Nothing Special   »   [go: up one dir, main page]

JPS5921264A - Brushless synchronous motor - Google Patents

Brushless synchronous motor

Info

Publication number
JPS5921264A
JPS5921264A JP13026482A JP13026482A JPS5921264A JP S5921264 A JPS5921264 A JP S5921264A JP 13026482 A JP13026482 A JP 13026482A JP 13026482 A JP13026482 A JP 13026482A JP S5921264 A JPS5921264 A JP S5921264A
Authority
JP
Japan
Prior art keywords
exciter
synchronous motor
excitation
coil
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13026482A
Other languages
Japanese (ja)
Inventor
Masanao Nanba
南波 正直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP13026482A priority Critical patent/JPS5921264A/en
Publication of JPS5921264A publication Critical patent/JPS5921264A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/12Synchronous motors for multi-phase current characterised by the arrangement of exciting windings, e.g. for self-excitation, compounding or pole-changing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)

Abstract

PURPOSE:To simplify the facility by providing an AC exciter, a permanent magnet type sub exciter, and a rotary commutator with a suitable phase connecting mechanism, and detecting the input of the synchronous motor to control the output of the sub exciter by the detection signal. CONSTITUTION:A synchronous motor 1, an AC exciter 3, a permanent magnet type sub exciter 6 and a rotary commutator 14 with a suitable phase connecting mechanism are mounted on the same rotational shaft 2. When a power source 10 is energized, polyphase alternating currents flow through the stator coils of the motor 1, exciting coil 13 is shortcircuited by a discharge resistor 16, and started as an induction machine. The suitable phase connecting mechanism, not shown, detects the current, frequency and phase induced in the coil 13 when becoming near the synchronizing speed, and fires the thyristor of the commutator 14. At this time, the armature coil 17 of the exciter 6 produces a high AC voltage, the exciting coil 5 and the armature coil 15 of the exciter 3 are sufficiently energized, the shortcircuit of the coil 13 of the motor 1 is released to flow a main machine exciting current, and synchronized with the synchronizing speed. In this manner, the exciting facility can be simplified to effectively reduce the cost.

Description

【発明の詳細な説明】 〔発−の技術分野〕 本発明は駆動システムの簡易化による設備合理化を計っ
たブラシレス同期電動機装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a brushless synchronous motor device which is designed to rationalize equipment by simplifying a drive system.

〔発明の技術的背景〕[Technical background of the invention]

同期電動機は誘導電動機に比べ、力率調整が可能なこと
、効率が良いことがその利点であるが、励磁装置が必要
であることが設備上不利であることは否めない。設備上
の不利を克服することは電動機駆動システム上、エネル
ギ効率的活用の面からも要求されていることである。
Synchronous motors have advantages over induction motors in that they can adjust the power factor and are more efficient, but it cannot be denied that they require an excitation device, which is a disadvantage in terms of equipment. Overcoming equipment disadvantages is also required from the standpoint of efficient energy utilization in motor drive systems.

第1図は従来技術によるブラシレス同期電動機装置の一
例でちる。同期電動機(1)の固定子01)側の固定子
巻線(lla)は多相交流で付勢され、その回転子側磁
極α渇は界磁巻線側て励磁される。一般に同期電動機の
界磁巻線(13)には同一回転軸(2)上に設けられた
回転整流器(I4)を介して、同様に同一回転軸(2)
上に設けられた交流励磁機(3)の電機子巻線α9によ
って付勢される。この交流励磁機(3)は回転電機子形
の同期機であるので、その固定子磁極(4)の界磁巻線
(5)を補助直流電源によって励磁する必要がある。こ
の励磁装置瞥は、−期電動機(1)の固定子巻線(ll
a)を伺勢する多相吹流電10)の開閉器u(4)と同
様電源室(9)に納返られる!□従って電源室(9)内
の励磁装置(2匂と交流励磁機<3) 、aを結ぶ長い
励磁用配線Q41が必要でおる。第1図では詳細には図
示していないが、周知のように回転軸(2)上の回転整
流器α荀は交流励磁機(3)の電機子巻線QSに発生さ
れる交流を直流に変換する定常的な機構の他、同期電動
機(1)が電源Q(Itにより・開閉器盤(2L)と主
ケーブル(ハ)を介して電力を受け、誘導機として始動
される場合、同期電動機の界磁巻線03)の回路を、回
転軸(2)土の放電抵抗(1!によって短絡すると共に
、同期速度近くでは、その界磁巻線(13)に誘起され
る電流の周波数、位相を検出し、適切なタイミングで回
転兼流器α荀内のサイリスタを点弧し、前記界磁巻線(
2)に直流電流を供給励磁する。そして同期電動機(1
)を電源り0)に同期引入れするいわゆるブラシレス適
位相投入機構を有するものである。従って、交流励磁機
(3)の界磁巻線(5)の励磁電流は、同期電動機(1
)−ア始動初期から通電しておいても、同期電動機(1
)は回シ数θカ、・ら始動し、同期引入れ、同期運転を
何ら特如]の手を下さずに、自動的に行なうことが$ 
peでちる。その上、電源室に設けられた励磁装置のは
同期電動機(1)の定常運転中、負荷変動に応じての交
流励磁機(3)の界磁巻線(5)の励磁電流の制御機能
があるから、安定運転ができる。
FIG. 1 shows an example of a brushless synchronous motor device according to the prior art. The stator winding (lla) on the stator 01) side of the synchronous motor (1) is energized by multiphase alternating current, and the magnetic pole α on the rotor side is excited on the field winding side. Generally, the field winding (13) of a synchronous motor is connected to the same rotating shaft (2) via a rotary rectifier (I4) provided on the same rotating shaft (2).
It is energized by the armature winding α9 of the AC exciter (3) provided above. Since this AC exciter (3) is a rotating armature type synchronous machine, it is necessary to excite the field winding (5) of its stator magnetic pole (4) with an auxiliary DC power source. A glance at this excitation system shows that the stator winding (ll) of the motor (1) is
It is returned to the power supply room (9) in the same way as the switch u (4) of the multiphase stream current 10) that monitors a)! □Therefore, a long excitation wiring Q41 is required to connect the excitation device (2 increments and AC exciter <3) and a in the power supply room (9). Although not shown in detail in Figure 1, as is well known, the rotating rectifier α on the rotating shaft (2) converts the alternating current generated in the armature winding QS of the alternating current exciter (3) into direct current. In addition to the steady mechanism in which the synchronous motor (1) The circuit of the field winding (03) is short-circuited by the earth discharge resistance (1!) of the rotating shaft (2), and near the synchronous speed, the frequency and phase of the current induced in the field winding (13) are The thyristor in the rotary current device α is activated at an appropriate timing, and the field winding (
2) Supply and excite DC current. and a synchronous motor (1
) has a so-called brushless appropriate phase input mechanism that synchronously draws in the power source 0). Therefore, the exciting current of the field winding (5) of the AC exciter (3) is
) - Even if the power is applied from the beginning of the motor, the synchronous motor (1
) starts after the number of cycles θ, and performs synchronous pull-in and synchronous operation automatically without any special intervention.
Pe de chiru. Furthermore, the excitation device installed in the power supply room has the function of controlling the excitation current of the field winding (5) of the AC exciter (3) in response to load fluctuations during steady operation of the synchronous motor (1). Because of this, stable driving is possible.

〔背景技術の問題点〕[Problems with background technology]

上記の従来技術で、は、交流励磁機(3)の励磁装置Q
21が電源室(9)にあるため、その励磁用配線(財)
、電  □源室(9)内のスペース、更には励磁装置0
′IJの電源が必要である等の欠点がある。
In the above conventional technology, the excitation device Q of the AC exciter (3)
21 is in the power supply room (9), so its excitation wiring (goods)
, the space in the power supply room (9), and even the excitation device 0
'There are drawbacks such as the need for an IJ power source.

〔発明の目的〕    ′ □ 本発明は設備合理化を計ったブラシレス同期電動機装置
を提供することを目的とする。
[Object of the Invention] ′ □ An object of the present invention is to provide a brushless synchronous motor device with equipment rationalization.

〔発明の概要〕[Summary of the invention]

本発明においては、同期電動機と同軸に支流励磁機と、
永久磁石形削励磁機と、適位相投入機構付回転整流器と
を設け、開閉器盤から同期電動機に交流電力を供給する
電力供給ラインに計器用変圧器および変流器を設けて同
期電動機の入力を検出し、この検出信号により副励磁様
の出力を制御することにより交流励磁機に界磁電流を制
御しながら供給する交流励磁機用励磁制御装置を、交流
励磁機固定子又は同期電動機固定子と一体的に配設する
ことにより、従来使用した励磁用配線(財)を無くシ、
電源室(9)内に励磁装置(イ)を置かないで済むよう
にして、設備合理化を計る・ものでおる。
In the present invention, a tributary exciter is coaxially connected to the synchronous motor,
A permanent magnet shaping exciter and a rotary rectifier with an appropriate phase input mechanism are installed, and an instrument transformer and a current transformer are installed on the power supply line that supplies AC power from the switch panel to the synchronous motor, and the input of the synchronous motor is An excitation control device for an AC exciter that supplies field current to the AC exciter in a controlled manner by controlling the output of the sub-excitation mode using this detection signal, is connected to the AC exciter stator or the synchronous motor stator. By arranging it integrally with the conventional excitation wiring, the
It is possible to streamline equipment by eliminating the need to place the excitation device (a) in the power supply room (9).

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について、第2図および第3図
を参照して説明する。尚これらの図において、第1図と
同一部分には同一符号を付して説明を省略する。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3. In these figures, the same parts as in FIG. 1 are designated by the same reference numerals, and their explanation will be omitted.

本実施例においては、同期□電動機(,1)と同軸に交
流励磁機(3)と、永久磁石形削励磁機(6)と、適位
相投入機構付回転整流器α4とを設ける。そして開閉器
盤@)から同期電動機(1)に匁流電力を供給する電力
供給ラインの一部でちる主ケープ/I/(ハ)に計器用
変圧器01)および変流器C(3を設iて、同期電動機
(1)の入力を検出し、この検出信号により副励磁機(
6)の固定す側電機子、巻線←ηの出力を制御すること
により交流励磁機(3)の界磁巻線(1句に界磁電流(
ife)を制御しながら供給する交流励磁機用励磁制御
装置特を、交流励磁機(3)の固定子(3a)に一体重
にマウントする。第3図において、交流励磁機用励磁制
御装置aQ内の(ハ)は力率制御回路、(33a)は力
率設定器、0荀し整流回路(35)のゲート信号を発生
させるゲート制御回路でおる。
In this embodiment, an AC exciter (3), a permanent magnet shaping exciter (6), and a rotating rectifier α4 with an appropriate phase input mechanism are provided coaxially with the synchronous □ electric motor (, 1). Then, a potential transformer 01) and a current transformer C (3) are connected to the main cape /I/(c), which is a part of the power supply line that supplies power from the switch panel @) to the synchronous motor (1). The input of the synchronous motor (1) is detected, and the sub-exciter (1) is activated by this detection signal.
By controlling the output of the fixed side armature and winding ←η of 6), the field winding of the AC exciter (3) (in one phrase, the field current (
An excitation control device for an AC exciter, which supplies the AC exciter while controlling it, is integrally mounted on the stator (3a) of the AC exciter (3). In Fig. 3, (c) in the excitation control device aQ for an AC exciter is a power factor control circuit, (33a) is a power factor setter, and a gate control circuit that generates a gate signal for the zero rectifier circuit (35). I'll go.

次に・作用について説明する。     、     
□同期電動機(1)を誘導機始動するために開閉器盤 
 :@)をオンすると、電源住Qから主ケープ、/I/
(2)を介し  □□て多相交流が同期電動機(1)の
固定子巻線(lla)に流れる。このとき同期電動機(
1)の界磁巻線θ■は放電抵抗αeによって短絡され、
誘導機として始動さ□ れる。そして同期速度付近に々ると、図示しない  ・
適位相投入機構が同期電動機の界磁巻線θ騰に誘起  
、:される電□流の周波数、位相を検出し、回転整流器
  ′:(14)内のサイリスタを点弧する。この同期
速度付近  □においては、副励磁機(6)の電機子巻
線Q7)は充分に高い交流電圧を生じ、交流励磁機(3
)の界磁巻線(5)に充分な電流を流し得るようになり
、交流励磁機用励磁制御装置(18j内の整流回路(至
)を介して直流の界磁電流(ife)を供給しているの
で、交流励磁機(3)の電機子巻線(1つも交流電圧を
発生している。従って前記回転整流器側内のサイリスタ
が点弧された方らば、同期電動機(1)の界磁巻線に主
機励磁電流(1f)を流すことが出来、同期電動機(1
)を同期速度に引入れることができる。
Next, the action will be explained. ,
□Switch panel to start the synchronous motor (1) as an induction motor
When :@) is turned on, power source Q to main cape, /I/
Multiphase alternating current flows to the stator winding (lla) of the synchronous motor (1) via (2) □□. At this time, the synchronous motor (
The field winding θ■ in 1) is short-circuited by the discharge resistance αe,
It is started as an induction machine. And when it comes to around the synchronous speed, not shown in the figure.
Appropriate phase input mechanism induces θ rise in field winding of synchronous motor
,: Detects the frequency and phase of the electric current, and ignites the thyristor in the rotary rectifier (14). At around this synchronous speed □, the armature winding Q7) of the sub-exciter (6) generates a sufficiently high AC voltage, and the AC exciter (3) generates a sufficiently high AC voltage.
) is now able to flow sufficient current to the field winding (5) of Therefore, the armature winding of the AC exciter (3) also generates an AC voltage. Therefore, if the thyristor in the rotary rectifier side is fired, the field of the synchronous motor (1) The main machine excitation current (1f) can be passed through the magnetic winding, and the synchronous motor (1f) can be passed through the magnetic winding.
) can be brought to synchronous speed.

交流励磁機用励磁制御装置a→内の力率制御回路G[有
]は、同期電動機(1)の固定子巻線(lla)に流れ
る電圧、電流を主ケーブル(23)から計器用変圧器C
31)、変流器02+によって検出し、その検出信号を
入力として、同期電動機(1)の電柳刃率が一定となる
ように交流励磁機(3)の界磁電流(ife)を制御し
、ひいては同期電動機(1)の界磁巻線(13)の励磁
電流(1f)を調整するいわゆる力率制御機能を備えて
おり、力率設定器(33a)により所望の力率になるよ
うにすることが出来る。ゲート制御回路(2)は力率制
御回路03)の信号によりゲート信号を発生させ整流回
路Gつのサイリスタを制御し、交流励磁機(3)の界磁
電流(ife)が設定値に対して一定となるような制御
機能をもつことは云う壕でもない。
The power factor control circuit G [with] in the excitation control device a for an AC exciter is configured to transfer the voltage and current flowing to the stator winding (lla) of the synchronous motor (1) from the main cable (23) to the instrument transformer. C
31) Detected by current transformer 02+, and using the detected signal as input, controls the field current (ife) of the AC exciter (3) so that the edge ratio of the synchronous motor (1) is constant. Furthermore, it has a so-called power factor control function that adjusts the excitation current (1f) of the field winding (13) of the synchronous motor (1), and the power factor setting device (33a) adjusts the excitation current (1f) to the desired power factor. You can. The gate control circuit (2) generates a gate signal based on the signal from the power factor control circuit 03) and controls the G thyristors in the rectifier circuit, so that the field current (ife) of the AC exciter (3) is constant with respect to the set value. It is no secret that it has such a control function.

従って上記実施例は第1図に示す従来のものと比較1.
て明らかなように電源室(9)と同期電動機(1)等の
回転機装置とを結ぶケーブル類は主ケーブル(至)のみ
で、励磁用配線(24Jが無くなり、電源室(9)内に
は励磁装置(社)おJ−1ひその電源が無くなり、設備
が合理化されている。しかして、上記したようにブラシ
レス同期電動機装置としての機能は全く同じである。そ
して、交流励磁機(3)の励磁制御装置0樽がその電源
となる副励磁後(6)を含めてすべて同期電動機(1)
と一体になって組込まれ1いる。この利点は明らかであ
るが、まとめると次のようになる。
Therefore, the above embodiment is compared with the conventional one shown in FIG. 1.
As is clear, the only cables that connect the power supply room (9) and the rotating machinery such as the synchronous motor (1) are the main cables (to), and the excitation wiring (24J) is missing, and the Exciter Co., Ltd.'s J-1 Hiso power supply has been eliminated and the equipment has been streamlined.However, as mentioned above, the function as a brushless synchronous motor device is exactly the same.And, the AC exciter (3 ) are all synchronous motors (1) including the sub-excitation (6) where the excitation control device 0 barrel is the power source.
It is incorporated into one piece. The advantages of this are obvious, but can be summarized as follows.

(1)電源室(9)に励磁装置−を置く心安がなくなり
、また電源室(9)と交流励磁機(3)とを結ぶ励磁用
配線0aか省略できる。従って現地据付工事期間の短縮
が可能となる。
(1) There is no need to worry about placing the excitation device in the power supply room (9), and the excitation wiring 0a connecting the power supply room (9) and the AC exciter (3) can be omitted. Therefore, it is possible to shorten the on-site installation work period.

(11)交流励磁機用励磁制御装置0樽も含め、すべて
工場で調整試験が完了できるので、現地での試運転調整
時間が大中に軽減できる。
(11) Since all adjustment tests can be completed at the factory, including the excitation control device for AC exciter 0 barrel, on-site trial run adjustment time can be greatly reduced.

(iii)  励磁用配線C4)が不要となる別の効果
として故障率の低下、装置の信頼性が向上する効果があ
る。
(iii) Another effect of eliminating the need for the excitation wiring C4) is that the failure rate is reduced and the reliability of the device is improved.

(1■)電源室(9)には開閉器盤(21)のみ置けば
よいので、電源室(9)のコンパクト化が可能となる。
(1) Since only the switch panel (21) needs to be placed in the power supply room (9), the power supply room (9) can be made more compact.

尚本発明は上記し、かつ図面に示した実施例のみに限定
されるものではなく、例えば交流励磁機用励磁制御装置
0Qは同期電動機と一体にしたり或は同期電動機の端子
箱(7)の中へ入れてもよいし、この励磁制御装fiH
に無効電力制御機能をもたせてもよい等、その要旨を変
更しない範囲で、種々変形して実施できることは勿論で
ある。
Note that the present invention is not limited to the embodiments described above and shown in the drawings; for example, the excitation control device 0Q for an AC exciter may be integrated with a synchronous motor or connected to the terminal box (7) of the synchronous motor. You can put it inside, or use this excitation control device fiH.
It goes without saying that various modifications can be made without changing the gist of the invention, such as adding a reactive power control function to the invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、電源室のコンパク
ト化、励磁用配線を省略したことによる経済的有利化、
現地工事および調整試験期間の短縮化等、設備の合理化
を計ったブラシレス同期電動機装置を提供することがで
きる。
As explained above, according to the present invention, the power supply room can be made more compact, economical advantages can be achieved by omitting excitation wiring,
It is possible to provide a brushless synchronous motor device that streamlines equipment by shortening on-site construction and adjustment test periods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のブラシレス同期電動機装置を示す要部縦
断立面図、第2図は本発明のブラシレス同期電動機装置
の一実施例を示す要部縦断立再1図、第3図は第2図の
装置の系統図である。 1・・・同期電動機   2・・・回 転 軸3・・・
交流励磁機   3a・・・交流励磁機の固定子4・・
・交流励磁機の固定子磁極 6・・・永久磁石形削励磁機 11・・・同期電動機の固定子 14・・・適位相投入機構付回転整流器18・・・交流
励磁機用励磁制御装置 21・・・開閉器盤 23・・・電力供給ラインの一部である主ケーブル31
・・・計器用変圧器 32・・・変 流 器代理人 弁
理士 井 上 −男
FIG. 1 is a vertical sectional elevational view of a main part showing a conventional brushless synchronous motor device, FIG. 2 is a vertical sectional elevational view of a main part showing an embodiment of the brushless synchronous motor device of the present invention, and FIG. FIG. 2 is a system diagram of the device shown in FIG. 1...Synchronous motor 2...Rotating shaft 3...
AC exciter 3a... Stator 4 of the AC exciter...
- Stator magnetic pole 6 of AC exciter...Permanent magnet shaping exciter 11...Stator 14 of synchronous motor...Rotary rectifier with appropriate phase input mechanism 18...Excitation control device 21 for AC exciter ... Switch panel 23 ... Main cable 31 that is part of the power supply line
...Instrument transformer 32...Current transformer agent Patent attorney Inoue -Male

Claims (2)

【特許請求の範囲】[Claims] (1)同期電動機と又副励磁機とを同軸に設け、かつ、
始動時から同期引入れまでの適位相投入機構を備えたブ
ラシレス同期電動機装置において、同期電動機と同軸に
交流励磁機と、永久磁石形態励磁機と、適位相投入機構
付回転整流器とを設け、開閉器盤から同期電動機に交流
電力を供給する電力供給ラインに計器用変圧器および変
流器を設けて同期電動機の入力を検出し、この検出信号
により副励磁機の出力を制御することにより交流励磁機
に界磁電流を制御しながら供給する交流励磁機用励磁制
御装置を、交流励磁機固定子又は同期電動機固定子と一
体的に配設したことを特徴とするブラシレス同期電動機
装置。
(1) A synchronous motor and a sub-exciter are provided coaxially, and
In a brushless synchronous motor device equipped with an appropriate phase input mechanism from startup to synchronous pull-in, an AC exciter, a permanent magnet type exciter, and a rotary rectifier with an appropriate phase input mechanism are installed coaxially with the synchronous motor to open and close the motor. An instrument transformer and a current transformer are installed in the power supply line that supplies AC power from the device panel to the synchronous motor to detect the input of the synchronous motor, and this detection signal controls the output of the sub-exciter to perform AC excitation. 1. A brushless synchronous motor device, characterized in that an excitation control device for an AC exciter that controls and supplies field current to the machine is integrally arranged with an AC exciter stator or a synchronous motor stator.
(2)交流励磁機用励磁制御装置は同期電動機の力率を
一定に保つ力率制御機能と無効電力制御機能のうち少な
くともいずれか一方の機能を持たせたことを特徴とする
特許請求の範囲第1項記載のブラシレス同期電動機装置
(2) The excitation control device for an AC exciter has at least one of a power factor control function to keep the power factor of a synchronous motor constant and a reactive power control function. The brushless synchronous motor device according to item 1.
JP13026482A 1982-07-28 1982-07-28 Brushless synchronous motor Pending JPS5921264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13026482A JPS5921264A (en) 1982-07-28 1982-07-28 Brushless synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13026482A JPS5921264A (en) 1982-07-28 1982-07-28 Brushless synchronous motor

Publications (1)

Publication Number Publication Date
JPS5921264A true JPS5921264A (en) 1984-02-03

Family

ID=15030112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13026482A Pending JPS5921264A (en) 1982-07-28 1982-07-28 Brushless synchronous motor

Country Status (1)

Country Link
JP (1) JPS5921264A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132267A (en) * 1984-11-30 1986-06-19 Shinko Electric Co Ltd Guiding device of melt
CN100407556C (en) * 2004-12-24 2008-07-30 株式会社日立制作所 Turbogenerator
US7731294B2 (en) 2002-09-03 2010-06-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Seat

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132267A (en) * 1984-11-30 1986-06-19 Shinko Electric Co Ltd Guiding device of melt
US7731294B2 (en) 2002-09-03 2010-06-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Seat
CN100407556C (en) * 2004-12-24 2008-07-30 株式会社日立制作所 Turbogenerator

Similar Documents

Publication Publication Date Title
CA1203280A (en) Combined starting/generating system and method
US5495163A (en) Control for a brushless generator operable in generating and starting modes
US4743777A (en) Starter generator system with two stator exciter windings
EP2001121B1 (en) Engine start system with quadrature AC excitation
US5495162A (en) Position-and-velocity sensorless control for starter generator electrical system using generator back-EMF voltage
US4830412A (en) Starting system and method using a hybrid permanent magnet/induction machine
US5546742A (en) Aircraft engine electric start system without a separate exciter field inverter
US3696278A (en) Controlling apparatus for a d.c. brushless motor
US5023537A (en) Low frequency feeder fault protection
US5349257A (en) Permanent magnet generator with a position sensing coil
US6051953A (en) Brushless exciterless field system for AC synchronous machines
US3098959A (en) Starting circuit for a synchronous motor
US3667014A (en) Exciter arrangement for synchronous motors
JPS5921264A (en) Brushless synchronous motor
US3210644A (en) Dynamo electric machine
ITPD990190A1 (en) ELECTRONIC POWER SUPPLY OF A SYNCHRONOUS MOTOR WITH PERMANENT MAGNETS AND TWO PAIRS OF POLES.
JP2001008490A (en) Controller and control method for permanent magnet synchronous motor
JP2003134766A (en) Brushless electric rotating machine
JP3283377B2 (en) DC motor synchronous starter
US20040008003A1 (en) Starting of switched reluctance generators
JP3823358B2 (en) Permanent magnet alternator
JP2005039891A (en) Control unit of synchronous machine
JPH0349596A (en) Control circuit of reluctance motor
JPH04368497A (en) Synchronous motor controller
JP3413816B2 (en) Synchronous motor