered fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/34—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は空調機、冷凍機などに用いられる扁平伝熱管と
コルゲートフィンから成る熱交換器の、コルゲートフィ
ンの形状に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the shape of corrugated fins in a heat exchanger consisting of flat heat transfer tubes and corrugated fins used in air conditioners, refrigerators, etc.
従来のコルゲート状伝熱フィンの、本発明に最も近いと
思われる例を第1図に示す。この例は多数の切ジ込み1
,2をフィン面に入れて平面状のルーバ5を形成し、こ
の細片の配列を第2図に示すように、通風方向4に対し
て有効に配置するために、コルゲート状のフィンを中央
部でくの字状に折れ曲げる構成になっている。3は偏平
伝熱管である。しかし、元来コルゲート状フィンは熱交
換器の大きさにもよるが、連続した長いリボンから作ら
れるので、第1に中央付近からくの字状に折り曲げる作
業は実際上極めて生産性に劣るとともに、寸法精度が出
にくいという問題が考えられる。更に第2に、コルゲー
トフィンの中央付近をくの字状に折り曲げる場合、一方
のサイドは引っばり、もう一方のサイドは圧縮作用が働
くことになるので、圧縮のサイドは余分の材料がヘアピ
ン部分に突出することが考えられる。このような場合、
ヘアピン部の平面度が悪くなυ、伝熱管3との艮好な接
合が阻害されるという重大な問題が発生することが懸念
される。従来例は以上述べたように、実際に実現しよう
とすると多くの問題を有する。An example of a conventional corrugated heat transfer fin that is considered to be closest to the present invention is shown in FIG. This example shows multiple cuts 1
. The structure is such that it can be bent in a dogleg shape. 3 is a flat heat exchanger tube. However, since corrugated fins are originally made from a continuous long ribbon, depending on the size of the heat exchanger, the work of first bending them into a dogleg shape from around the center is actually extremely low in productivity. , there may be a problem that dimensional accuracy is difficult to achieve. Second, when bending the center of the corrugated fin into a dogleg shape, one side is stretched and the other side is compressed, so the excess material on the compressed side is compressed into the hairpin section. It is thought that it will stand out. In such a case,
If the flatness of the hairpin portion is poor, there is a concern that a serious problem may arise in that the smooth connection with the heat exchanger tube 3 is hindered. As described above, the conventional example has many problems when it is actually implemented.
本発明の目的は、コルゲート状伝熱フィンの、ルーバす
なわち切り込みによってできる細片の切り込み長さを長
くすること、およびルーバ配列の改善により、フィンの
伝熱性能を向上させることにある。An object of the present invention is to improve the heat transfer performance of the fins by increasing the length of the louvers, that is, the strips formed by the cuts, and by improving the arrangement of the louvers.
コルゲート状伝熱フィンの性能を向上させるには、ルー
バ形状、配列が重要であるとともに、ルーバ切り込み長
さを出来るだけ長くすることがポイントになる。In order to improve the performance of corrugated heat transfer fins, the shape and arrangement of the louvers are important, as well as making the louver cut length as long as possible.
本発明の特徴は、ルーバの間隙/フィンピッチを0.2
〜0.61ル一バ山角度Bを5°〜43°とした点に特
徴がある。The feature of the present invention is that the louver gap/fin pitch is 0.2
~0.61 The feature is that the angle B of the lubba peak is 5° to 43°.
本発明の実施例について以下説明する。まず本発明の1
実施例の構成を第3図〜第8図により説明する。第3図
は本発明による伝熱フィンの展開図−を示したものであ
る。本フィンは流入空気4とほぼ直交する方向(フィン
の長手方向)に多数の切り込みlOが入ってお9、これ
らの切り込みはその端部の位置が階段状にずれるよう設
けられている。更に、切り込みによって作られる多数の
ルーバ5はその長手方向に添う中央部を稜線6とする鈍
角に形成されている。ルーバ5とヘアピン部7.7′は
ルーバの両端に形成される傾斜部8でつながっている。Examples of the present invention will be described below. First, 1 of the present invention
The configuration of the embodiment will be explained with reference to FIGS. 3 to 8. FIG. 3 shows a developed view of the heat transfer fin according to the present invention. This fin has a large number of cuts 9 in a direction substantially perpendicular to the incoming air 4 (the longitudinal direction of the fin), and these cuts are provided so that the positions of the ends of the cuts are staggered. Further, the large number of louvers 5 formed by the cuts are formed at an obtuse angle with a ridgeline 6 at the center along the longitudinal direction. The louver 5 and the hairpin part 7.7' are connected by an inclined part 8 formed at both ends of the louver.
第4図は第3図のI−1断面図を示したものである。ル
ーバの稜線6はフィンを折り曲げてコルゲート状にした
とき同一方向になるよう、ブロック毎に突出方向が入れ
かわっている。第5図は第3図の■−■断面図であり、
このブロックは個々のルーバの断面が、Δ形に突出して
いる。一方、第6図は第3図の■−■断面図であり、こ
のフロックは個々のルーバの断面がV形にくぼんでいる
。つぎに第7図に、第3図の曲折部9を折り曲げてコル
ゲート状の伝熱フィン全形成した場合の外観図を示す。FIG. 4 shows a sectional view taken along line I-1 in FIG. 3. The protruding direction of the ridge line 6 of the louver is changed for each block so that when the fin is bent to form a corrugated shape, it will be in the same direction. FIG. 5 is a cross-sectional view taken along the line ■-■ in FIG.
In this block, each louver has a Δ-shaped cross section. On the other hand, FIG. 6 is a sectional view taken along the line -■ in FIG. 3, and the cross section of each louver in this flock is recessed in a V-shape. Next, FIG. 7 shows an external view when the bent portion 9 of FIG. 3 is bent to completely form corrugated heat transfer fins.
第3図において、曲折部9の折り曲げ方向をルーバの両
端で逆にすれば第7図に示すようなコルゲート状のフィ
ンが連続して形成烙れる。名ルーパを形成する切り込み
が階段状にずれているため、第7図のように折り曲げた
だけで、ルーバ間のギャップ11が、おのずから形成さ
れる。曲折部9の折り曲げ線の方向とルーバを形成する
切り込み10はほぼ直角になっているが、このためにフ
ィン材を伸ばしたり縮めたジすることなく、第7図に示
すコルゲート状フィンが自然に形作られる。第8図は第
7図の■−■断面図(1山分)を示したものであり、こ
のように各ルーバの稜6はすべて同一の突出方向になっ
ている。In FIG. 3, if the bending direction of the bending portion 9 is reversed at both ends of the louver, corrugated fins as shown in FIG. 7 can be formed continuously. Since the notches forming the louvers are staggered, the gaps 11 between the louvers are formed by simply bending the louvers as shown in FIG. The direction of the bending line of the bending part 9 and the notch 10 forming the louver are almost perpendicular to each other, so that the corrugated fin shown in FIG. 7 can be formed naturally without stretching or contracting the fin material. Shaped. FIG. 8 shows a sectional view (for one mountain) taken along the line ■-■ in FIG. 7, and as shown, the edges 6 of each louver are all in the same protruding direction.
つき゛に本実施例の作用について説明する。微少ルーバ
群から成るコルゲート状伝熱フィンで、伝熱性能の向上
に対して重要な点はルーバの形状。The operation of this embodiment will be explained below. A corrugated heat transfer fin consisting of a group of minute louvers, the shape of the louvers is important for improving heat transfer performance.
配列とルーバを形成する切り込み10の長さL′である
。、マず前者に対して本実施例はつぎの作用をもつ。第
8図にフィン断面とフィン間空気流相を示すように、各
ルーバが階段状にず扛ているため、空気流は大きく曲げ
られることなくほぼ等流速でルーバ間隙を流れる。ルー
バ断面がΔ形であることは、上下細片間に°空気流が流
入する作用を促進している。この結果、それぞれのルー
バはすべて有効に生かされ、フィンの伝熱性能の向上に
大きく寄与している。The length L' of the cuts 10 forming the array and the louver. , the present embodiment has the following effect on the former. As shown in FIG. 8, which shows the fin cross section and the phase of the air flow between the fins, each louver does not move stepwise, so the air flow flows through the louver gap at approximately the same flow speed without being significantly bent. The delta-shaped louver cross section promotes the flow of air between the upper and lower strips. As a result, each louver is effectively utilized, greatly contributing to improving the heat transfer performance of the fins.
後者すなわちルーバの切り込み10の長さLiについて
は、ルーバの効果を最大限に生かすために、極力太きく
することが重要である。この点、本発明は第7図に説明
したように、切り込み10の長さLl を上下ヘアピン
7.7′間の間隔り。Regarding the latter, that is, the length Li of the notch 10 of the louver, it is important to make it as thick as possible in order to make the most of the effect of the louver. In this regard, as explained in FIG. 7, the length Ll of the cut 10 is set to the distance between the upper and lower hairpins 7.7'.
と同等すなわち最大に設けることができる構成となって
いる。この結果、各ルーバの効果は最大限に生かされ、
フィンの伝熱性能を大きく向上させる重要な役割を果す
。ところで、この種の伝熱フィンで、従来しばしば問題
であったのはヘアピン部7を形成する曲折部9の位置決
めであった。本発明によるフィンでは、すでに説明した
ように、各ルーバがΔ形に突出しているので、両端の曲
折蔀8の位置は極めて正確に定まる構成になっている。The configuration is such that it is equivalent to, that is, can be provided at maximum. As a result, the effect of each louver is maximized,
It plays an important role in greatly improving the heat transfer performance of the fins. By the way, with this type of heat transfer fin, the positioning of the bent portion 9 forming the hairpin portion 7 has often been a problem in the past. In the fin according to the present invention, as described above, each louver projects in a Δ shape, so that the positions of the bent ridges 8 at both ends can be determined extremely accurately.
この結果、谷ルーバ間のギャップ11は確実に特定の寸
法が得られる。As a result, the gap 11 between the valley louvers can reliably have a specific dimension.
以上述べたように本発明による伝熱フィンは、極めて優
れた伝熱性能を有する形状であるとともに、製作精度が
高く、生産性に優れた構成である。As described above, the heat transfer fin according to the present invention has a shape that has extremely excellent heat transfer performance, and has a configuration with high manufacturing precision and excellent productivity.
第9図は本発明の別の実施例を示したものである。この
実施例は各ルーバに3本の稜、7(12゜13.14)
が入っている例であり、第9図V −■断面は第10図
に示す形状になっている。この例も先の例と同等の作用
をもつが、特に曲折部9の位置は一層明確にな9、製作
精度の向上が期待できる。FIG. 9 shows another embodiment of the invention. This example has three edges on each louver, 7 (12° 13.14)
In this example, the cross section taken along line V--■ in FIG. 9 has the shape shown in FIG. 10. This example also has the same effect as the previous example, but the position of the bent portion 9 is particularly clear 9, and an improvement in manufacturing accuracy can be expected.
次に本発明による熱交換器の、性能上の特徴について具
体的に説明する。Next, the performance characteristics of the heat exchanger according to the present invention will be specifically explained.
まず第11図はルーバ切9込み率r二L+/L。First, Fig. 11 shows the louver cutting rate r2L+/L.
X100 (%)と熱伝達率の増加割合について示す。X100 (%) and the increase rate of heat transfer coefficient are shown.
実験結果ではルーバの切ジ込み率rを大きくするとほぼ
比例的に熱伝達率が増加することがわぺっている。本発
明によるフィンは実線で示すように理論上ルーバ切り込
み長さLlを100%にできるので最大限にルーバの効
果を利用できる。Experimental results show that when the cutting depth r of the louver is increased, the heat transfer coefficient increases almost proportionally. In the fin according to the present invention, as shown by the solid line, the louver cut length Ll can theoretically be made 100%, so the effect of the louver can be utilized to the maximum extent.
一方、破線で示すように従来技術ではルーバ切p込み率
rは高々90%であり、図のような熱伝達率の増加率に
とどまる。なお、ルーバの形状の違いにより、従来熱交
換器と本発明による熱交換器ではルーバ切り込み率によ
る熱伝達率の増加傾向が異なる。On the other hand, as shown by the broken line, in the conventional technique, the louver cutting depth r is at most 90%, and the rate of increase in the heat transfer coefficient remains as shown in the figure. Note that due to the difference in the shape of the louvers, the tendency of increase in the heat transfer coefficient depending on the louver cutting rate differs between the conventional heat exchanger and the heat exchanger according to the present invention.
つぎに第12図は、上下ルーバの間隔/フィンピッチ(
=t/Pt>とルーバ山角度β0(第8図参!@)が熱
交換器の熱交換量Qにどのように影響するかについて検
討した結果を示したものである。栄件として、送風動力
はすべて一定の比較をして必る。本発明による熱交換器
のフィンの場合、ルーバ山角度β0と上下ルーバ間隔/
フィンピッチC=t/Pi)の組合せにより、Qは第1
2図に示すように変化し、Qを大きくするための、適正
な組合せが存在する。第13図は縦軸に熱交換量Qを取
って、ルーバ山角度β0と上下ルーバ間隔/フィンピッ
チの影響を示したものである。まずルーバ間隔について
は、β0にあまり関係なく、ルーバ間隔/フィンピッチ
=0.2〜o、6(第13図■)が適正範囲になる。一
方、ルーバ山角度β0と熱交換量Qの関係について、第
14図に示す(上下ルーバ間隔/フィンピッチ=0.4
の場合)。β〉5°でQの増加率が少くなり、β〉43
゜でQが大きく減少する。従って、βの適正範囲として
、5°〈β<43°(第14図の1)となる。Next, Figure 12 shows the distance between the upper and lower louvers/fin pitch (
=t/Pt> and the louver peak angle β0 (see Figure 8!@) are the results of a study on how they affect the heat exchange amount Q of the heat exchanger. As a matter of fact, all blowing power must be compared in a certain way. In the case of the fin of the heat exchanger according to the present invention, the louver peak angle β0 and the upper and lower louver spacing/
Due to the combination of fin pitch C=t/Pi), Q is the first
As shown in Figure 2, there are appropriate combinations for increasing Q. FIG. 13 shows the influence of the louver peak angle β0 and the upper and lower louver spacing/fin pitch, with the heat exchange amount Q plotted on the vertical axis. First, regarding the louver spacing, the appropriate range is louver spacing/fin pitch=0.2 to o, 6 (FIG. 13 ■), regardless of β0. On the other hand, the relationship between the louver peak angle β0 and the heat exchange amount Q is shown in Fig. 14 (upper and lower louver spacing/fin pitch = 0.4
in the case of). When β〉5°, the rate of increase in Q decreases, and β〉43
Q decreases significantly at °. Therefore, the appropriate range of β is 5°<β<43° (1 in FIG. 14).
忌らに、10°〈β〈38° (第14図の■)ではQ
が最大になるので、この範囲がよジ望筐しい範囲と言え
る。Unfortunately, at 10°〈β〈38° (■ in Figure 14), Q
is the maximum, so this range can be said to be the most desirable range.
本発明によれば微少細片群(ルーバ)から成るコルゲー
ト形の伝熱フィンにおいて、切υ込みが最大にとれ、か
つ、ルーバとルーバノキャップKM度が確保できるため
、フィンの伝熱性能が大幅に向上する。According to the present invention, in a corrugated heat transfer fin made of fine particles (louvers), the depth of cut can be maximized and the louver and louver cap KM degree can be secured, so the heat transfer performance of the fin is improved. Significantly improved.
第1図は従来伝熱フィンの部分図、第2図は第1図の断
面図、第3図は本発明1実施例のフィン展開図、第4図
は第3図1−I断面図、第5図は第3図■−■断面図、
第6図は第3図■−■断面図、第7図は本発明1実施例
のコルゲート形の伝熱フィン外形図、第8図、は第7図
IV−IV断面図、第9図は本発明の別の実施例のフィ
ン展開図、第1θ図は第9図■−■断面図、第11〜1
4図は本発明実施例フィンの性能説明図である。
1.2・・・切り込み、3・・・扁平伝熱管、4・・・
空気流入方向、5・・・ルーバ、6・・・稜線、7・・
・ヘアピン部、8・・・傾斜部、9・・・曲折部、10
・・・切り込み、11・・・細片間のギャップ。
第 1 図
第 3 図
′0−4
雨 5 図
10 10 10
第 6 図
第 7 図
第 8 図
第 9 図FIG. 1 is a partial view of a conventional heat transfer fin, FIG. 2 is a sectional view of FIG. 1, FIG. 3 is a developed view of the fin of the first embodiment of the present invention, and FIG. Figure 5 is a cross-sectional view of Figure 3
Figure 6 is a sectional view taken along line 3, Figure 7 is an external view of the corrugated heat transfer fin according to the first embodiment of the present invention, Figure 8 is a sectional view taken along line IV-IV of Figure 7, and Figure 9 is a sectional view taken along line IV-IV of Figure 7. The fin development view of another embodiment of the present invention, the 1θ figure is a sectional view of FIG.
FIG. 4 is an explanatory diagram of the performance of the fin according to the embodiment of the present invention. 1.2...notch, 3...flat heat exchanger tube, 4...
Air inflow direction, 5...louver, 6...ridge line, 7...
・Hairpin part, 8... Inclined part, 9... Bent part, 10
...notch, 11... gap between strips. Figure 1 Figure 3 Figure '0-4 Rain 5 Figure 10 10 10 Figure 6 Figure 7 Figure 8 Figure 9
Claims (1)
の伝熱フィンにおいて、フィンを伸ばして平板状にした
状態のとき、フィン板にフィン間を窒気が流通する方向
に多数個の切り込みを入れ、隣り合う切り込みの端部の
位置が互いにずれており、かつ該切り込みによってでき
るルーバはその長手方向に添う任意箇所を稜線とする鈍
角に形成されており、すべてのルーバの端部を曲折して
ヘアピン状のコルゲートフィンにしたとき、細片曲折部
の折れ曲がp線と切り込みの方向がほぼ直角であり、さ
らに、ルーバの間隙/フィンピッチが0.2〜0.6.
ルーバ出角度Bが5°〜43°の範囲にあることを特徴
とする伝熱フィン。In corrugated heat transfer fins in which the fin plates are continuously bent in a hairpin shape, when the fins are stretched out to form a flat plate, a large number of cuts are made in the fin plate in the direction in which nitrogen air flows between the fins. , the positions of the ends of adjacent notches are shifted from each other, and the louver formed by the notch is formed at an obtuse angle with the ridge line at any point along the longitudinal direction, and the ends of all the louvers are bent. When a hairpin-shaped corrugated fin is made, the bend of the strip bending portion is almost perpendicular to the p-line and the direction of the cut, and the louver gap/fin pitch is 0.2 to 0.6.
A heat transfer fin characterized in that a louver projection angle B is in a range of 5° to 43°.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8573583A JPS59212693A (en) | 1983-05-18 | 1983-05-18 | Heat conducting fin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8573583A JPS59212693A (en) | 1983-05-18 | 1983-05-18 | Heat conducting fin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59212693A true JPS59212693A (en) | 1984-12-01 |
Family
ID=13867094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8573583A Pending JPS59212693A (en) | 1983-05-18 | 1983-05-18 | Heat conducting fin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59212693A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6329194A (en) * | 1986-07-21 | 1988-02-06 | Matsushita Refrig Co | Heat exchanger |
JPS63150588A (en) * | 1986-12-16 | 1988-06-23 | Matsushita Refrig Co | Heat exchanger with fins |
WO2000063631A3 (en) * | 1999-04-19 | 2001-01-11 | Peerless Of America | Corrugated fin and method of making |
US6598669B2 (en) * | 1999-04-19 | 2003-07-29 | Peerless Of America | Fin array for heat transfer assemblies and method of making same |
US6840312B1 (en) * | 1999-03-16 | 2005-01-11 | Outokumpu Oyj | Cooling element for a heater exchange |
US6883598B2 (en) * | 1999-03-16 | 2005-04-26 | Outokumpu Oyj | Cooling element for a heat exchanger |
CN100417910C (en) * | 2006-06-01 | 2008-09-10 | 东南大学 | Parted saw tooth fin |
WO2012110651A1 (en) * | 2011-02-17 | 2012-08-23 | Behr Gmbh & Co. Kg | Fin for a heat exchanger |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5845495A (en) * | 1981-09-11 | 1983-03-16 | Hitachi Ltd | Heat transmitting fin |
-
1983
- 1983-05-18 JP JP8573583A patent/JPS59212693A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5845495A (en) * | 1981-09-11 | 1983-03-16 | Hitachi Ltd | Heat transmitting fin |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6329194A (en) * | 1986-07-21 | 1988-02-06 | Matsushita Refrig Co | Heat exchanger |
JPS63150588A (en) * | 1986-12-16 | 1988-06-23 | Matsushita Refrig Co | Heat exchanger with fins |
US6840312B1 (en) * | 1999-03-16 | 2005-01-11 | Outokumpu Oyj | Cooling element for a heater exchange |
US6883598B2 (en) * | 1999-03-16 | 2005-04-26 | Outokumpu Oyj | Cooling element for a heat exchanger |
WO2000063631A3 (en) * | 1999-04-19 | 2001-01-11 | Peerless Of America | Corrugated fin and method of making |
US6598669B2 (en) * | 1999-04-19 | 2003-07-29 | Peerless Of America | Fin array for heat transfer assemblies and method of making same |
CN100417910C (en) * | 2006-06-01 | 2008-09-10 | 东南大学 | Parted saw tooth fin |
WO2012110651A1 (en) * | 2011-02-17 | 2012-08-23 | Behr Gmbh & Co. Kg | Fin for a heat exchanger |
US20130319648A1 (en) * | 2011-02-17 | 2013-12-05 | Behr Gmbh & Co. Kg | Fin for a heat exchanger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4469167A (en) | Heat exchanger fin | |
US5042576A (en) | Louvered fin heat exchanger | |
EP0826942B1 (en) | Corrugated cooling fin with louvers | |
JPS5926237B2 (en) | Heat exchanger | |
US6170566B1 (en) | High performance louvered fin for a heat exchanger | |
JP3814846B2 (en) | Corrugated fin forming roller and corrugated fin forming method | |
JPS59212693A (en) | Heat conducting fin | |
JP3048541B2 (en) | Air conditioner heat exchanger | |
JPH07305981A (en) | Heat exchanger | |
KR19980031147A (en) | Heat exchanger of air conditioner | |
US20150000880A1 (en) | Heat exchanger with varied louver angles | |
JPS62147290A (en) | Heat exchanger | |
JPH0325098Y2 (en) | ||
JPS6324389Y2 (en) | ||
JPS5827268Y2 (en) | Heat exchanger | |
KR200397472Y1 (en) | Fin and tube integral type heat exchanger | |
JPH10220981A (en) | Heat exchanger and its manufacture | |
JPS6060590U (en) | Heat exchanger | |
JPS6234150Y2 (en) | ||
JPH0149571B2 (en) | ||
JPS60226696A (en) | Finned heat transfer pipe and manufacture thereof | |
JPS6130073Y2 (en) | ||
EP0097612A2 (en) | Heat exchanger | |
JPS61272593A (en) | Heat exchanger | |
US20030094267A1 (en) | Multi-edge folded louvered fin for heat exchanger |