Nothing Special   »   [go: up one dir, main page]

JPS5919255Y2 - air conditioner - Google Patents

air conditioner

Info

Publication number
JPS5919255Y2
JPS5919255Y2 JP17616279U JP17616279U JPS5919255Y2 JP S5919255 Y2 JPS5919255 Y2 JP S5919255Y2 JP 17616279 U JP17616279 U JP 17616279U JP 17616279 U JP17616279 U JP 17616279U JP S5919255 Y2 JPS5919255 Y2 JP S5919255Y2
Authority
JP
Japan
Prior art keywords
heat exchange
indoor coil
refrigerant
indoor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17616279U
Other languages
Japanese (ja)
Other versions
JPS5692054U (en
Inventor
和幸 吉田
憲三 渡辺
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP17616279U priority Critical patent/JPS5919255Y2/en
Publication of JPS5692054U publication Critical patent/JPS5692054U/ja
Application granted granted Critical
Publication of JPS5919255Y2 publication Critical patent/JPS5919255Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

【考案の詳細な説明】 本考案は簡単な冷凍回路で冷房と除湿の各個運転を容易
に行うことができ゛る新規な構造の空気調和機に関する
[Detailed Description of the Invention] The present invention relates to an air conditioner with a new structure that allows easy operation of cooling and dehumidification using a simple refrigeration circuit.

冷房と除湿の運転を個別に行わせ得る従来の空気調和機
は第7図に回路を示すように凝縮器A。
A conventional air conditioner that can perform cooling and dehumidification operations separately uses a condenser A as shown in the circuit shown in FIG.

蒸発器兼用再熱器8間にバイパス回路付冷房用キャピラ
リーチューブCを設けると共に、蒸発器兼用再熱器B、
蒸発器り間にバイパス回路付除湿用キャピラリーチュー
ブEを設けてなる構成であって、冷房運転は電磁弁Fを
閉止し、電磁弁Gを開放操作する一方、除湿運転は逆に
電磁弁Fを開放、電磁弁Gを閉止操作するようにしてい
た。
A cooling capillary tube C with a bypass circuit is provided between the evaporator and reheater 8, and an evaporator and reheater B,
It has a configuration in which a capillary tube E for dehumidification with a bypass circuit is installed between the evaporator. During cooling operation, solenoid valve F is closed and solenoid valve G is opened, while during dehumidification operation, solenoid valve F is closed. It was designed to open and close solenoid valve G.

かかる回路構成は構成部材が多く、また回路が複雑とな
って装置コストの高騰につながる欠点があった。
Such a circuit configuration has the disadvantage that it has many components and the circuit becomes complicated, leading to a rise in device cost.

また、上記構造の他に、第8図に示す如く室内側ユニッ
トに1個の三方電磁弁Iを用いた冷媒回路も提案されて
いるが、これも第7図々示回路同様、冷房と除湿の切換
えを行う際に、蒸発器兼用再熱器として機能する室内側
熱交換器B′で高・低圧切換えによって冷媒ショック音
を発生し、利用者に不快感を与えて好ましくなかった。
In addition to the above structure, a refrigerant circuit using one three-way solenoid valve I in the indoor unit as shown in FIG. When switching between high and low pressures, the indoor heat exchanger B', which functions as an evaporator and reheater, generates a refrigerant shock sound, which is undesirable as it gives a user a feeling of discomfort.

このように従来のこの種空気調和機が種々の次陥を有し
ている現状に鑑みて、本考案はその欠陥の解消をはかろ
うとして威されたものである。
In view of the current situation in which conventional air conditioners of this type have various deficiencies, the present invention was developed in an attempt to eliminate these deficiencies.

以下に本考案の具体的内容につき添付図面を参照しつつ
詳細に説明する。
The specific contents of the present invention will be explained in detail below with reference to the accompanying drawings.

第1図において一点鎖線で区分した左半部は室外ユニッ
ト、右半部は室内ユニットである。
In FIG. 1, the left half divided by a dashed line is an outdoor unit, and the right half is an indoor unit.

前記室外ユニットに圧縮機1.室外コイル2.室外ファ
ン12.受液器7ならびに電磁弁11.キャピラリーチ
ューブ10及びアキュムレータ8を構成要素とする冷媒
量調節装置9が夫々具備されており、方、室内ユニット
には第1室内コイル3.冷房・除湿兼用キャピラリーチ
ューブ4.蒸発器として作用する第2室内コイル5なら
びに室内ファン6が夫々具備されている。
A compressor 1 is installed in the outdoor unit. Outdoor coil 2. Outdoor fan 12. Liquid receiver 7 and solenoid valve 11. A refrigerant amount adjusting device 9 having a capillary tube 10 and an accumulator 8 as constituent elements is provided respectively, and the indoor unit has a first indoor coil 3. Capillary tube for both cooling and dehumidification 4. A second indoor coil 5 and an indoor fan 6 are each provided to act as an evaporator.

そして、前記圧縮機1の吐出側と吸入側との間に、室外
コイル2.受液器7.第1室内コイル3.キャピラリー
チューブ4.第2室内コイル5.アキュムレータ8の順
に、これらを直列接続すると共に、前記受液器7と第1
室内コイル3との間の高圧配管と、第2室内コイル5と
アキュムレータ8との間の低圧配管との間に前記冷媒量
調節装置9の電磁弁11とキャピラリーチューブ10と
を介設したバイパス管15を接続して冷媒回路を形成す
る。
An outdoor coil 2. is provided between the discharge side and the suction side of the compressor 1. Receiver7. 1st indoor coil 3. Capillary tube 4. 2nd indoor coil5. These are connected in series in the order of the accumulator 8, and the liquid receiver 7 and the first
A bypass pipe in which the solenoid valve 11 of the refrigerant amount adjustment device 9 and the capillary tube 10 are interposed between the high-pressure pipe between the indoor coil 3 and the low-pressure pipe between the second indoor coil 5 and the accumulator 8. 15 to form a refrigerant circuit.

しかして、前記冷媒量調節装置9の電磁弁11を閉止し
た場合には、室外コイル2がら流出する冷媒全量が第1
室内コイル3に流入する。
Therefore, when the solenoid valve 11 of the refrigerant amount adjustment device 9 is closed, the total amount of refrigerant flowing out from the outdoor coil 2 is reduced to the first level.
It flows into the indoor coil 3.

一方、前記電磁弁11を開放した場合には、室外コイル
2がら流出する冷媒は第1室内コイル3とバイパス管1
5とに分流し、前記バイパス管15に流入した冷媒はキ
ャピラリーチューブ10で減圧された後、アキュムレー
タ8に流入し、ここで気液分離して、ガス冷媒は圧縮機
1に吸入され、液冷媒がアキュムレータ8内に貯溜され
る。
On the other hand, when the solenoid valve 11 is opened, the refrigerant flowing out from the outdoor coil 2 is transferred to the first indoor coil 3 and the bypass pipe 1.
The refrigerant that flows into the bypass pipe 15 is depressurized in the capillary tube 10, and then flows into the accumulator 8, where it is separated into gas and liquid.The gas refrigerant is sucked into the compressor 1, and becomes liquid refrigerant. is stored in the accumulator 8.

従って、前記電磁弁11を開放すると、まもなくアキュ
レータ8内に所定量の液冷媒が貯溜する。
Therefore, as soon as the electromagnetic valve 11 is opened, a predetermined amount of liquid refrigerant is stored in the accurator 8.

なお、前記冷媒量調節装置9は前記冷媒回路の高・低圧
配管間に橋絡させて設けているが、前記装置9は冷媒回
路内の循環冷媒量を調節するために所定量の冷媒を貯溜
したり、あるいは冷媒回路内に放出したりする機能を有
していればよく、その設置個所、構造は前記実施例に限
定されない。
Note that the refrigerant amount adjusting device 9 is provided to bridge between the high and low pressure pipes of the refrigerant circuit, but the device 9 stores a predetermined amount of refrigerant in order to adjust the amount of circulating refrigerant in the refrigerant circuit. The location and structure of the refrigerant are not limited to those of the above embodiments, as long as the refrigerant has the function of releasing the refrigerant into the refrigerant circuit.

又、室内ユニットの具体構造を第2図に示しているが、
第2図は室内ユニットの断面図であって、第2図図示の
箱形ケーシング17左側を室内ユニット前面となし、該
前面上部に吸込口18を、下部に吹出口19を設け、吸
込口18内方に第2室内コイル5を上方が後に傾く後傾
斜状に配設し、さらに第2室内コイル5下方で吹出口1
9に至るまでのケーシング17内に、室内ファンとして
クロスフローファン6を配設する。
Also, the specific structure of the indoor unit is shown in Figure 2.
FIG. 2 is a sectional view of the indoor unit, with the left side of the box-shaped casing 17 shown in FIG. A second indoor coil 5 is disposed inward in a backwardly inclined manner with the upper side inclined backward, and further below the second indoor coil 5 is an air outlet 1.
A cross flow fan 6 is disposed as an indoor fan in a casing 17 up to 9.

そして、第1室内コイル3を前記第2室内コイル5前方
のケーシング17内上部で、かつ第2室内コイル5前面
の上方隅部に近接する位置、すなわち第2室内コイル5
の後記第2熱交換管部5bに対して上流側となる位置に
配設する。
The first indoor coil 3 is placed in the upper part of the casing 17 in front of the second indoor coil 5 and close to the upper corner of the front surface of the second indoor coil 5, that is, the second indoor coil 5
It is arranged at a position on the upstream side with respect to the second heat exchange tube section 5b described later.

これら第1・第2室内コイル3,5はケーシング17内
で室内ファン6よりも上流側となる空気流通路中に配設
されることとなるが、冷媒の流通経路は第2図の如く、
室外コイル2がら流出した冷媒は第1室内コイル3内を
流れてキャピラリーチューブ4を経て、第2室内コイル
5の第1熱交換管群5a、第2熱交換管群5b、残りの
各熱交換管群5c、出ロ側熱交換管5dを順次流通させ
、その後に室外ユニットのアキュムレータ8に流れるよ
うな特定の流通形態をとらせている。
These first and second indoor coils 3 and 5 are arranged in the air flow path upstream of the indoor fan 6 within the casing 17, and the refrigerant flow path is as shown in FIG.
The refrigerant flowing out of the outdoor coil 2 flows through the first indoor coil 3, passes through the capillary tube 4, and is transferred to the first heat exchange tube group 5a, the second heat exchange tube group 5b, and the remaining heat exchangers of the second indoor coil 5. A specific distribution form is adopted in which the water is passed through the tube group 5c and the outlet heat exchange pipe 5d in sequence, and then flows to the accumulator 8 of the outdoor unit.

第2室内コイル5は、2列複数段で千鳥状に配ダ1ルた
熱交換管Pを備えたクロスフィンコイル式熱交換器によ
り構成し、第1室内コイル3に比し、熱交換面積をかな
り大きくする。
The second indoor coil 5 is composed of a cross-fin coil heat exchanger equipped with heat exchange tubes P arranged in a staggered manner in two rows and multiple stages, and has a larger heat exchange area than the first indoor coil 3. Make it quite large.

例えば、第2室内コイル5の熱交換面積を1とすると、
第1室内コイル3は約0 、125の程度とし、また、
室外コイル2は約1.3に定める。
For example, if the heat exchange area of the second indoor coil 5 is 1,
The first indoor coil 3 is about 0.125 degrees, and
The outdoor coil 2 is set to approximately 1.3.

なお、第1室内コイル3は第2室内コイル5同様クロス
フインコイルであってもよいが、第2図々示の如く熱交
換管周面に斜状フィンを周設した熱交換器を用いれば第
1室内コイル3をより小形にでき、従ってケーシング1
7内の第2室内コイル5前方の空間を小さくでき、ケー
シング17の奥行を小さくすることが可能となる。
Although the first indoor coil 3 may be a cross-fin coil like the second indoor coil 5, it is possible to use a heat exchanger with oblique fins around the heat exchange tube as shown in FIG. The first indoor coil 3 can be made smaller, and therefore the casing 1
The space in front of the second indoor coil 5 within the casing 17 can be reduced, and the depth of the casing 17 can be reduced.

しかして、第2室内コイル5において、前記第1熱交換
管群5aは、熱交換管Pの段方向のほぼ中央よりも下段
側に存する各熱交換管Pの集合体であり、各熱交換管P
を第2図々示の如く接続し、出口側熱交換管5dは第1
熱交換管群5aの直上に存する熱交換管Pであり、第2
熱交換群5bは前記出口側熱交換管5dよりも上段側の
前列に存する複数の熱交換管Pと、後列の熱交換管Pに
おける最上段の熱交換管Pとの集合体であり、また、5
Cは前記熱交換管群5a、5b、出口側熱交換管5dを
除く他の各熱交換管Pの集合体である。
Therefore, in the second indoor coil 5, the first heat exchange tube group 5a is an assembly of heat exchange tubes P that are located on the lower stage side of the approximately center of the heat exchange tubes P in the stage direction, and each heat exchange tube group 5a is Pipe P
are connected as shown in the second figure, and the outlet side heat exchange pipe 5d is connected to the first
A heat exchange tube P existing directly above the heat exchange tube group 5a, and a second
The heat exchange group 5b is an assembly of a plurality of heat exchange tubes P existing in the front row above the outlet side heat exchange tube 5d and the uppermost heat exchange tube P among the heat exchange tubes P in the rear row, and , 5
C is an assembly of heat exchange tubes P other than the heat exchange tube groups 5a, 5b and the outlet side heat exchange tube 5d.

以上の構成になる空気調和機の運転態様につき次に説明
する。
The operation mode of the air conditioner having the above configuration will be explained next.

冷房運転時には電磁弁11を閉止して、冷媒量調節装置
9を非作動にする。
During cooling operation, the solenoid valve 11 is closed and the refrigerant amount adjustment device 9 is inactivated.

冷凍サイクル系は所定量の冷媒が循環流して高圧ガス冷
媒は室外コイル2で略々全量が凝縮液化し、次いで第1
室内コイル3で室内循環空気の一部によって過冷却され
た後、キャピラリーチューブ4で減圧し、第2室内コイ
ル5で蒸発気化してから、アキュムレータ8を経て圧縮
機1に至り、前記キャピラリーチューブ4直前の冷媒は
完全に液化しており、かつ過冷却された状態であり、こ
の状態をいわゆる液シールという。
In the refrigeration cycle system, a predetermined amount of refrigerant circulates, and almost all of the high-pressure gas refrigerant is condensed and liquefied in the outdoor coil 2, and then in the first
After being supercooled by a part of the indoor circulating air in the indoor coil 3, the pressure is reduced in the capillary tube 4, and the air is evaporated in the second indoor coil 5, and then passes through the accumulator 8 to the compressor 1. The refrigerant immediately before is completely liquefied and is in a supercooled state, and this state is called a liquid seal.

この冷房運転において、室内循環空気の一部は過冷却器
として作用する第1室内コイル3により加熱されること
となるが、第1室内コイル3を流れる冷媒温度は相当低
下していることがら、吸込空気温との温度差は小さく、
シかも第1室内コイル3の熱交換面積もかなり小さいと
いうことがら前記加熱量は僅かである。
In this cooling operation, a part of the indoor circulating air is heated by the first indoor coil 3 which acts as a supercooler, but since the temperature of the refrigerant flowing through the first indoor coil 3 has decreased considerably, The temperature difference with the suction air temperature is small;
Moreover, since the heat exchange area of the first indoor coil 3 is also quite small, the amount of heating is small.

しかも、この室内循環空気に対する加熱は、第2室内コ
イル5の冷却能力の増大により略々相殺されるので、冷
房能力にほとんど低下しない。
Moreover, this heating of the indoor circulating air is substantially offset by the increase in the cooling capacity of the second indoor coil 5, so that the cooling capacity hardly decreases.

即ち、第2室内コイル5人口側の室内循環空気の温度は
、第1室内コイル3での加熱により温度t1からt2に
上昇し、第2室内コイル5における冷媒の蒸発温度と循
環空気温度との温度差が増大すると共に、第1室内コイ
ル3出口における冷媒の過冷却が増大し、第2室内コイ
ル5に流入する冷媒中の液の割合が増大するということ
により、第2室内コイル5の冷却能力が増大する。
That is, the temperature of the indoor circulating air on the population side of the second indoor coil 5 rises from temperature t1 to t2 due to heating in the first indoor coil 3, and the temperature of the refrigerant evaporation in the second indoor coil 5 and the circulating air temperature increase. As the temperature difference increases, the subcooling of the refrigerant at the outlet of the first indoor coil 3 increases, and the proportion of liquid in the refrigerant flowing into the second indoor coil 5 increases, so that the cooling of the second indoor coil 5 increases. Capacity increases.

この増大分は、第2室内コイル5人口側の室内循環空気
温度が上昇するに伴って必要となる冷却能力の増加分に
ほぼ等しく、あたかも循環空気を介して間接的に第1室
内コイル3の冷媒と第2室内コイル5の冷媒との間で熱
の受授を行なった状態を呈することとなって、室内循環
空気に対する第1室内コイル3における加熱量は、第2
室内コイル5における冷却能力の増加分により相殺され
、冷房能力はほとんど低下しない。
This increase is approximately equal to the increase in cooling capacity that is required as the indoor circulating air temperature on the population side of the second indoor coil 5 rises, and it is as if the cooling capacity of the first indoor coil 3 is indirectly increased through the circulating air. A state is created in which heat is exchanged between the refrigerant and the refrigerant in the second indoor coil 5, and the amount of heating in the first indoor coil 3 for the indoor circulating air is equal to that in the second indoor coil 5.
This is offset by the increase in the cooling capacity of the indoor coil 5, so that the cooling capacity hardly decreases.

この冷房運転の際、吸込口18から流れ込んだ温い室内
空気は第1室内コイル3で温められ、またこの流入室内
空気の一部はケーシング17の頂壁面を介して温められ
るが、第2室内コイル5の熱交換管のうちで、第1室内
コイル3の後方に存する熱交換管が仮りに過熱領域部分
であると、この部分を通る空気は殆ど冷却されなく、が
つ除湿されないままで室内ファン6に至り、ここで第2
室内コイル5の下半部を通過した低温空気によって冷却
されたファン回転子と接したときに、含有湿分がこの回
転子の羽根に結露する現象を呈して、この露が吹き飛ば
されて吹出口19から室内に向けて飛散するおそれがあ
る。
During this cooling operation, warm indoor air that flows in from the suction port 18 is heated by the first indoor coil 3, and a part of this inflow indoor air is heated via the top wall surface of the casing 17, but the second indoor coil Among the heat exchange pipes 5, if the heat exchange pipe located behind the first indoor coil 3 is in the overheated area, the air passing through this part will hardly be cooled and will not be dehumidified until the indoor fan 6, and here the second
When the rotor comes into contact with the fan rotor cooled by the low-temperature air that has passed through the lower half of the indoor coil 5, the contained moisture condenses on the blades of the rotor, and this dew is blown off to the air outlet. There is a risk that it will scatter from 19 into the room.

しかし乍ら、本考案に係る空気調和機は、第2室内コイ
ル5において第1室内コイル3の直後方およびケーシン
グ17に近接する位置に存する第2熱交換管群5bが低
圧冷媒液の流れる部分となって過熱領域ではないことか
ら、前述した温い空気は、この第2熱交換管群5bを通
過する際に冷却されて脱湿が行われるために、室内ファ
ン6に達する空気の湿分は少く、温度も低下しており、
従って冷却されたファン回転子と接しても、結露するこ
とが全くなくなり、かくして吹出口19からの水滴飛散
は確実に防止される。
However, in the air conditioner according to the present invention, the second heat exchange tube group 5b located immediately behind the first indoor coil 3 and close to the casing 17 in the second indoor coil 5 is a portion through which low-pressure refrigerant liquid flows. Therefore, the above-mentioned warm air is cooled and dehumidified when passing through the second heat exchange tube group 5b, so that the moisture content of the air reaching the indoor fan 6 is The temperature is decreasing,
Therefore, even if it comes into contact with the cooled fan rotor, there is no condensation at all, and thus water droplets flying out from the air outlet 19 are reliably prevented.

一方、除湿運転時には、電磁弁11を開放して、冷媒量
調節装置9を作動させる。
On the other hand, during dehumidification operation, the solenoid valve 11 is opened and the refrigerant amount adjustment device 9 is operated.

この場合、室外ファン12を低速に切換え風量を低下さ
せる。
In this case, the outdoor fan 12 is switched to low speed to reduce the air volume.

高圧ラインの液冷媒は一部がキャピラリーチューブ10
を介しバイパス流し、徐々にアキュムレータ8内の貯溜
液冷媒が増量してくる。
Part of the liquid refrigerant in the high pressure line is capillary tube 10
The amount of refrigerant stored in the accumulator 8 gradually increases.

かくしてキャピラリーチューブ4直前における冷媒の状
態はフラッシュ状態となり、キャピラリーチューブ4に
おける冷媒の流通抵抗値が著しく増大して第1,2室内
コイル3,5を流通する冷媒量が減少してくる。
Thus, the state of the refrigerant immediately before the capillary tube 4 becomes a flash state, the flow resistance value of the refrigerant in the capillary tube 4 increases significantly, and the amount of refrigerant flowing through the first and second indoor coils 3 and 5 decreases.

その結果、所謂ガス欠運転となり、低圧が低下して高圧
も下ろうとする傾向になる。
As a result, there is a so-called gas starvation operation, where the low pressure decreases and the high pressure tends to decrease as well.

しかし乍ら室外ファン12を低風量にしたので高圧は下
らず、一定となり、室外コイル2の能力低下分は第1室
内コイル3の加熱能力分として確保される。
However, since the outdoor fan 12 has a low air volume, the high pressure does not drop and remains constant, and the reduced capacity of the outdoor coil 2 is secured as the heating capacity of the first indoor coil 3.

なお、キャピラリーチューブ4直前の液ガス混合割合は
第1室内コイル3と第2室内コイル5との能力が略々見
合う程度となるよう設計の段階で規定することができる
Note that the liquid-gas mixing ratio immediately before the capillary tube 4 can be determined at the design stage so that the capacities of the first indoor coil 3 and the second indoor coil 5 are approximately matched.

かくして第2室内コイル5の冷媒流量が小となり、該コ
イル5の有効蒸発面積が下流側から徐々に減少して行き
、出口側熱交換管5d各熱交換管5C及び第2熱交換管
群5bの部分が過熱領域となり、室内空気は第1室内コ
イル3で加熱され、高温の空気となって室内ファン6に
至る。
In this way, the refrigerant flow rate of the second indoor coil 5 becomes small, and the effective evaporation area of the coil 5 gradually decreases from the downstream side, and the outlet side heat exchange tubes 5d, each heat exchange tube 5C, and the second heat exchange tube group 5b The area becomes an overheating region, and the indoor air is heated by the first indoor coil 3 to become high-temperature air and reach the indoor fan 6.

一方、蒸発器として作用するのは、第2室内コイル5の
第1熱交換管群5aのみであり、従って冷房時の略々半
分以下の冷却能力に減じた状態となり、第1室内コイル
3の加熱能力とほぼ均衡した状態となると云える。
On the other hand, only the first heat exchange tube group 5a of the second indoor coil 5 acts as an evaporator, and therefore the cooling capacity of the first indoor coil 3 is reduced to approximately half or less. It can be said that the state is almost in balance with the heating capacity.

かくして第1熱交換管群5aを通過する際に冷却脱湿さ
れた空気と、第1室内コイル3を通過する際に加熱され
、温度が比較的に高い空気とが室内ファン6で混合した
後、顕熱変化が余りないドライ空気となって室内に送出
され、除湿が効果的になされるのである。
After the air that has been cooled and dehumidified while passing through the first heat exchange tube group 5a and the air that has been heated and has a relatively high temperature while passing through the first indoor coil 3 are mixed by the indoor fan 6. , dry air with little sensible heat change is sent into the room, effectively dehumidifying it.

この場合に、第1熱交換管群5aにおける冷却能力は冷
房時の場合に比して相当小さくなっており、一方、第1
室内コイル3を通過する室内空気は高温に加熱されるこ
とから、冷房時のように室内ファン6の部分で空気合流
によって結露する如き問題は生じない。
In this case, the cooling capacity of the first heat exchange tube group 5a is considerably smaller than that during cooling;
Since the indoor air passing through the indoor coil 3 is heated to a high temperature, problems such as dew condensation due to air merging at the indoor fan 6 do not occur as in the case of cooling.

なお、以上の除湿運転において室外ファン12の送風能
力を低下させているのは、高圧低下により、循環量の減
少からくる除湿機能の逸失を防止する上に極めて好適で
あるが、室外ファン12の風量調節を行わなくても冷房
・除湿の運転は十分可能である。
Note that reducing the air blowing capacity of the outdoor fan 12 in the above dehumidifying operation is extremely suitable for preventing loss of dehumidifying function due to a decrease in circulation volume due to a high pressure drop. Cooling and dehumidification operations are fully possible without adjusting the air volume.

一方、冷媒量調節装置9としては、第1図々示装置の他
に第3図乃至第6図に夫々例示したものであっても良い
On the other hand, the refrigerant amount adjusting device 9 may be one illustrated in FIGS. 3 to 6, in addition to the device shown in FIG. 1.

第3図および第4図々示の装置は室外コイル2の一部2
aを除湿時に液溜め器として利用したものであり、第5
図々示のものはバイパス回路中に除湿時間、冷房時間と
なる電磁弁16と、除湿時液を貯溜する受液器13と、
冷房時液溜め解除のための通路として用いるキャピラリ
ーチューブ14とを設けたものである。
The device shown in FIGS. 3 and 4 is a part 2 of an outdoor coil 2.
A is used as a liquid reservoir during dehumidification, and the fifth
What is shown in the figure is a solenoid valve 16 in the bypass circuit for dehumidification time and cooling time, a liquid receiver 13 for storing liquid during dehumidification,
A capillary tube 14 is provided which is used as a passage for releasing the liquid reservoir during cooling.

以上の各側が冷媒量調節装置9を室外ユニット側に設け
てなるのに対して、第7図々示装置は室内ユニット側に
設けており、第2室内コイル5の一部5aを除湿時に液
溜め器として利用したものである。
In contrast to each of the above devices in which the refrigerant amount adjusting device 9 is provided on the outdoor unit side, the device shown in FIG. It was used as a reservoir.

上記各側は何れも本考案における所期の目的を達成する
に十分な装置であることは必定である。
It is necessary that each of the above-mentioned parts is a sufficient device to achieve the intended purpose of the present invention.

以上詳記したことから明らかなように、本考案によると
、第1室内コイル3と第2室内コイル5とは、キャピラ
リーチューブ4を介して直列関係に接続した状態を変え
ることなく冷媒量調節装置9の作動・不作動の切り換え
だけで冷房運転・除湿運転の切り換えが行えるので、キ
ャピラリーチューブを2個使ったり、三方電磁弁などの
制御弁を回路中に設けねばならなかった従来のこの種空
気調和機に比して、回路構成が極めて単純化され装置コ
ストの低減効果は大である。
As is clear from the above detailed description, according to the present invention, the first indoor coil 3 and the second indoor coil 5 are connected in series through the capillary tube 4 without changing the refrigerant amount adjustment device. Switching between cooling operation and dehumidification operation can be performed simply by switching between activation and deactivation of step 9, which eliminates the need to use two capillary tubes or install a control valve such as a three-way solenoid valve in the circuit. Compared to harmonic machines, the circuit configuration is extremely simplified and the effect of reducing equipment costs is significant.

しかも簡易回路でありながら冷房・除湿運転が行え、除
湿専用減圧器、三方切換弁等の制御弁が不要となって、
運転切換時のショック音を一切排除できる利点がある。
Moreover, even though it is a simple circuit, cooling and dehumidifying operation can be performed, eliminating the need for a dehumidifying pressure reducer, three-way switching valve, or other control valves.
This has the advantage of completely eliminating shock noise when switching modes.

特に本考案は、第2室内コイル5において各熱交換管P
に流れる冷媒の流通経路を特定の形態としたから、冷房
運転時に脱湿されないままの高温空気と脱湿された低温
空気が室内ファン内で混合して該ファン羽根部に結露が
生じて、水滴を室内に吹出し飛散する如き不都合な問題
はここに解消される効果を奏する。
In particular, in the present invention, each heat exchange tube P in the second indoor coil 5
Because the flow path of the refrigerant flowing through the indoor fan has a specific form, during cooling operation, undehumidified high-temperature air and dehumidified low-temperature air mix in the indoor fan, causing condensation on the fan blades and causing water droplets to form. This has the effect of eliminating the inconvenient problem of air blowing out and scattering indoors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案空気調和機の1例に係る装置回路図、第
2図は本考案の例に係る室内ユニットの略本構造図、第
3図乃至第6図は同じく本考案の各側に係る装置回路図
、第7図および第8図は従来の空気調和機各側の装置回
路図である。 1・・・・・・圧縮機、2・・・・・・室外コイル、3
・・・・・・第1室内コイル、4・・・・・・キャピラ
リーチューブ、5・・・・・・第2室内コイル、5a・
・・・・・第1熱交換管群、5b・・・・・・第2熱交
換管群、5C・・・・・・残りの熱交換管群、5d・・
・・・・出口側熱交換管、6・・・・・・室内ファン、
7・・・・・・受液器、8・・・・・・アキュムレータ
、9・・・・・・冷媒量調節装置、10・・・・・・キ
ャピラリーチューブ、11・・・・・・電磁弁、12・
・・・・・室外ファン1.P・・・・・・熱交換管。
Figure 1 is a device circuit diagram of an example of the air conditioner of the present invention, Figure 2 is a schematic structural diagram of an indoor unit according to an example of the present invention, and Figures 3 to 6 are each side of the present invention. FIG. 7 and FIG. 8 are device circuit diagrams of each side of a conventional air conditioner. 1...Compressor, 2...Outdoor coil, 3
...First indoor coil, 4...Capillary tube, 5...Second indoor coil, 5a.
...First heat exchange tube group, 5b... Second heat exchange tube group, 5C... Remaining heat exchange tube group, 5d...
... Outlet side heat exchange tube, 6 ... Indoor fan,
7... Liquid receiver, 8... Accumulator, 9... Refrigerant amount adjustment device, 10... Capillary tube, 11... Electromagnetic Valve, 12・
...Outdoor fan 1. P...Heat exchange tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機1の吐出側と吸入側との間に、室外コイル2.対
空気形の第1室内コイル3.キャピラリーチューブ4及
び2列複数段の熱交換管を備えたクロスフィンコイル式
熱交換器であって、前記第1室内コイル3に比し熱交換
面積が大きい第2室内コイル5を、記載順に直列接続し
て冷媒回路を形成すると共に、前記キャピラリーチュー
ブ4直後の冷媒が、前記第2室内コイル5中を、該室内
コイル5の熱交換管P・・・・・・における段方向のほ
ぼ中央よりも下段側に存する第1熱交換管群5aを経て
、前列の熱交換管Pにおける第1熱交換管群5a直上の
出口側熱交換管5dよりも上段側前列に存する複数の熱
交換管Pおよび後列の熱交換管Pにおける最上段の熱交
換管Pとからなる第2熱交換管群5bに至り、さらに残
りの熱交換管Pを経て前記出口側熱交換管5dに至る経
路で流通する如く前記第2室内コイル5を構成する一方
、前記第1室内コイル3を前記第2室内コイル5の第2
熱交換管群5bを流通する空気流通路中の上流側に配設
し、さらに前記冷媒回路中の適宜個所に、冷媒貯溜量を
調節し得る冷媒量調節装置9を設けて、該冷媒量調節装
置9を非作動となすことにより、第1室内コイル3の加
熱量に比し第2室内コイル5の冷却量を比較的大きくし
て冷房運転可能となす一方、前記冷媒調節装置9を作動
させることにより、第1室内コイル3の加熱量と第2室
内コイル5の冷却量とをほぼ均衡させて、除湿運転を可
能となしたことを特徴とする空気調和機。
Between the discharge side and the suction side of the compressor 1, an outdoor coil 2. Air-type first indoor coil 3. A cross-fin coil heat exchanger equipped with a capillary tube 4 and two rows and multiple stages of heat exchange tubes, in which a second indoor coil 5 having a larger heat exchange area than the first indoor coil 3 is arranged in series in the order of description. They are connected to form a refrigerant circuit, and the refrigerant immediately after the capillary tube 4 flows through the second indoor coil 5 from approximately the center in the stage direction of the heat exchange tube P of the indoor coil 5. A plurality of heat exchange tubes P existing in the front row above the outlet side heat exchange tubes 5d directly above the first heat exchange tube group 5a in the heat exchange tube P in the front row are passed through the first heat exchange tube group 5a located on the lower stage side. and the uppermost heat exchange tube P in the rear row of heat exchange tubes P, and further passes through the remaining heat exchange tubes P to the outlet side heat exchange tube 5d. The second indoor coil 5 is configured as described above, while the first indoor coil 3 is configured as the second indoor coil 5.
The heat exchange tube group 5b is disposed on the upstream side of the circulating air flow path, and a refrigerant amount adjustment device 9 that can adjust the amount of stored refrigerant is provided at an appropriate location in the refrigerant circuit to adjust the amount of refrigerant. By deactivating the device 9, the amount of cooling of the second indoor coil 5 is made relatively large compared to the amount of heating of the first indoor coil 3 to enable cooling operation, while the refrigerant adjustment device 9 is activated. This air conditioner is characterized in that the heating amount of the first indoor coil 3 and the cooling amount of the second indoor coil 5 are almost balanced, thereby enabling dehumidifying operation.
JP17616279U 1979-12-18 1979-12-18 air conditioner Expired JPS5919255Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17616279U JPS5919255Y2 (en) 1979-12-18 1979-12-18 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17616279U JPS5919255Y2 (en) 1979-12-18 1979-12-18 air conditioner

Publications (2)

Publication Number Publication Date
JPS5692054U JPS5692054U (en) 1981-07-22
JPS5919255Y2 true JPS5919255Y2 (en) 1984-06-04

Family

ID=29686808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17616279U Expired JPS5919255Y2 (en) 1979-12-18 1979-12-18 air conditioner

Country Status (1)

Country Link
JP (1) JPS5919255Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195542U (en) * 1984-11-28 1986-06-19
CN109312968B (en) * 2016-06-22 2020-11-06 三菱电机株式会社 Dehumidifying device

Also Published As

Publication number Publication date
JPS5692054U (en) 1981-07-22

Similar Documents

Publication Publication Date Title
KR100208144B1 (en) Flow direction switch type air conditioner
CN103062851A (en) Air conditioning system and dehumidification method thereof
US4381798A (en) Combination reversing valve and expansion device for a reversible refrigeration circuit
CN106556067A (en) The indoor set component of two control multi-connected machines and the two control multi-connected machines with which
GB2143017A (en) Reversible heat pump
EP3256790B1 (en) Air conditioner
WO2019064335A1 (en) Refrigeration cycle device
JP2005273923A (en) Air conditioner
JPS5919255Y2 (en) air conditioner
JP4475740B2 (en) Air conditioner and operation method thereof
JPS5930366Y2 (en) air conditioner
JPS6030682Y2 (en) air conditioner
JP3724011B2 (en) Air conditioner
CN211822929U (en) Heat pump set
CN110207417B (en) Air conditioning system
JP3677887B2 (en) Air conditioner
JP2998740B2 (en) Air conditioner
JP3885063B2 (en) Air conditioner
JPS63129238A (en) Defrosting control device for air conditioner of heat pump type
CN221005265U (en) Heat exchange system and air conditioner
CN220852568U (en) Heat exchange system and air conditioner
CN215892609U (en) Cold and hot air conditioning system and single cold air conditioning system
JPH02203172A (en) Air conditioner
JPS5815822Y2 (en) air conditioner
JPH0113972Y2 (en)