JPS59217601A - Method for operating hydrogen occluding and releasing apparatus - Google Patents
Method for operating hydrogen occluding and releasing apparatusInfo
- Publication number
- JPS59217601A JPS59217601A JP58092141A JP9214183A JPS59217601A JP S59217601 A JPS59217601 A JP S59217601A JP 58092141 A JP58092141 A JP 58092141A JP 9214183 A JP9214183 A JP 9214183A JP S59217601 A JPS59217601 A JP S59217601A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- hydrogen
- heat
- heat medium
- hydrogen gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は水素吸蔵・放出装置の運転方法に関し、詳細に
は水素吸蔵用金属(金属及び金属水素化物の総称:以下
同じ)と熱媒体の仕切壁を可及的に薄くすることを可能
とし、それによシ熱交換効率を向上させると共に、水素
ガスの吸蔵・放出速度を早めることに成功した水素吸蔵
・放出装置の運転方法に関するものである。[Detailed Description of the Invention] The present invention relates to a method of operating a hydrogen storage/release device, and more specifically, the present invention relates to a method of operating a hydrogen storage/release device, and in particular, a partition wall between a hydrogen storage metal (a general term for metals and metal hydrides; the same shall apply hereinafter) and a heat medium is separated as much as possible. The present invention relates to a method of operating a hydrogen storage/release device that can be made thinner, thereby improving heat exchange efficiency and increasing the storage/release rate of hydrogen gas.
水素吸蔵用金属の収納部と熱媒体の通過経路を熱交換壁
によって仕切ることにより構成される水素吸蔵・放出装
置としては、第1図及び第2図(第1図における■−■
線断面矢視図)に示す外部熱媒体流路型と第3図及び第
4図(第3図におけるIV−IV線断面矢視図)に示す
内部熱媒体流路型がある。尚第1〜4図において、1は
シェル、6は水素吸蔵用金属の収納容器、6aは熱交換
壁、7は水素ガス管、7iは水素ガス分配及び収集用ヘ
ッダ、13はフィルターを夫々示し、フィルター13を
介して容器6内に水素ガスを供給し、又排出する構造と
なっている。そして第1,2図では水素吸蔵用金属Mを
収納した容器6の周シに熱媒体りを流すことによって熱
交換を行ないながら水素ガスの吸蔵又は放出が行なわれ
、又第3,4図では収納容器6内に熱媒体通路を形成し
、該通路に熱媒体りを矢印A、Bで示す如く流すことに
よって熱交換を行ないながら同じく水素ガスの吸蔵又は
放出を行なう。ところでこの様な形式の水素吸蔵・放出
装置では水素吸蔵用金属Mと熱媒体りとの熱交換壁6a
は相当厚肉とする必要があった。即ち下記反応式
%式%
における平衡解離圧は、水素吸蔵用金属の種類や運転温
度によって変わるが、例えば水素吸蔵用金属をLaNi
、とし、運転温度を80°Cとすると約21kg/c♂
にも及ぶことが知られている。これに対し熱媒体側の圧
力は熱媒体供給ポンプの吐出力にもよるが一般に低く、
通常は4 kg /crf以下であるから、熱交換壁6
aを挾む圧力差は17kg/c♂以上となる。従って熱
交換壁6aについては、この様な大きい圧力差を十分に
考慮した耐圧設計を施す必要があった。その結果、熱交
換壁6aの肉厚を厚くしなければならず下記の様な欠点
に甘んじなければならなかった。A hydrogen storage/release device constructed by partitioning the hydrogen storage metal storage part and the passage path of the heat medium with a heat exchange wall is shown in Figures 1 and 2 (■-■ in Figure 1).
There is an external heat medium flow path type shown in FIG. 3 and FIG. 4 (a cross-sectional view taken along the line IV--IV in FIG. 3). In Figures 1 to 4, 1 is a shell, 6 is a hydrogen storage metal storage container, 6a is a heat exchange wall, 7 is a hydrogen gas pipe, 7i is a header for hydrogen gas distribution and collection, and 13 is a filter. It has a structure in which hydrogen gas is supplied into the container 6 through the filter 13, and is also discharged. In Figs. 1 and 2, hydrogen gas is stored or released while exchanging heat by flowing a heat medium around the container 6 containing the hydrogen storage metal M, and in Figs. 3 and 4, hydrogen gas is stored or released while exchanging heat. A heat medium passage is formed in the storage container 6, and by flowing the heat medium through the passage as shown by arrows A and B, hydrogen gas is stored or released while exchanging heat. By the way, in this type of hydrogen storage/release device, the heat exchange wall 6a between the hydrogen storage metal M and the heat medium tank is
had to be quite thick. That is, the equilibrium dissociation pressure in the following reaction formula % formula % varies depending on the type of hydrogen storage metal and the operating temperature, but for example, when the hydrogen storage metal is LaNi
, and the operating temperature is 80°C, it is approximately 21kg/c♂
It is known that it extends to On the other hand, the pressure on the heat medium side is generally low, although it depends on the discharge power of the heat medium supply pump.
Since it is usually less than 4 kg/crf, the heat exchange wall 6
The pressure difference across a is 17 kg/c♂ or more. Therefore, it was necessary to design the heat exchange wall 6a to withstand such a large pressure difference. As a result, the thickness of the heat exchange wall 6a had to be increased, and the following drawbacks had to be complied with.
(1)水素吸蔵用金属における水素ガス吸蔵及び放出の
各反応速度は、一般に伝熱速度に支配されているが、熱
交換壁の肉厚が矢きい為に伝熱速度が低下し水素ガスの
吸蔵・放出速度が低下する。(1) The reaction rates of hydrogen gas storage and desorption in hydrogen storage metals are generally controlled by the heat transfer rate, but because the heat exchange wall is thick, the heat transfer rate decreases and the hydrogen gas The storage and release rate decreases.
(2)水素吸蔵・放出のサイクルを繰返す際には収納容
器の僑痴癩温度も上昇・降下を繰返すが、熱交換壁の肉
厚が大きいと収納容器9熱容量が大きくなる。従って顕
熱ロスが大きくなり水素吸蔵・放出装置の熱効率が低下
する。(2) When the cycle of hydrogen absorption and release is repeated, the temperature of the storage container also rises and falls repeatedly, but if the thickness of the heat exchange wall is large, the heat capacity of the storage container 9 becomes large. Therefore, sensible heat loss increases and the thermal efficiency of the hydrogen storage/release device decreases.
(3)水素吸蔵用金属は通常微粉体状で充填されている
が、水素ガスを吸蔵することによって金属格子が膨張し
金属粉体は一層微粉化されて嵩密度が低下し、その結果
金属粉体全体の体積が膨張する。(3) Hydrogen storage metal is usually filled in the form of fine powder, but by absorbing hydrogen gas, the metal lattice expands and the metal powder becomes even more finely divided, reducing its bulk density. The volume of the entire body expands.
一方圧力容器では可撓性のある材料で製作したシ、可撓
性を付与する加工を行なうことが不可能であシ、しかも
耐圧設計の為に容器の肉厚を大きくしなければならない
ので容器の弾性変形能力は殆んどなく、金属粉体層の膨
張は微粉体同士の圧密増大力や熱交換壁面への押圧力と
なって表われる。On the other hand, pressure vessels are made of flexible materials, so it is impossible to process them to give them flexibility, and the wall thickness of the vessel must be increased for pressure-resistant design. has almost no elastic deformation ability, and the expansion of the metal powder layer appears as an increased compaction force between the fine powders and a pressing force on the heat exchange wall surface.
これらの圧力は意外に太きいもので、例えばLaN1a
における実験では450kg/cdにも達する。These pressures are surprisingly large, for example, LaN1a
In an experiment, it reached as much as 450 kg/cd.
そして熱交換壁面に加わる押圧力が過大になると容器が
塑性変形を起こし極端な場合には破壊に至る。If the pressing force applied to the heat exchange wall surface becomes excessive, the container will undergo plastic deformation, leading to destruction in extreme cases.
(4)微粉体に加わる圧縮力が一定値を越えると金属粉
体が焼結固化しはじめ水素ガスの通過抵抗が、増大する
。その結果収納容器内部において水素ガスの流動方向に
圧力分布が形成される。ところで水素吸蔵・放出反応速
度は、吸熱・発熱のし易さに左右されるが勿論水素ガス
圧力、正確には水素ガス圧力と平衡解離圧との差圧の影
響も受ける。(4) When the compressive force applied to the fine powder exceeds a certain value, the metal powder begins to sinter and solidify, increasing the resistance to passage of hydrogen gas. As a result, a pressure distribution is formed inside the storage container in the direction of flow of hydrogen gas. By the way, the hydrogen absorption/desorption reaction rate is affected by the ease of heat absorption and heat generation, and of course is also affected by the hydrogen gas pressure, more precisely, the differential pressure between the hydrogen gas pressure and the equilibrium dissociation pressure.
従って収納容器内に水素ガス圧力の分布があると均一反
応が起こシ難くなシ水素吸蔵・放出装置の運転効率が低
下する。尚収納容器の変形や破壊あるいは金属粉体層の
焼結固化を防止する為に、収納容器における水素吸蔵用
金属の充填率を下げるという対策あるいは水素圧自体を
低下させるという対策もあ)得るが、これらの対策金て
は当然水素ガス吸蔵・放出能力を犠牲にすることになシ
水素吸蔵・放出装置としての実用的価値を喪失してしま
う。Therefore, if there is a distribution of hydrogen gas pressure within the storage container, a uniform reaction is difficult to occur and the operating efficiency of the hydrogen storage/release device is reduced. In order to prevent deformation or destruction of the storage container or sintering and solidification of the metal powder layer, there are measures to reduce the filling rate of the hydrogen storage metal in the storage container or to reduce the hydrogen pressure itself. Naturally, these countermeasures come at the expense of the hydrogen gas storage and release ability, which results in the loss of practical value as a hydrogen storage and release device.
以上の様に従来装置では熱交換壁の肉厚が大きくなると
いうことの為に種々の欠点を生じ、熱交換壁厚さを可及
的に小さくすることが望まれていた。As described above, the conventional apparatus has various drawbacks due to the large thickness of the heat exchange wall, and it has been desired to reduce the thickness of the heat exchange wall as much as possible.
本発明はこうした事情に着目してなされたものであって
、水素を吸蔵・放出させるに当9、装置を損耗させるこ
とがないと共に、優れた熱効率並びに水素吸蔵°・放出
速度を得ることができる様な水素吸蔵・放出装置の運転
方法を提供しようとするものである。The present invention has been made with attention to these circumstances, and it is possible to absorb and release hydrogen without causing wear and tear on the device, and to obtain excellent thermal efficiency and hydrogen storage and release rates. The purpose of this paper is to provide a method for operating a hydrogen storage/release device of various types.
しかして本発明の運転方法は、水素吸蔵用金属の収納部
に接して熱媒体を通過させる様にした水素吸蔵・放出装
置の運転方法であって、前記収納部内外の圧力差を均圧
操作により可及的に少なくして運転する点に要旨を有す
るものである。Therefore, the operating method of the present invention is a method of operating a hydrogen storage/release device in which a heat medium is passed through in contact with a hydrogen storage metal storage part, and the pressure difference between the inside and outside of the storage part is equalized. The key point is to operate with as little energy as possible.
以下実施例図面を参照しながら本発明の構成及び作用効
果を説明する。The configuration and effects of the present invention will be explained below with reference to the drawings.
第5図は本発明方法を実施する為の水素吸蔵・放出装置
例を示すフロー図で、1はシェル、2は、熱媒体送給ポ
ンプ、4は均圧装置、9は熱媒体加熱・冷却装置(以下
加熱・冷却装置という)を夫夫示す。図示する水素吸蔵
・放出装置5は前述の外部熱媒体流路型であシ、シェル
1内には水素吸蔵用金属Mを収納した容器6が複数個配
設されると共に、収納容器6の一方端側にヘッダ7aを
介して水素ガス管7が接続されている。尚水素ガス管7
には開閉パルプ3が介設されている。FIG. 5 is a flow diagram showing an example of a hydrogen storage/desorption device for carrying out the method of the present invention, in which 1 is a shell, 2 is a heat medium supply pump, 4 is a pressure equalization device, and 9 is a heat medium heating/cooling device. The device (hereinafter referred to as heating/cooling device) is shown below. The illustrated hydrogen storage/release device 5 is of the above-mentioned external heat medium flow path type, and a plurality of containers 6 storing hydrogen storage metals M are disposed in the shell 1, and one of the storage containers 6 is A hydrogen gas pipe 7 is connected to the end side via a header 7a. Furthermore, hydrogen gas pipe 7
An opening/closing pulp 3 is interposed in the opening/closing pulp 3.
又シェル1には熱媒体導入管8及び熱媒体排出管8aが
取付けられ、シェル1、加熱・冷却装置9及び熱媒体送
給ポンプ2が上記熱媒体導入管8や排出管8a等で連結
されることによって熱媒体循環系を形成している。Further, a heat medium introduction pipe 8 and a heat medium discharge pipe 8a are attached to the shell 1, and the shell 1, the heating/cooling device 9, and the heat medium supply pump 2 are connected by the heat medium introduction pipe 8, the heat medium discharge pipe 8a, etc. This forms a heat medium circulation system.
一方図例の均圧装置4は、装置内を摺動できるピストン
11によって2室に区画されたものであシ、熱媒体導入
管8からの分岐管8bが一方の室に、又水素ガス管7か
らの分岐管7bが他方の室に、夫々接続されている。On the other hand, the pressure equalizing device 4 in the illustrated example is divided into two chambers by a piston 11 that can slide inside the device, and a branch pipe 8b from the heat medium introduction pipe 8 is in one chamber, and a hydrogen gas pipe is in one chamber. Branch pipes 7b from 7 are connected to the other chamber, respectively.
本図例装置によって水素ガスの吸蔵運転を行なう場合に
は、加熱・冷却装置9によって冷却されだ熱媒体りをシ
ェル1内に流しながら水素ガス管7から収納容器6内に
水素ガスを圧入する。一方水素ガスの放出運転を行なう
場合には、加熱・冷却装置9によって加熱された熱媒体
りをシェル1内に流しつつ、収納容器6内の水素吸蔵用
金属Mから水素ガスを解離させて水素ガス管7に集め系
・1
外へ取出す。When performing a hydrogen gas storage operation using the device shown in this figure, hydrogen gas is pressurized into the storage container 6 from the hydrogen gas pipe 7 while the heat medium, which has been cooled by the heating/cooling device 9, is allowed to flow into the shell 1. . On the other hand, when performing a hydrogen gas release operation, hydrogen gas is dissociated from the hydrogen storage metal M in the storage container 6 while flowing a heat medium heated by the heating/cooling device 9 into the shell 1. Collect it in the gas pipe 7 and take it out.
ところで前述の通り、水素ガス圧力と熱媒体圧力は分岐
管7b、8bを介して夫々均圧装置4に伝達されている
ので、上記水素吸蔵操作並びに水素放出操作の各工程中
を含む全ての状態において、水素ガス圧力が高い場合に
は均圧装置4内のピストン11が熱媒体側へ押されて摺
動し、熱媒体りの圧力を上昇させる。又水素ガス圧力の
方が低い場合には前記とは反対にピストン11が水素ガ
ス側へ摺動し、熱媒体りの圧力を低下させる。即ち熱交
換壁6aを内面から押圧する水素ガス圧力と外面側から
押圧する熱媒体圧力は、均圧装置の働きによって常に同
等になろうとするので、熱交換壁6aを挾む内外からの
圧力差は極めて小さくなシ、従って従来の様に熱交換壁
6aの肉厚を大きくする必要がなくなった。即ち比較的
薄肉で構成しても変形や破損の恐れはなくなった。その
結果、熱交換壁6aを介する熱伝達は速やかに行なわれ
ると共に収納容器6自体の熱容量も小さく、顕熱ロスも
大巾に低減されたので熱交換効率は極めて高いものとな
る。By the way, as mentioned above, since the hydrogen gas pressure and the heat medium pressure are transmitted to the pressure equalizing device 4 via the branch pipes 7b and 8b, all conditions including during each step of the hydrogen storage operation and hydrogen release operation described above In this case, when the hydrogen gas pressure is high, the piston 11 in the pressure equalizing device 4 is pushed and slid toward the heat medium side, increasing the pressure of the heat medium. When the hydrogen gas pressure is lower, the piston 11 slides toward the hydrogen gas side to lower the pressure of the heat medium. In other words, the pressure of the hydrogen gas that presses the heat exchange wall 6a from the inside and the pressure of the heat medium that presses the heat exchange wall from the outside always try to be equal due to the function of the pressure equalization device, so there is a pressure difference between the inside and outside of the heat exchange wall 6a. is extremely small, so there is no need to increase the thickness of the heat exchange wall 6a as in the conventional case. In other words, there is no fear of deformation or breakage even if the structure is made relatively thin. As a result, heat transfer through the heat exchange wall 6a is rapid, the heat capacity of the storage container 6 itself is small, and sensible heat loss is greatly reduced, resulting in extremely high heat exchange efficiency.
本発明の基本的構成は上記の通力であるが、均圧操作を
行なう為の具体的な手段及び装置としては、以下に示す
様な実施態様に依ることもできる。Although the basic configuration of the present invention is the above-mentioned power supply, the following embodiments can also be used as specific means and devices for performing the pressure equalization operation.
第6図はシリンダーS内にベローズ18を設けた例であ
シ、ベローズ18内は水素ガス分岐管7b、シリンダー
Sとベロー〆18の間の空間は熱媒体分岐管8bに、夫
々連通されている。尚ベローズ18の代シにダイヤフラ
ムを用いることもできる。FIG. 6 shows an example in which a bellows 18 is provided inside the cylinder S. The inside of the bellows 18 is communicated with a hydrogen gas branch pipe 7b, and the space between the cylinder S and the bellows 18 is communicated with a heat medium branch pipe 8b. There is. Note that a diaphragm can also be used in place of the bellows 18.
又第7図は均圧装置を2つのシリンダー室S1、S、か
ら構成した例であり、両シリンダー室S1、S2内に配
設したピストンlla、llb同士をロッド22で連結
している。そして一方のシリンダー室S1を水素ガス分
岐管7bに連通し、他方のシリンダー室S2を熱媒体分
岐管8bに連通′【7たものである。その他、熱媒体が
液体であって、上記運転温度における蒸気圧が小さいと
共に、微量の蒸気が水素ガス中に混入しても差支えない
場合には第5図に示す均圧装置においてピストン11を
省略したものであってもよい。Further, FIG. 7 shows an example in which the pressure equalizing device is composed of two cylinder chambers S1 and S, and the pistons lla and llb disposed in both cylinder chambers S1 and S2 are connected to each other by a rod 22. One cylinder chamber S1 is communicated with a hydrogen gas branch pipe 7b, and the other cylinder chamber S2 is communicated with a heat medium branch pipe 8b. In addition, if the heat medium is a liquid, the vapor pressure at the above operating temperature is low, and there is no problem even if a small amount of vapor mixes into the hydrogen gas, the piston 11 is omitted in the pressure equalizing device shown in FIG. It may be something that has been done.
尚上記実施例においてはいずれも均圧装置を使−用しだ
が、要は水素吸蔵用金属収納容器の熱交換壁を挾んで内
圧と外圧の圧力差が可及的に少なくなれば良いのである
から上記以外の手段として例えば第5図において均圧装
置の設置を省略すると共に水素ガス管7並びに熱媒体導
入管8に夫々圧力検出装置を取付け、水素ガスの圧力と
熱媒体の圧力が同等となる様に例えば収納シェルへの熱
媒体押込圧を調整する方法をとってもよい。In the above embodiments, a pressure equalization device is used, but the point is that the pressure difference between the internal pressure and the external pressure should be reduced as much as possible by sandwiching the heat exchange wall of the metal storage container for hydrogen storage. Therefore, as a means other than the above, for example, in Fig. 5, the installation of the pressure equalization device is omitted, and a pressure detection device is attached to the hydrogen gas pipe 7 and the heating medium introduction pipe 8, respectively, so that the pressure of the hydrogen gas and the pressure of the heating medium are equal. For example, a method may be adopted in which the pressure for pushing the heat medium into the storage shell is adjusted so that the heat medium is pushed into the storage shell.
以上の様に水素ガス圧力と熱媒体の圧力を実質的に同等
とすることによシ、従来のように熱交換壁を耐圧設計に
する必要がなくなるので多くの制約条件が解消され、装
置の熱効率及び装置効率を向上させることが可能となっ
た。As described above, by making the hydrogen gas pressure and the pressure of the heat medium substantially equal, it is no longer necessary to design the heat exchange wall to withstand pressure as in the past, which eliminates many constraints and improves the efficiency of the equipment. It has become possible to improve thermal efficiency and equipment efficiency.
本発明方法は以上の様な構成を有しているものであるか
ら熱交換壁を薄く形成することが可能であり、従来当分
野で使用されていなかった様な構造の装置を設計製造す
ることが可能である。その代表例としては第8〜19図
に示す様な装置が例示される。Since the method of the present invention has the above-described configuration, it is possible to form a thin heat exchange wall, and it is possible to design and manufacture a device with a structure that has not been previously used in this field. is possible. As a typical example, devices as shown in FIGS. 8 to 19 are exemplified.
第8図及び第9図(第8図におけるIX −IX線断面
図)は、伝熱フィン付フィルター管13を内装してなる
水素吸蔵用金属収納容器6を示し、容器6は可撓性を有
する金属薄板からなる波板12に側板10を接合して成
形されると共に、一端に水素吸蔵用金属Mの充填口14
を設け、且つ他端にフィルター管13に連通ずる水素ガ
ス管7を取付けている。尚充填口14は水素吸蔵用金M
Mを容器12内に収納した後は封鎖される。又容器が波
板状に形成されているのは水素吸蔵用金属Mが水素を吸
蔵して体積膨張した場合に波板12の谷部がふくらんで
膨張分を吸収させる為である。一方伝熱フイン15は、
フィルター管13に端縁が固設された横板16と、容器
12のふくらみ部分に相当する位置に前記横板16に対
して直交する方向に付設された縦板17からなシ、水素
吸蔵用金属Mに埋まる様に容器6内に収納されている。FIGS. 8 and 9 (cross-sectional view taken along line IX-IX in FIG. 8) show a metal storage container 6 for hydrogen storage which includes a filter tube 13 with heat transfer fins, and the container 6 has flexibility. The side plate 10 is joined to a corrugated plate 12 made of a thin metal plate, and a filling port 14 for hydrogen storage metal M is formed at one end.
, and a hydrogen gas pipe 7 communicating with the filter pipe 13 is attached to the other end. The filling port 14 is made of metal M for hydrogen storage.
After storing M in the container 12, it is sealed. The reason why the container is formed in the shape of a corrugated plate is that when the hydrogen storage metal M stores hydrogen and expands in volume, the troughs of the corrugated plate 12 swell to absorb the expansion. On the other hand, the heat transfer fins 15 are
A horizontal plate 16 whose end edge is fixed to the filter tube 13, and a vertical plate 17 attached in a direction perpendicular to the horizontal plate 16 at a position corresponding to the bulge of the container 12, for hydrogen storage. It is stored in the container 6 so as to be buried in the metal M.
そしてこの様な伝熱フィン15は熱交換壁を介して侵入
してきた熱を速やかに伝達させ収納容器6内、i
の熱分布を均質化させる機能を発揮することに
より伝熱効果を一層向上させ、迅速な水素ガスの吸蔵・
放出サイクルが可能となる。Such heat transfer fins 15 quickly transfer the heat that has entered through the heat exchange wall to the inside of the storage container 6, i.
By exhibiting the function of homogenizing the heat distribution, the heat transfer effect is further improved, and hydrogen gas can be quickly absorbed and absorbed.
Release cycles are possible.
第10図は第8.9図に示した収納容器6を、複数本の
棒状スペーサ18を介して組み合わせてなる水素吸蔵・
放出体5aを示す一部破断側面図で、熱媒体りは導入口
8Cからシェル1内に入シスペーサ18及び前記容器1
20間をぬって通過し、更に排出口8dから放出される
。尚水素吸蔵・放出体5aの組合わせに当っては枠で固
定することも可能である。組合わされた水素吸蔵・放出
体5aはシェル1内壁に取付具23等を用いて固定する
。FIG. 10 shows a hydrogen storage system in which the storage container 6 shown in FIG. 8.9 is combined with a plurality of rod-shaped spacers 18.
This is a partially cutaway side view showing the emitter 5a, in which the heat transfer medium enters the shell 1 from the inlet 8C and the spacer 18 and the container 1.
20, and is further discharged from the discharge port 8d. In addition, when combining the hydrogen storage/release body 5a, it is also possible to fix it with a frame. The combined hydrogen storage/release body 5a is fixed to the inner wall of the shell 1 using a fixture 23 or the like.
第11図は他の適用例を示す一部破断斜視図で、薄肉金
属板製の箱状収納容器6bの内部には、伝熱部材として
作用する波形金属板17が配設されると共に、波形金属
板17の長手方向一端(図面では左手前側開口部)には
フィルター13を介して水素ガス収集通路19が形成さ
れ、該水素ガス収集通路19はへラダー管を介して水素
ガス管7に連通している。又波形金属板17の長手方向
他端(図では右向う側聞口部)は水素吸蔵用金属充填口
14に通じておシ、充填口14は金属充填後には封鎖さ
れる。この様な収納容器6を複数個組合わせるに描って
は前記波形金属板17と同様形状の波形スペーサ20を
、夫々直交する様に交互に組合わせ水素吸蔵・放出体5
aが形成される。FIG. 11 is a partially cutaway perspective view showing another application example, in which a corrugated metal plate 17 acting as a heat transfer member is disposed inside a box-shaped storage container 6b made of a thin metal plate, and a corrugated A hydrogen gas collection passage 19 is formed at one longitudinal end of the metal plate 17 (left front opening in the drawing) via a filter 13, and the hydrogen gas collection passage 19 communicates with the hydrogen gas pipe 7 via a ladder pipe. are doing. The other end of the corrugated metal plate 17 in the longitudinal direction (the right side opening in the figure) communicates with the hydrogen storage metal filling port 14, and the filling port 14 is closed after filling with metal. When a plurality of such storage containers 6 are combined, corrugated spacers 20 having the same shape as the corrugated metal plates 17 are alternately combined so as to be orthogonal to each other to form the hydrogen storage/release body 5.
a is formed.
そして熱媒体りはスペーサ20の波に沿つく矢印C方向
へ流されている。この様な水素吸蔵・放出体5aを第1
2図に示す様に゛シェル1内に組込めば外部熱媒体流路
型の水素吸蔵・放出装置5を製造することができる。又
第13図は内部熱媒体流路型の水素吸蔵・放出装置5を
示す模式側面図で、第11図に示す水素吸蔵・放出体5
aにおいて水素ガス収集通路19を省略した形に相当す
る水素吸蔵・放出体5b(但しフィルター13a及びス
ペーサ20はそのまま取付けられている)を用いると共
にスペーサ20の長手方向側、端開口部に若干の空間を
封じ込める様に蓋板21を取付け、且つ該蓋板21に蓋
板21を貫通して前記封じ込め空間に連通する熱媒体導
入mse並びに熱媒体排出管8fを取付けてシェル1内
に納めたものである。尚シェル1には水素ガス管7を取
付けているが各容器6bにはへラダー管を取付ける必要
がない。The heat transfer medium flows in the direction of arrow C along the waves of the spacer 20. Such a hydrogen storage/release body 5a is
As shown in FIG. 2, by incorporating it into the shell 1, an external heat medium flow path type hydrogen storage/release device 5 can be manufactured. Further, FIG. 13 is a schematic side view showing the internal heat medium channel type hydrogen storage/release device 5, which is similar to the hydrogen storage/release device 5 shown in FIG.
A hydrogen storage/discharge body 5b corresponding to the hydrogen gas collection passage 19 omitted in a is used (however, the filter 13a and the spacer 20 are attached as they are), and a small amount of spacer is used at the end opening on the longitudinal side of the spacer 20. A cover plate 21 is attached to seal the space, and a heat medium introduction mse and a heat medium discharge pipe 8f that penetrate the cover plate 21 and communicate with the containment space are attached to the cover plate 21 and housed in the shell 1. It is. Although the hydrogen gas pipe 7 is attached to the shell 1, it is not necessary to attach a ladder pipe to each container 6b.
第14図及び第15図(第14図におけるX戸W線断面
矢視図)は、径の異なる複数の円筒形収納容器6をスペ
ーサ20を介して層状に組合わせてなる水素吸蔵・放出
体5Cの例を示し、熱媒体りは導入管8aからシェル1
内を通シ出ロ管8bへ流れる。14 and 15 (cross-sectional view taken along the line X and door W in FIG. 14) show a hydrogen storage/release body formed by combining a plurality of cylindrical storage containers 6 with different diameters in a layered manner with spacers 20 interposed therebetween. 5C is shown, the heating medium is connected from the introduction pipe 8a to the shell 1.
It flows through the inside to the outlet pipe 8b.
第16図及び第17図(第16図におけるA1−XXV
線断面矢視図)は、平板状の収納容器を渦巻状に湾曲さ
せた適用例でフィルター管13が最外層の終端縁に沿っ
て内装されている。Figures 16 and 17 (A1-XXV in Figure 16)
The cross-sectional view (viewed from the arrow) shows an application example in which a flat storage container is curved into a spiral shape, and a filter tube 13 is installed inside along the terminal edge of the outermost layer.
第18図及び第19図(第18図における■−XIX線
断面矢視図)は、上記と同様渦巻状収納容器例を示すが
、フィルター管13も渦巻状に湾曲して片側の渦巻状端
縁に治って内装されている。18 and 19 (cross-sectional view taken along the line ■-XIX in FIG. 18) show an example of a spiral storage container similar to the above, but the filter tube 13 is also spirally curved with one spiral end. The edges are well decorated.
上記第14図から第19図に示される適用例はいずれも
熱交換壁を薄くしたために採用できる構造であり、小容
積のシェル内に収納容器を緻密に配設することができる
ので、単位容積当シの伝熱面積を大きくとることができ
、優れた伝熱効率を得ることができる。The application examples shown in FIGS. 14 to 19 above are all structures that can be adopted because the heat exchange walls are thin, and the storage containers can be arranged densely within the small volume shell, so the unit volume The heat transfer area can be increased and excellent heat transfer efficiency can be obtained.
本発明は以上の様に構成されており9.以下要約する効
果を得ることができた。The present invention is configured as described above.9. We were able to obtain the effects summarized below.
(1)収納容器内の水素ガス圧力と熱媒体の圧力をほぼ
均等とするので、収納容器の肉厚を薄くすることができ
、熱交換壁を介して行なわれる熱伝達効率が極めて良く
なった。例えば水素吸蔵用合金としてLaNi5を用い
る場合、これを外径21.7mmのステンレスパイプに
充填し、110℃で熱媒体と熱交換を行なうと、水素の
解nlG圧が48kg/c♂Gになるので、従来法であ
ればステンレスパイプの肉厚を3rnm以上必要とした
が、本発明方法では熱媒体と水素の圧力差を4 kg/
cIT12G以内にとどめることができるのでパイプの
肉厚は1 mm以下でよいことになる。このだめ伝熱速
度は約5チよくなった。(1) Since the pressure of the hydrogen gas inside the storage container and the pressure of the heat medium are almost equal, the wall thickness of the storage container can be made thinner, and the efficiency of heat transfer through the heat exchange wall is extremely improved. . For example, when using LaNi5 as a hydrogen storage alloy, if it is filled into a stainless steel pipe with an outer diameter of 21.7 mm and heat exchanged with a heat medium at 110°C, the nlG pressure of hydrogen will be 48 kg/c♂G. Therefore, in the conventional method, the wall thickness of the stainless steel pipe needs to be 3 nm or more, but in the method of the present invention, the pressure difference between the heat medium and hydrogen is reduced to 4 kg/3 nm or more.
Since cIT can be kept within 12G, the wall thickness of the pipe only needs to be 1 mm or less. The heat transfer rate improved by about 5 inches.
1(2)収納容器の熱交換壁厚を薄くすることができた
ので収納容器の熱容量が小さくなシ、水素吸蔵・放出ザ
イクルに伴い顕熱ロスが僅かとなり熱効率が向上した。1 (2) The heat exchange wall thickness of the storage container can be made thinner, so the heat capacity of the storage container is small, and the sensible heat loss associated with the hydrogen absorption/release cycle is small, improving thermal efficiency.
上述の例において、ステンレスチューブ内に合金を40
容量チ充填した場合には、従来法では合金1kg当シの
熱容量は0.37oyl/gであったのに対し、本発明
ではチューブの肉厚を薄くできるので熱容量は0.09
m/gとな〕、その結果顕熱ロスが34%減少する。In the above example, 40% of the alloy was placed inside the stainless steel tube.
When filled with a capacity tube, the heat capacity per 1 kg of alloy was 0.37 oil/g in the conventional method, whereas in the present invention, the heat capacity is 0.09 oil/g because the wall thickness of the tube can be made thinner.
m/g], resulting in a 34% reduction in sensible heat loss.
(3)熱交換壁を薄肉とすることができだので、容器の
加工性が向上し、可撓性を有するタイプや形状の複雑な
タイプ等でも自在に形成することが可能と々つだ。(3) Since the heat exchange wall can be made thin, the processability of the container is improved, and it is possible to freely form a flexible type or a type with a complicated shape.
第1図は外部熱媒流路型の収納容器を示す側面説明図、
第2図は第1図における■−■線断面矢視図、第3図は
内部熱媒流路型の収納容器を示す側面図、第4図は第3
図におけるIV−IV線断面矢視図、第5図は本発明方
法を適用した水素吸蔵・放出装置のフロー図、第6図及
び第7図は均圧装置の実施例図、第8〜19図は本発明
方法を適用した収納容器の説明図゛である。
1・・・シェル 4・・・均圧装置訃・・水素
吸蔵・放出装置
6・・・収納容器 7・・・水素ガス管8・・・
熱媒体導入管 8a・・・同排出管13・・・フィル
ター 20・・・スペーサ出願人 東洋紡績株式
会社
同 久保田鉄工株式会社FIG. 1 is an explanatory side view showing an external heat medium flow path type storage container;
Fig. 2 is a cross-sectional view taken along the line ■-■ in Fig. 1, Fig. 3 is a side view showing an internal heat medium flow path type storage container, and Fig. 4 is a sectional view taken along the line ■-■ in Fig. 1.
5 is a flow diagram of a hydrogen storage/release device to which the method of the present invention is applied; FIGS. 6 and 7 are illustrations of an embodiment of a pressure equalization device; 8 to 19 The figure is an explanatory diagram of a storage container to which the method of the present invention is applied. 1...Shell 4...Pressure equalization device...Hydrogen storage/release device 6...Storage container 7...Hydrogen gas pipe 8...
Heat medium inlet pipe 8a... Discharge pipe 13... Filter 20... Spacer applicant Toyobo Co., Ltd. Kubota Iron Works Co., Ltd.
Claims (1)
にした水素吸蔵・放出装置の運転方法であって、前記収
納部内外の圧力差を均圧操作によシ可及的に少なくして
運転することを特徴とする水素吸蔵・放出装置の運転方
法。A method of operating a hydrogen storage/release device in which a heating medium is allowed to pass through in contact with a hydrogen storage metal storage part, the method comprising reducing the pressure difference between the inside and outside of the storage part as much as possible by pressure equalization operation. A method of operating a hydrogen storage/release device characterized by operating the hydrogen storage/release device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58092141A JPS59217601A (en) | 1983-05-25 | 1983-05-25 | Method for operating hydrogen occluding and releasing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58092141A JPS59217601A (en) | 1983-05-25 | 1983-05-25 | Method for operating hydrogen occluding and releasing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59217601A true JPS59217601A (en) | 1984-12-07 |
JPH0253362B2 JPH0253362B2 (en) | 1990-11-16 |
Family
ID=14046155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58092141A Granted JPS59217601A (en) | 1983-05-25 | 1983-05-25 | Method for operating hydrogen occluding and releasing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59217601A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006177537A (en) * | 2004-12-24 | 2006-07-06 | Toyota Industries Corp | High pressure tank system |
JP2017509838A (en) * | 2014-01-02 | 2017-04-06 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Reversible H2 storage system with tank containing metal hydride in a pressure balanced state |
JP2020510170A (en) * | 2017-03-02 | 2020-04-02 | ドイチェス ツェントルム フュア ルフト− ウント ラウムファールト エー ファウ | Storage container, temperature control device, method of forming storage container, and temperature control method |
-
1983
- 1983-05-25 JP JP58092141A patent/JPS59217601A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006177537A (en) * | 2004-12-24 | 2006-07-06 | Toyota Industries Corp | High pressure tank system |
JP2017509838A (en) * | 2014-01-02 | 2017-04-06 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Reversible H2 storage system with tank containing metal hydride in a pressure balanced state |
JP2020510170A (en) * | 2017-03-02 | 2020-04-02 | ドイチェス ツェントルム フュア ルフト− ウント ラウムファールト エー ファウ | Storage container, temperature control device, method of forming storage container, and temperature control method |
Also Published As
Publication number | Publication date |
---|---|
JPH0253362B2 (en) | 1990-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4457136A (en) | Metal hydride reactor | |
US5661986A (en) | Chemical reactor, refrigerating machine and container provided therewith and reagent cartridge therefor | |
RU81568U1 (en) | HYDROGEN EXTERNAL SURFACE METAL HYDROGEN CARTRIDGE | |
JPH0527563B2 (en) | ||
JPS59217601A (en) | Method for operating hydrogen occluding and releasing apparatus | |
EP0061191A1 (en) | Metal hydride reactor | |
US5046247A (en) | Method for manufacturing heat transfer module with hydrogen adsorption alloy | |
JPS5925956B2 (en) | metal hydride container | |
JPS6176887A (en) | Vessel for accommodating metallic hydrides | |
JPS5848480Y2 (en) | Hydrogen storage device using metal hydride | |
JPS63225799A (en) | Manufacture of reactor for hydrogen absorption alloy | |
JPS6334487A (en) | Hydrogenated metal heat exchanger | |
JPS5899104A (en) | Reactor for metallic hydride | |
JPS591950B2 (en) | Structure of heat exchanger using hydrogen storage metal | |
JPH0121279Y2 (en) | ||
CN221526292U (en) | Solid-state hydrogen storage device with multiple heat exchange channels | |
JPS58145601A (en) | Reaction vessel for metal hydride | |
JP2002295798A (en) | Hydrogen transport vessel | |
JP2578650B2 (en) | Metal hydride containers | |
KR940011075B1 (en) | Heat pump | |
JPS6231239B2 (en) | ||
RU80702U1 (en) | HYDROGEN METAL HYDROCARTRIDGE | |
JPS61202091A (en) | Utilizing device for metallic hydrogen compound | |
JPS6231238B2 (en) | ||
JPS6159192A (en) | Heat accumulator |