Nothing Special   »   [go: up one dir, main page]

JPS59192233A - Optical deflector of waveguide type - Google Patents

Optical deflector of waveguide type

Info

Publication number
JPS59192233A
JPS59192233A JP58066418A JP6641883A JPS59192233A JP S59192233 A JPS59192233 A JP S59192233A JP 58066418 A JP58066418 A JP 58066418A JP 6641883 A JP6641883 A JP 6641883A JP S59192233 A JPS59192233 A JP S59192233A
Authority
JP
Japan
Prior art keywords
electrode
frequency
electrode fingers
surface acoustic
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58066418A
Other languages
Japanese (ja)
Inventor
Toshihiko Kitano
北野 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58066418A priority Critical patent/JPS59192233A/en
Publication of JPS59192233A publication Critical patent/JPS59192233A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • G02F1/335Acousto-optical deflection devices having an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To extend a frequency band and eliminate the dependence of delay time upon frequency by constituting an optical deflector so that the decrease or increase rate of intervals of reflective elements for the propagation distance of a surface acoustic wave is equal to that of intervals of electrode fingers of a chirp reed screen type electrode. CONSTITUTION:The surface wave reflected from a chirp reed screen type electrode 11 is reflected by a reflective grating 12 and reaches an optical beam 13. In this case, the decrease or increase rate of intervals of electrode fingers is equal to that of reflective elements. Therefore, a surface wave 14 having a low frequency which is radiated in a position before electrode fingers is turned back before the reflective grating 12 and reaches the optical beam 13. A surface wave 15 having a high frequency which is radiated from the deepest position of electrode fingers is reflected by the depth of the reflective grating and reaches the optical beam 13. Consequently, surface waves radiated from electrode fingers reach the optical beam approximately simultaneously in the frequency band to perform Bragg diffraction, and the optical deflector whose delay time is not dependent upon the frequency is obtained.

Description

【発明の詳細な説明】 本発明は、光音響信号処理装置に用いられる弾性表面波
利用の光偏向器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical deflector using surface acoustic waves used in a photoacoustic signal processing device.

弾性表面波(SAW)変換器を用いた導波型光偏向器は
、光・音響信号処理デバイスたとえば実時間スペクトラ
ムアナライザ、コリレータ等の集積化、小型化、高性能
化をもたらすものとして種々の研究がなされている。こ
の様な光偏向器では、現在偏向効率の向上とともに周波
数帯域の広帯域化が極めて重要なテーマとなっている。
Waveguide optical deflectors using surface acoustic wave (SAW) converters are being studied in various ways as a means of integrating, miniaturizing, and improving the performance of optical/acoustic signal processing devices such as real-time spectrum analyzers and correlators. is being done. In such optical deflectors, improving deflection efficiency and widening the frequency band are currently extremely important themes.

広帯域化としてこれまで、SAW伝搬方向に沿って電極
指間隔を徐々に変えたチャープすだれ状電極を用いるタ
イプが提案されている。チャープすだれ状電極は、電極
指間隔が徐々に変化するものであり、さらに偏向器用と
して各周波数で光ビームとのプラグ条件が満足される様
に各電極指が互いに傾斜している。そのため偏向器の周
波数特性はほぼ平担となり、広帯域化が容易に実現され
る。しかしSAWが励振されてから光ビームと交叉する
までの時間が周波数により異なるため、−様遅延(直線
位相)周波数特性を必要とする様な信号処理デバイス、
例えはコロレータのようなデバイスへの適用には不向き
である。
To date, a type using chirped interdigital electrodes in which the spacing between electrode fingers is gradually changed along the SAW propagation direction has been proposed to widen the band. In the chirped interdigital electrode, the spacing between the electrode fingers gradually changes, and each electrode finger is tilted relative to each other so that the plug condition with the light beam is satisfied at each frequency for use as a deflector. Therefore, the frequency characteristics of the deflector become almost flat, and a wide band can be easily realized. However, since the time from when the SAW is excited until it intersects with the optical beam varies depending on the frequency, signal processing devices that require -like delay (linear phase) frequency characteristics,
For example, it is unsuitable for application to devices such as collators.

そこで周波数帯域が広く、かつ遅延時間が周波数に依存
しない導波型光偏向器が得られれば極めて有用である。
Therefore, it would be extremely useful if a waveguide optical deflector with a wide frequency band and a delay time independent of frequency could be obtained.

本発明の目的は、前述のような周波数帯域が広く、かつ
、遅延時間が周波数に依存しない導波型光偏向器を提供
することである。
An object of the present invention is to provide a waveguide optical deflector that has a wide frequency band and whose delay time does not depend on frequency as described above.

本発明の導波型光偏向器は、平面光導波路上ζこ電極指
の間隔が電極指幅方向に沿って徐々に減少又は増加して
いるチャープすだれ状電極と、このチャープすだれ状電
極から放出された弾性表面波を、前記平面光導波路中を
伝搬する光ビームにブラッグ角で交叉するように反射す
る反射格子とを備え、さらに、前記反射格子を構成する
各反射素子間の間隔が、前記チャープすたれ状電極から
放出された弾性表面波の伝搬方向に沿って徐々に減少又
は増加し、弾性表面波伝搬距離に対する反射素子間隔の
減少率又は増加率が前記チャープすだにした構成となっ
ている。
The waveguide type optical deflector of the present invention includes a chirped interdigital electrode on a planar optical waveguide in which the spacing between the electrode fingers gradually decreases or increases along the electrode finger width direction, and a chirped interdigital electrode that emits light from the chirped interdigital electrode. a reflection grating that reflects the generated surface acoustic waves so as to intersect with the optical beam propagating in the planar optical waveguide at a Bragg angle; The surface acoustic wave emitted from the chirped sag electrode gradually decreases or increases along the propagation direction, and the rate of decrease or increase of the reflective element interval with respect to the surface acoustic wave propagation distance becomes the chirped sagging structure. There is.

次に本発明を図面を参照しながら説明する。Next, the present invention will be explained with reference to the drawings.

第1図は本発明になる導波型光偏向器の一実施例を示す
立体図で、1は基板、2は基板上に設けられた平面光導
波路で、例えばLiNbO3基板上にT1を拡散するこ
とにより得られる。3は電極指の間隔が電極指幅方向に
沿って徐々に減少又は増加しているチャープすだれ状電
極、4は電極3より放射された表面波を反射せしめる反
射格子で、例えば基板に溝を堀ったグループや、金属蒸
着膜からなる金属ストリップにより形成されている。反
射格子を構成する反射素子の間隔は表面波の入射方向に
沿って徐々に減少もしくは増加している。この反射素子
間隔の表面波の伝搬距離に対す減少又は増加の割合は、
チャープすだれ状電極3と同一である。すだれ状電極3
より放射され反射格子4で反射された弾性表面波5は、
平面光導波路内を伝搬する光ビーム6をプラグ回折せし
め、その結果偏向光7が得られる。入射光8を導波路に
伝搬せしめたり、偏向光7を取り出す手段は種々あるが
、たとえば9,10の様なプリズムを用いて行なわれる
FIG. 1 is a three-dimensional diagram showing an embodiment of the waveguide type optical deflector according to the present invention, in which 1 is a substrate, 2 is a planar optical waveguide provided on the substrate, and for example, T1 is diffused onto a LiNbO3 substrate. It can be obtained by 3 is a chirped interdigital electrode in which the spacing between electrode fingers gradually decreases or increases along the electrode finger width direction; 4 is a reflection grating that reflects the surface waves emitted from electrode 3; for example, a groove is dug in the substrate; It is formed by metal strips made of metal vapor-deposited films. The spacing between the reflective elements constituting the reflective grating gradually decreases or increases along the direction of incidence of the surface waves. The rate of decrease or increase of this reflective element spacing with respect to the propagation distance of surface waves is:
This is the same as the chirped interdigital electrode 3. Interdigital electrode 3
The surface acoustic wave 5 radiated from the surface and reflected by the reflection grating 4 is
The light beam 6 propagating within the planar optical waveguide is subjected to plug diffraction, and as a result, polarized light 7 is obtained. There are various means for propagating the incident light 8 into a waveguide and for taking out the polarized light 7, and for example, prisms such as 9 and 10 are used.

第2図は、第1図のチャープすたれ状電極と反射格子を
拡大した図で、11は電極指幅方向に沿って電極指間隔
が徐々に減少もしくは増加するチャープすだれ状電極で
、この電極より放射される弾性表面波は、反射格子12
により反射され、光ビーム13へ到達する。この場合電
極指間隔の減少又は増加の割合と、反射素子のそれとは
同じになっている。すなわち、電極の中心周波数をf。
Figure 2 is an enlarged view of the chirped interdigital electrode and reflection grating in Figure 1. Reference numeral 11 is a chirp interdigital electrode in which the electrode finger spacing gradually decreases or increases along the electrode finger width direction. The radiated surface acoustic waves are reflected by the reflection grating 12
and reaches the light beam 13. In this case, the rate of decrease or increase in the electrode finger spacing is the same as that of the reflective element. That is, the center frequency of the electrode is f.

、周波数帯域Δf1遅延分散ΔT1表面波の伝搬速度v
fzとすると、左端の電極指よりi番目までの電極指の
距離X、は、たとえば電極指間隔が順次減少する場合、 となる。ただしf、=:fo−Δf/2である。
, frequency band Δf1 delay dispersion ΔT1 surface wave propagation velocity v
If fz, then the distance X of the i-th electrode finger from the leftmost electrode finger is as follows, for example, when the electrode finger interval decreases sequentially. However, f, =: fo - Δf/2.

従って反射格子を形成している各反射素子の位置も前述
のパラメータで記述され、左端の反射素子よりj番目ま
で反射素子の距離yIは、となる。
Therefore, the position of each reflective element forming the reflective grating is also described by the above-mentioned parameters, and the distance yI from the leftmost reflective element to the jth reflective element is as follows.

さらに、反射格子により直角方向へ反射される弾性表面
波と光ビームが周波数帯域内でプラグ回折の条件を満足
するために、j番目の反射素子の入射弾性表面波の伝搬
方向に対する角θ3は次式のようになる。
Furthermore, in order for the surface acoustic wave and light beam reflected in the perpendicular direction by the reflection grating to satisfy the plug diffraction condition within the frequency band, the angle θ3 of the j-th reflection element with respect to the propagation direction of the incident surface acoustic wave is as follows. It becomes like the expression.

ここで、 又、λ0.は光ビームの波長、neは光導波路の屈折率
、v3!、vsxは各々、反射格子内を伝搬する表面波
の入射方向及び反射方向の速度である。
Here, also, λ0. is the wavelength of the optical beam, ne is the refractive index of the optical waveguide, and v3! , vsx are the velocities of the surface waves propagating in the reflection grating in the incident direction and reflection direction, respectively.

以上の様に電極指、反射素子が決定されていると、電極
指の手前の場所で放射された周波数の低い表面波15は
反射格子の手前で折りかえされ、光ビームJ3へ到達す
る。
When the electrode fingers and reflection elements are determined as described above, the low frequency surface wave 15 emitted at a location in front of the electrode finger is folded back in front of the reflection grating and reaches the light beam J3.

又、電極指の一番奥の場所より放射された周波数の高い
表面波15はやはり反射格子内でも一番奥で反射され光
ビーム13へ到達する。したがって、電極指より放射さ
れた表面波は周波数帯域内ではほぼ同時に光ビームに到
達し、遅延時間が周波数に依存しない光偏向器が得られ
る。さらに反射素子の傾斜も式(3)のようにすれば、
周波数帯域内で反射表面波と光ビームとの間で常にプラ
グ回折条件が満足され、偏向器の広帯域化も容易に実現
される。
Furthermore, the high-frequency surface wave 15 emitted from the innermost part of the electrode finger is also reflected at the innermost part of the reflection grating and reaches the light beam 13. Therefore, the surface waves emitted from the electrode fingers reach the optical beam almost simultaneously within the frequency band, and an optical deflector whose delay time does not depend on frequency can be obtained. Furthermore, if the slope of the reflective element is set as shown in equation (3),
Plug diffraction conditions are always satisfied between the reflected surface wave and the optical beam within the frequency band, and a broadband deflector can be easily realized.

尚、反射素子の入射表面波に対する角度は式(3)に示
す様に各反射素子毎に異なるが、特に比帯域(Δf/f
o)が大きく、かつΔTが小さい時は相隣接する素子間
の角度差も大きくなる。このような場合、反射素子の間
隔が素子の長さ方向に沿って一定とはならない。従って
、もし素子の幅を一定とすれば、反射される表面波の周
波数は素子の長さ方向で異なってしまう。
Note that the angle of the reflective element with respect to the incident surface wave differs for each reflective element as shown in equation (3), but especially the fractional band (Δf/f
When o) is large and ΔT is small, the angular difference between adjacent elements also becomes large. In such a case, the spacing between the reflective elements is not constant along the length of the elements. Therefore, if the width of the element is constant, the frequency of the reflected surface wave will vary along the length of the element.

第3図はそのような場合に、反射される表面波の周波数
が、反射素子の長さ方向に沿って変化しないような反射
素子の幅を決める方法を示した図である。すなわち入射
表面波の伝搬方向に平行な中心線O1−〇□とj−i番
目の反射素子21との角度をθj−1,1番目の反射素
子22との角度をθJとすると、比帯域Δf/foが大
きく、かつΔTが小さい場合θ、−1とθ」 の差が大
きくなり、従って両反射素子の間隔は素子の長さ方向で
著しく差が生じる。
FIG. 3 is a diagram showing a method for determining the width of the reflective element so that the frequency of the reflected surface wave does not change along the length of the reflective element in such a case. In other words, if the angle between the center line O1-〇□ parallel to the propagation direction of the incident surface wave and the ji-th reflecting element 21 is θj-1, and the angle with the first reflecting element 22 is θJ, then the fractional band Δf When /fo is large and ΔT is small, the difference between θ, -1 and θ becomes large, and therefore the spacing between both reflective elements varies significantly in the length direction of the element.

しかし図のように反射素子21と22の間隔をd1素子
幅をωとした時に、 なる式が満足されていれば、反射素子の長さ方向で常(
こ周波数fなる表面波が反射される。ここでvm zは
反射素子上、たとえば金属スl−IJツブなら金属膜上
を伝搬する表面波の速度である。式(6)が満足される
と反射素子幅は長さ方向で一定とはならない。しかし、
この場合比帯域幅Δf/foが太きく、かつΔTが小さ
い時でも反射される表面波の周波数は変化せず、したが
って、より周波数特性の良好な導波型光偏向器が得られ
る。
However, as shown in the figure, when the distance between the reflective elements 21 and 22 is d1 and the element width is ω, if the following formula is satisfied, then the length direction of the reflective element is always (
This surface wave of frequency f is reflected. Here, vm z is the velocity of a surface wave propagating on a reflective element, for example, on a metal film in the case of a metal slab IJ tube. When formula (6) is satisfied, the width of the reflective element is not constant in the length direction. but,
In this case, even when the fractional bandwidth Δf/fo is large and ΔT is small, the frequency of the reflected surface wave does not change, and therefore a waveguide optical deflector with better frequency characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる導波型光偏向器の一実施例を示す
立体図で、 1基板、2.平面光導波路、3チヤーブすだれ状電極、
4弾性表面波反射格子、51弾性表面波、6、光ビーム
、7.偏向光、8.入射光、9.10.プリズム を示
し、 第2図はチャープすたれ状電極と反射格子の拡大図で、 11、チャープすだれ状電極、129反射格子、13、
光ビーム、14.低周波弾性表面波、15.高周波弾性
表面波 を示す。 第3図は反射格子の拡大図で、 2]、、 、 22. 反射素子 を示す。 穴で人弁理士 内圧π  晋 オ 1 図 ′f  2 (i] 13 矛  3  口 2
FIG. 1 is a three-dimensional diagram showing an embodiment of a waveguide type optical deflector according to the present invention, which includes 1 substrate, 2. Planar optical waveguide, 3-chave interdigital electrode,
4. surface acoustic wave reflection grating, 51 surface acoustic wave, 6. light beam, 7. Polarized light, 8. Incident light, 9.10. The prism is shown, and Figure 2 is an enlarged view of the chirped interdigital electrode and reflection grating. 11. Chirped interdigital electrode, 129 reflection grating.
light beam, 14. Low frequency surface acoustic waves, 15. High-frequency surface acoustic waves are shown. Figure 3 is an enlarged view of the reflection grating, 2], , , 22. Reflective element is shown. A patent attorney in the hole Internal pressure π Shino 1 Figure'f 2 (i) 13 Spear 3 Mouth 2

Claims (1)

【特許請求の範囲】[Claims] 平面光導波路上に、電極指の間隔が電極指幅方向に沿っ
て徐々1こ減少又は増加しているチャープすたれ状電極
と、このチャープすだれ状電極から放出された弾性表面
波を、前記平面光導波路中を伝搬する光ビームにブラッ
グ角で交叉するよう(こ反射する反射格子とを備え、さ
らに、前記反射格子を構成する各反射素子間の間隔が、
前記チャープすだれ状電極から放出された弾性表面波の
伝搬方向に沿って徐々に減少又は増加し、弾性表面波伝
搬距離に対する反射素子間隔の減少率又は増加率が前記
チャープすだれ状電極の電極指間隔の減少率又は増加率
と同じであることを特徴とする導波型光偏向器。
A chirped interdigital electrode is provided on the planar optical waveguide, and the spacing between the electrode fingers gradually decreases or increases by 1 along the electrode finger width direction, and the surface acoustic waves emitted from the chirped interdigital electrode are transferred to the planar optical waveguide. A reflection grating is provided so as to intersect (reflect) the light beam propagating in the wave path at a Bragg angle, and further, the interval between each reflection element constituting the reflection grating is
The surface acoustic wave emitted from the chirped interdigital electrode gradually decreases or increases along the propagation direction, and the rate of decrease or increase of the reflective element spacing relative to the surface acoustic wave propagation distance is the electrode finger spacing of the chirped interdigital electrode. A waveguide type optical deflector characterized in that the rate of decrease or increase is the same as that of .
JP58066418A 1983-04-15 1983-04-15 Optical deflector of waveguide type Pending JPS59192233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58066418A JPS59192233A (en) 1983-04-15 1983-04-15 Optical deflector of waveguide type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58066418A JPS59192233A (en) 1983-04-15 1983-04-15 Optical deflector of waveguide type

Publications (1)

Publication Number Publication Date
JPS59192233A true JPS59192233A (en) 1984-10-31

Family

ID=13315222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58066418A Pending JPS59192233A (en) 1983-04-15 1983-04-15 Optical deflector of waveguide type

Country Status (1)

Country Link
JP (1) JPS59192233A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936346A (en) * 1972-08-04 1974-04-04
JPS5039445A (en) * 1973-06-29 1975-04-11
JPS5166751A (en) * 1974-08-16 1976-06-09 Secr Defence Brit
JPS5615913A (en) * 1979-07-12 1981-02-16 Hiroyasu Shiokawa Flying shearing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936346A (en) * 1972-08-04 1974-04-04
JPS5039445A (en) * 1973-06-29 1975-04-11
JPS5166751A (en) * 1974-08-16 1976-06-09 Secr Defence Brit
JPS5615913A (en) * 1979-07-12 1981-02-16 Hiroyasu Shiokawa Flying shearing device

Similar Documents

Publication Publication Date Title
US3674335A (en) Light wave coupling into thin film light guides
US3719906A (en) Dispersive delay lines operating in the shear mode
JP3488776B2 (en) Tapered waveguide and optical waveguide device using the same
JPS5954312A (en) Electronic device operated by reflected sound wave
US4455064A (en) Surface acoustic wave transducer array for a guided-wave acoustooptic device
JPS59192233A (en) Optical deflector of waveguide type
US5130597A (en) Amplitude error compensated saw reflective array correlator
US3931592A (en) Surface acoustic wave tuned laser
JPS59192232A (en) Optical deflector of waveguide type
JP2976273B2 (en) Acousto-optic element
US3967221A (en) Surface acoustic wave delay line with bulk wave discrimination
JP3633045B2 (en) Wavelength filter
US4527866A (en) Acousto-optic transducer
JPS63147140A (en) Acoustooptic element
US5138215A (en) Saw reflective array correlator with amplitude error compensating polymer reflective array grating
SU704354A1 (en) Planar acoustooptical device
JPS5946127B2 (en) surface acoustic wave reflector
JPS6216051B2 (en)
JP2674306B2 (en) Waveguide type optical deflector
JPH11281833A (en) Grating coupler
JPS5859613A (en) Manufacture of surface acoustic wave dispersing type delay line
JPH0324086B2 (en)
SU1212167A1 (en) Opto-acoustic spectrum analyzer
JPS604109Y2 (en) Simple spectrometer
JPS62257133A (en) Waveguide type deflector