JPS59208253A - Controlling method of stepless speed change gear for vehicle - Google Patents
Controlling method of stepless speed change gear for vehicleInfo
- Publication number
- JPS59208253A JPS59208253A JP7930783A JP7930783A JPS59208253A JP S59208253 A JPS59208253 A JP S59208253A JP 7930783 A JP7930783 A JP 7930783A JP 7930783 A JP7930783 A JP 7930783A JP S59208253 A JPS59208253 A JP S59208253A
- Authority
- JP
- Japan
- Prior art keywords
- acceleration
- vehicle
- speed
- engine
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/66—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
- F16H61/662—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Transmission Device (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、動力伝達装置として速度比を連続的に制御で
きるli両用無段疫速磯の制御力法に係り、特に加速時
の制御方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control method for a stepless speedboat for both LI and LI, which can continuously control the speed ratio as a power transmission device, and particularly relates to a control method during acceleration.
加速時における機関回1(ii速度の変化分、したがっ
て無段変速機(CV’l’ )の入力側回転速度N1n
の変化分ΔNinは次式により表わされる。Engine revolution 1 (ii speed change during acceleration, therefore input side rotational speed N1n of continuously variable transmission (CV'l')
The change amount ΔNin is expressed by the following equation.
ΔNin T−B−ユ°ユ°゛−(1) re
ただしT:機関の軸トルク
η: CVTの伝達効率
e : CVTの速度比Nout / N1n(Nou
t 、 NinはそれぞれCVTの出力側回転速度、入
力側回転速度)
le:機関側の貫性モーメント
一方、CVTの出力側回転速度N Ou tの変化分Δ
Noutは次式により表わされる。ΔNin T-B-yu°yu°-(1) re where T: Engine shaft torque η: CVT transmission efficiency e: CVT speed ratio Nout / N1n (Nou
t and Nin are the output side rotational speed and input side rotational speed of the CVT, respectively) le: Penetrating moment on the engine side On the other hand, the change Δ in the output side rotational speed N Out of the CVT
Nout is expressed by the following equation.
ΔNout −ΔNin −es−Nins−(es
−e)っ1(2シただしeS:車両加速の開始時の速度
比eNfns :車両加速の開始時の入力側回転速度N
in
すなわちΔN1n−csはΔNinに因るNoutの変
化分、−NIns−(es e)はsg比eの変化に
因るNoutの変化分である。車両の加速のためには駆
動トルクを増大する!こめにCを識少させるので、cs
−eは正の値となる。したがって様IAIが低辻あるい
はg、fZ1々にある状態から屯両\Nを加速する場合
では、(2)式においてNin5・ (es−e)が相
対的に増大し、加速初期の加速性が悪化するという不具
合がある。ΔNout −ΔNin −es−Nins−(es
-e) 1 (2) eS: Speed ratio at the start of vehicle acceleration eNfns: Input side rotational speed N at the start of vehicle acceleration
in, that is, ΔN1n-cs is the change in Nout due to ΔNin, and -NIns-(ese) is the change in Nout due to the change in the sg ratio e. Increase the drive torque to accelerate the vehicle! Since it makes C more difficult to recognize, cs
-e becomes a positive value. Therefore, when accelerating the tunryo\N from a state where the IAI is at a low point or at g and fZ1, Nin5・(es-e) increases relatively in equation (2), and the acceleration performance at the initial stage of acceleration increases. The problem is that it gets worse.
本発明の目的は、機関が低速あるいは低負荷にある状態
からΦ両を加速する場合に加速初期の加速性を改善する
ことができる車両用無段変速機の制御方法を提供するこ
とである。SUMMARY OF THE INVENTION An object of the present invention is to provide a control method for a continuously variable transmission for a vehicle that can improve the acceleration performance at the initial stage of acceleration when accelerating a Φ vehicle from a state where the engine is at low speed or low load.
この目的を?−吸するために本発明によれば、機関が低
速あるいは低rう荷にある状fルから11c両を加速す
る場合、Φ両加速の初期の所定時間内ではCVTの速度
比Cを加速前の値に固定するか、あるいはCV Tの変
速速度e (速度比Cの時間微分)を緩やかに変化させ
る。This purpose? -According to the present invention, when accelerating 11c from a state where the engine is at low speed or with a low load, the speed ratio C of the CVT is changed before acceleration within the initial predetermined time of , or change the CVT speed change speed e (time differential of the speed ratio C) gradually.
この結果、この所定時間内では(2)弐右辺のNj+1
s・(es−e)の値が抑制され、これによりΔN o
u tが増大するので、Nout (〜車速)が速
やかに増大し、重両加速の初期において良好な加速性を
得ることができる。またこの所定1pHトや→ヨ、5安
セ・; ・・−L L−、’ L、内に
おいて変速速度らを車に0に保持−せすに、紛やかに態
化させることによりΔ’Joutを一層大きな値にし、
加速性の一層の向上を図ることができる。As a result, within this predetermined time, (2) Nj+1 on the second right side
The value of s・(es−e) is suppressed, which makes ΔN o
Since ut increases, Nout (~vehicle speed) increases quickly, and good acceleration performance can be obtained at the initial stage of heavy vehicle acceleration. In addition, in order to make the car maintain the shifting speed at 0 within this predetermined 1 pH, →Y, 5', and...-L L-,' L, by confusingly transforming Δ 'Increase Jout to a larger value,
Acceleration performance can be further improved.
図面を参照して本発明の詳細な説明する。The present invention will be described in detail with reference to the drawings.
第1図において、機関lのクランク軸2はクラッチ3を
介して4の入力軸5へ接続されている。1対の入力側デ
ィスク6a 、 6bは互いに対向的に設けられ、一方
の入力側ディスク6aは入力軸5に軸線方向へ相対後m
可能に設けられ、他力の入力側ディスク6bは入力軸5
に固定されている。また、1対の出力側ディスク7a。In FIG. 1, a crankshaft 2 of an engine 1 is connected to an input shaft 5 of an engine 4 via a clutch 3. A pair of input side disks 6a and 6b are provided facing each other, and one of the input side disks 6a is axially relative to the input shaft 5.
The input side disk 6b for external force is provided on the input shaft 5.
is fixed. Also, a pair of output side disks 7a.
7bも互いに対向的に設けられ、一方の出力側ディスク
7aは出力軸8に固定され、他方の出力側ディスク7b
は出力軸8に軸線力向へ移動[可能に設けられている。7b are also provided facing each other, one output side disk 7a is fixed to the output shaft 8, and the other output side disk 7b
is provided on the output shaft 8 so as to be movable in the axial force direction.
ベルト9は、等肌合形の横断面を有し、入力側ディスク
6a、 6bと出力側ディスク7a + 7bの間に掛
けられている。The belt 9 has a uniform cross section and is stretched between the input disks 6a, 6b and the output disks 7a+7b.
入力側ディスク6a 、 6bの対向面、および出力側
ディスク7a + 7bの対向面は半径方向外方へ進む
に連れて両者間の距離が増大するようにテーパujt面
に形成される。対向面間の距順の増減に関係して、入力
側および出力側ディスク6a。The opposing surfaces of the input side disks 6a, 6b and the opposing surfaces of the output side disks 7a+7b are formed into tapered ujt surfaces such that the distance between them increases as they proceed radially outward. Input side and output side disks 6a in relation to increases and decreases in the order of distance between opposing surfaces.
6b 、?a、 71+におけるベルト9の掛かり半径
が増減し、速度比および伝達トルクが変化する。6b,? a, the radius of engagement of the belt 9 at 71+ increases or decreases, and the speed ratio and transmission torque change.
メイルポンプ14は油だめ15から吸込んだオイルを調
圧弁16へ送る。リニアソレノイド式の調圧弁16はド
レン17へのオイルの排出iij、を制御して41]路
18のライン圧を制御する。油路18は出力(Illデ
ィスク7bの油圧シリンダへ接続されている。リニアソ
レノイド式流量制御弁I9は、入力側ディスク6a +
6b間の押圧力を増大Nc)を増大させる揚台には入
力側ディスク6aの/!11圧シリングへの油路20と
油路18との間の流通f(47面積を増大させるととも
に油路2Qとドレン17との]妥続を断ち、また入力側
ディスクOa + 61+間の押圧力を減少させて速度
比を減少させる」、4合には油路】8と20との接続を
断つとともに油路20とドレン17との間の流通断面積
を制作1する。回−1ハ角センサ23 、24はそれぞ
れ入力側ディスク6bおよび出力側ディスク7aの回転
速度Nin + Noutを検出する。出力側デノスク
7bのシリンダ油圧、すなわちライン圧はベルト9力賀
骨らずに1〜ルク伝達を確保できる最4\の油圧に制御
され、これによりポンプ14の駆動損失が抑制される。The mail pump 14 sends oil sucked from the oil sump 15 to the pressure regulating valve 16. The linear solenoid type pressure regulating valve 16 controls the discharge of oil to the drain 17, thereby controlling the line pressure of the line 18. The oil passage 18 is connected to the hydraulic cylinder of the output (Ill disk 7b).The linear solenoid type flow control valve I9 is connected to the input side disk 6a +
Increasing the pressing force Nc) between the input side disks 6a and /! The flow f between the oil passage 20 and the oil passage 18 to the 11-pressure cylinder (increasing the 47 area and the oil passage 2Q and the drain 17) is interrupted, and the pressing force between the input side disk Oa + 61 + is At the 4th turn, the connection between the oil passage 8 and 20 is cut off, and the flow cross-sectional area between the oil passage 20 and the drain 17 is created. The sensors 23 and 24 detect the rotational speeds Nin + Nout of the input side disk 6b and the output side disk 7a, respectively.The cylinder oil pressure of the output side denosk 7b, that is, the line pressure, can be transmitted from 1 to 1 lux without the belt 9 force. The hydraulic pressure is controlled to the maximum that can be secured, thereby suppressing the driving loss of the pump 14.
入力側ディスク6aへのオイルの流バ【によりCVT’
4の速度比が制御される。なお出力側ディスク7bのシ
リンダ油圧≧入力側ディスク6aのシリンダ油圧である
が、シリンダピストンの受圧面積は入力側〉出力側であ
り、1以上の速度比が実現可能である。水幅センサ25
は機関1の冷却水已度を検出する。The oil flow to the input side disc 6a [by CVT'
A speed ratio of 4 is controlled. Note that the cylinder oil pressure of the output side disk 7b≧the cylinder oil pressure of the input side disk 6a, but the pressure receiving area of the cylinder piston is input side>output side, and a speed ratio of 1 or more can be realized. Water width sensor 25
detects the cooling water level of engine 1.
スロツi−ル開度センサ26は、加速ペダル27に連動
する吸気系スロットル弁の開度を検出する。The throttle opening sensor 26 detects the opening of an intake system throttle valve that is linked to the accelerator pedal 27.
シフト位[rlセンサ28は座席29の近傍のシフトレ
バ−のレンジを検出する。Shift position [rl sensor 28 detects the range of the shift lever near the seat 29.
第2図は電子制御装置ぺのブロック図である。FIG. 2 is a block diagram of the electronic control device Pe.
CPU 32 、RAM 33 、RO卜+34、r/
F (インタフェース)35、A/D (アナログ
/デジタル変換器)36、およびD/Δ (デジタル/
アナログ変換器)37はバス38により互いに接続され
ている。回転角センサ23 、24およびシフト位置セ
ンサ28の出力パルスはインタフェース35へ送られ、
水温センサ25およびスロットル開度センサ26のアナ
ロク出力はA/D 36へ送られ、D/A 37の出力
は調圧弁16および流量制御弁19へ送られる。CPU 32, RAM 33, RO +34, r/
F (interface) 35, A/D (analog/digital converter) 36, and D/Δ (digital/
The analog converters) 37 are connected to each other by a bus 38. The output pulses of the rotation angle sensors 23, 24 and the shift position sensor 28 are sent to the interface 35,
The analog outputs of the water temperature sensor 25 and the throttle opening sensor 26 are sent to the A/D 36, and the output of the D/A 37 is sent to the pressure regulating valve 16 and the flow rate control valve 19.
CVTIIの制御層IIjを概略的に説明すると、内燃
機関1に対する要求馬力を吸気系スロットル開度0の関
数として定め、その要求馬力が最小・燃費率で生じる機
関回転速度Neを目標機関回転速度Neoとする。した
がって目標機関回転速度Neoはスコツ1〜ル開度0の
関数である。また、機関回転速度Neが目標機関回転速
度Neoとなる時のCVT4の速度比eを目標速度比e
oとする。To roughly explain the control layer IIj of the CVT II, the required horsepower for the internal combustion engine 1 is determined as a function of the intake system throttle opening degree 0, and the engine rotation speed Ne at which the required horsepower occurs at the minimum fuel efficiency is defined as the target engine rotation speed Neo. shall be. Therefore, the target engine rotational speed Neo is a function of the opening degree of 1 to 0. Also, the speed ratio e of the CVT 4 when the engine rotation speed Ne becomes the target engine rotation speed Neo is the target speed ratio e.
o.
すなオつちC0==Nout / Neoである。こう
してCVT4の速度比eが目標速度比eaとなるように
調圧弁10および流LL制御弁19が制御される。That is, C0==Nout/Neo. In this way, the pressure regulating valve 10 and the flow LL control valve 19 are controlled so that the speed ratio e of the CVT 4 becomes the target speed ratio ea.
第3図は実施例のCV’r4における加速時の変速速度
;の絶対値、口1時間変化を示している。FIG. 3 shows the absolute value of the shift speed during acceleration at CV'r4 of the example, and the change over one hour.
すなわち加速時では駆動トルク増大のために蓮度比eは
減少させられるので、速度比eの時間微分値2 (=
de/dt )は負となる。機関が低負荷あるいは低
速にある状態から車両を加速する場合、加速開始時刻t
= tlから所定時間Taが経過する時刻t2まて、
変速速度二を0に保持する。したがって速度比Cはt二
t2まで加速直前の値esにバl:持される。を二t2
以降は、変速速度らはスロワ1−ル開度θの関数として
の目標速度比eOを達成するための本来の値−Xにされ
る。In other words, during acceleration, the lotus degree ratio e is decreased due to the increase in driving torque, so the time differential value of the speed ratio e is 2 (=
de/dt) is negative. When accelerating a vehicle from a state where the engine is at low load or low speed, the acceleration start time t
= Until time t2 when a predetermined time Ta has elapsed from tl,
Shift speed 2 is held at 0. Therefore, the speed ratio C is maintained at the value es immediately before acceleration until t2 t2. two t2
Thereafter, the shifting speeds are set to the original value -X for achieving the target speed ratio eO as a function of the throttle opening θ.
第4図は加速時のΔNoutおよびNin5 (es
−e)の時間変化を、本発明に係る第3図の実施例(
実線)と従来装置(破&りとを対比して示している。Figure 4 shows ΔNout and Nin5 (es
-e) in the embodiment of FIG. 3 according to the present invention (
The solid line) and the conventional device (broken line) are shown in comparison.
加速開始に伴ってΔNinは滑らかに増大するが、従来
装置では加速開始時刻t = tlから速度比eが直ち
に変化するために、Nuns (es−e )が増大
し、ΔNoutが加速初期においてtJ\さく、車速の
上昇が遅れるという不具合がある。これに対し本発明で
はt =: t2までNin5 (cs −e)力50
に紺持されるので、ΔN0utは加速初期から大きな値
に保持され、車速はt == tlから速やかに」―昇
し、良好な加速性が得られる。なお第4図において加速
後期ではΔlN0utの大小関係が本発明と従来装置と
では逆転しているが、加速後期よりも加速初工vjの加
速性が運転者の要求に合い、重視される。また、−Ni
ns (es−e)に下限が存在するのはCVT 4の
速度比Cに下限cminかあるからである。ΔNin increases smoothly with the start of acceleration, but in the conventional device, since the speed ratio e changes immediately from the acceleration start time t = tl, Nuns (es-e) increases and ΔNout becomes tJ\\ at the beginning of acceleration. However, there is a problem that the increase in vehicle speed is delayed. On the other hand, in the present invention, t =: Nin5 (cs - e) force 50 until t2
Since ΔN0ut is maintained at a large value from the beginning of acceleration, the vehicle speed quickly increases from t==tl, and good acceleration performance is obtained. In addition, in FIG. 4, in the latter stage of acceleration, the magnitude relationship of ΔlN0ut is reversed between the present invention and the conventional device, but the acceleration performance of the initial acceleration vj meets the driver's requirements and is more important than in the latter stage of acceleration. Also, -Ni
The reason why there is a lower limit for ns (es-e) is that the speed ratio C of the CVT 4 has a lower limit cmin.
第5図は第3図の制御を実行するための変速達瓜−巨知
し−チンのフローチャートである。スl′1ツ[−ル聞
)隻Δか所足値へより大きく、すなわち機関1か低負荷
から?rS負荷駄態へ変化したかあるいは機関lが継ね
“δ的に高色荷状rルにあり、かつCVI’ 4の入力
側回転速度Nin (=Ne)が所定値13より小さ
い場合は、換言すれば機関が低速あるいは低負荷の状態
から加速ペダルを踏込んだ場合あるいは機関が低速であ
ってDrl速ペ速用ダル続的に大きく踏込んでいる場合
は、烈速速度二をT秒間だけOに保持し、その他の場合
はaを本来の値−Xにする。各ステ゛ノブを詳述すると
、ステップ44ではスロットル開度Δと所定値Aとを比
較し、0>Aであればステ゛ンプ46へ進み、θ≦Aで
あればステップ54へ進む。ステップ46ではCVT
4の入力側回転速度Ninと所定値Bとを比較し、Ni
n<8であればステップ48へ進み 1liiyl 2
Bであればステ゛ノブ54へ進む。ステップ48では
タイマをセ゛ノドする。ステップ50ではタイマにより
fl測されている経過時間TとTaとを比較し、T<T
aであればステップ52へ進み、T≧1”aであれGJ
ステップ54へ進む。ステップ52では変速速度みをO
にする。ステップ54では1゛に0を代入する。ステッ
プ56では変速速度\二を、スロットル開度Oの関数と
しての目標速度比eoを達成するための本来の値−Xに
する。FIG. 5 is a flowchart of the speed change process for executing the control shown in FIG. 3. Is it larger than the value of the engine 1 or low load? If the load has changed to rS load failure or the engine l is in a high color load condition in terms of δ, and the input side rotational speed Nin (=Ne) of CVI' 4 is smaller than the predetermined value 13, In other words, if the accelerator pedal is depressed when the engine is at low speed or under low load, or if the engine is at low speed and the Drl speed pedal is continuously depressed greatly, the rapid speed 2 will be depressed for only T seconds. In other cases, a is set to the original value - If θ≦A, the process proceeds to step 54.In step 46, the CVT
Compare the input side rotational speed Nin of No. 4 with the predetermined value B, and
If n<8, proceed to step 48 1liiyl 2
If it is B, proceed to the step knob 54. In step 48, a timer is activated. In step 50, the elapsed time T measured by the timer is compared with Ta, and T<T
If a, proceed to step 52, and if T≧1”a, GJ
Proceed to step 54. In step 52, only the gear shift speed is set to O.
Make it. In step 54, 0 is substituted for 1'. In step 56, the shift speed \2 is set to the original value -X for achieving the target speed ratio eo as a function of the throttle opening degree O.
第6図は本発明の別の実施例におLフる加速時の変速速
度6の絶対値+5+・の時間変化を示している。機関が
低負荷あるいは低速にある駄態力)ら中側を加速する場
合、加速開始時刻t−目から所定時間Taが経過する時
刻t2まで、変速速度みの絶対値)51を紛やかに上昇
させる。この結果、加速初期におけるNin5 (es
−c )の増大を抑制できるとともに、Noutを最
大現適切に」二昇させることかできる。FIG. 6 shows the time change of the absolute value +5+· of the shift speed 6 during L acceleration in another embodiment of the present invention. When the engine is accelerating on the middle side from a low load or low speed state, the absolute value of the shift speed (51) is unambiguously changed from acceleration start time t-th to time t2 when a predetermined time Ta has passed. raise. As a result, Nin5 (es
-c) can be suppressed from increasing, and Nout can be raised appropriately to its maximum value.
第7図は第6図の制御を実行するための変速速度計算ル
ーチンのフローチャーhである。第5図の実施例と異な
る点は第5四のステップ52の代わりにステップ52(
)を実行し、ステップ521)で変速速tWみにf
(t)を代入する。f (t)は第6図のt−tl〜
t2まての範囲において定義されている151に対して
イ・」号が逆の関係、すなオ〕ちf (t)=−+e+
で表わされる。FIG. 7 is a flowchart h of a shift speed calculation routine for executing the control shown in FIG. The difference from the embodiment in FIG. 5 is that step 52 (instead of the 54th step 52)
), and in step 521), f
Substitute (t). f (t) is t-tl~ in Fig. 6
151, which is defined in the range up to t2, has the opposite relationship, i.e., f (t)=-+e+
It is expressed as
4 図面のI’+ji B’+な説明
第1図は本発明が適用されるcVTの全体の概略図、第
2図は電子制御装置のブロック図、第′3図は本発明の
実施例において加速時におけるC V ’I’の変速速
度の時間変化を丞す図、第4図は加速時におけるCV]
の出力側回転速度等の時間変化を示す図、第5図は第3
図の制御を実行Tる紗速速度計算ルーチンのフローチャ
ート、第6図は本発明の別の実施例において加速時にお
けるCVTの変速速度の時間変化を示す図、第7図は第
6図の制御を実行する変速速度計算ルーチンのフローチ
ャートである。4 I'+ji B'+ Explanation of the Drawings Fig. 1 is an overall schematic diagram of a cVT to which the present invention is applied, Fig. 2 is a block diagram of an electronic control device, and Fig. '3 is an illustration of an embodiment of the present invention. Figure 4 shows the change in shift speed of C V 'I' over time during acceleration. Figure 4 shows CV during acceleration]
Figure 5 is a diagram showing changes over time in the output side rotational speed, etc.
A flowchart of a gauze speed calculation routine that executes the control shown in the figure, FIG. 6 is a diagram showing the time change of the CVT shift speed during acceleration in another embodiment of the present invention, and FIG. 7 is a flowchart of the control shown in FIG. 6. 2 is a flowchart of a shift speed calculation routine that executes.
1・・・機関、4・・・CVT、19・・・流量制御弁
。1... Engine, 4... CVT, 19... Flow control valve.
特許出願人 トヨタ自動車株式会社 第3図 tl t2 時間り 第4図 第5図 第6図 tl t2 時 間を第7図Patent applicant: Toyota Motor Corporation Figure 3 tl t2 time Figure 4 Figure 5 Figure 6 tl t2 t2 time shown in Figure 7
Claims (1)
態から車両を加速する場合、車両加速の初期の所定時間
では無段変速機の速度比を加速前の値に固定することを
特徴とする、車両用無段変速機の制御力法。 2 機関が低速あるいは低負荷にある状態から車両を加
速する場合、車両加速の初jv1の所定時間内では11
1(段変速機の変速速度を緩やかに変化させることを特
徴とする、車両用無段変速機の制作I方法。[Claims] 1. When accelerating a vehicle from a state in which the engine is at (1, ti speed or low 11-3 load), at a predetermined time at the beginning of vehicle acceleration, the speed ratio of the continuously variable transmission is set to the value before acceleration. 2. When accelerating a vehicle from a state where the engine is at low speed or low load, the control force method for a continuously variable transmission for a vehicle is fixed at
1 (Method for producing a continuously variable transmission for a vehicle, which is characterized by gradually changing the speed of the gear transmission).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7930783A JPS59208253A (en) | 1983-05-09 | 1983-05-09 | Controlling method of stepless speed change gear for vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7930783A JPS59208253A (en) | 1983-05-09 | 1983-05-09 | Controlling method of stepless speed change gear for vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59208253A true JPS59208253A (en) | 1984-11-26 |
Family
ID=13686189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7930783A Pending JPS59208253A (en) | 1983-05-09 | 1983-05-09 | Controlling method of stepless speed change gear for vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59208253A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4833944A (en) * | 1986-08-23 | 1989-05-30 | Fuji Jukogyo Kabushiki Kaisha | Transmission ratio control system for a continuously variable transmission |
EP0364270A1 (en) * | 1988-10-14 | 1990-04-18 | Fuji Jukogyo Kabushiki Kaisha | Transmission ratio control system for a continuously variable transmission |
-
1983
- 1983-05-09 JP JP7930783A patent/JPS59208253A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4833944A (en) * | 1986-08-23 | 1989-05-30 | Fuji Jukogyo Kabushiki Kaisha | Transmission ratio control system for a continuously variable transmission |
EP0364270A1 (en) * | 1988-10-14 | 1990-04-18 | Fuji Jukogyo Kabushiki Kaisha | Transmission ratio control system for a continuously variable transmission |
US5009129A (en) * | 1988-10-14 | 1991-04-23 | Fuji Jukogyo Kabushiki Kaisha | Transmission ratio control system for a continuously variable transmission |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59217051A (en) | Control for stepless speed change gear for car | |
JPH0327791B2 (en) | ||
JPH07102791B2 (en) | Control device for continuously variable transmission for vehicle | |
JPS60256662A (en) | Stepless speed change gear controlling device for car | |
JPH066977B2 (en) | Control device for continuously variable transmission for vehicle | |
JPH0428947B2 (en) | ||
JPH0335536B2 (en) | ||
JPS60260753A (en) | Control device of stepless speed change gear for car | |
JPS59144850A (en) | Method of controlling stepless transmission for vehicle | |
JPS6018650A (en) | Control method for continuously variable transmission for vehicle | |
US4753133A (en) | Control system for continuously variable transmission in motor vehicle | |
JPH049936B2 (en) | ||
JPH049935B2 (en) | ||
JPS6044652A (en) | Control method of continuously variable transmission for vehicle | |
JPH0543896B2 (en) | ||
JPH0428946B2 (en) | ||
JP4869646B2 (en) | Engine output control device for acceleration when the vehicle is depressed | |
JPH0553987B2 (en) | ||
JPH02150556A (en) | Engine speed controller for continuously variable transmission | |
JPS59208253A (en) | Controlling method of stepless speed change gear for vehicle | |
JPS59217050A (en) | Control of stepless speed change gear for vehicle | |
US5580329A (en) | Supercharger control system for engines | |
JP4672252B2 (en) | Control device for vehicle | |
JPS6088260A (en) | Control of continuously variable transmission for car | |
JPH0417292B2 (en) |