Nothing Special   »   [go: up one dir, main page]

JPS59177346A - Alloy of rare earth metal for magnet material - Google Patents

Alloy of rare earth metal for magnet material

Info

Publication number
JPS59177346A
JPS59177346A JP58051109A JP5110983A JPS59177346A JP S59177346 A JPS59177346 A JP S59177346A JP 58051109 A JP58051109 A JP 58051109A JP 5110983 A JP5110983 A JP 5110983A JP S59177346 A JPS59177346 A JP S59177346A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
earth metal
magnet
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58051109A
Other languages
Japanese (ja)
Other versions
JPS6248744B2 (en
Inventor
Masao Togawa
戸川 雅夫
Masato Sagawa
佐川 真人
Setsuo Fujimura
藤村 節夫
Yutaka Matsuura
裕 松浦
Hitoshi Yamamoto
日登志 山本
Atsushi Hamamura
濱村 敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58051109A priority Critical patent/JPS59177346A/en
Publication of JPS59177346A publication Critical patent/JPS59177346A/en
Publication of JPS6248744B2 publication Critical patent/JPS6248744B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To reduce the effect of impurities contained in a rare earth metal and to improve the magnetic characterustucs by adding prescribed percentages of Fe, Co and B. CONSTITUTION:The titled alloy consists of, by weight, 3-20% in total of 3- 20% Fe and/or 2-33% Co and the balance rare earth metal or further contains <=10% B. The effect of impurities contained in the rare earth metal is reduced, and the magnetic characteristics are considerably improved.

Description

【発明の詳細な説明】 この発明は、Fe−B−R系、Fe−Co−B−R系(
RはYを含む希土類元素)永久磁石、特に磁気特性のす
ぐれたFe−B−Nd系、 Fe−Co −El −、
Nd系永久磁石に用いる素材合金に係り、最終成品の磁
気特性を劣化させる不純物の少ない希土類合金に関する
DETAILED DESCRIPTION OF THE INVENTION This invention provides Fe-B-R system, Fe-Co-B-R system (
R is a rare earth element containing Y) Permanent magnets, especially Fe-B-Nd system with excellent magnetic properties, Fe-Co-El-,
The present invention relates to a material alloy used for Nd-based permanent magnets, and relates to a rare earth alloy that contains few impurities that degrade the magnetic properties of the final product.

永久磁石材料は、一般家庭の各種電気製品から、大型コ
ンビーユタの周辺端末器まで、幅広い分野で使用される
極めて重要な電気・電子材料の一つである。近年の電気
・電子機器の小形化、高効率化の要求にともない、永久
磁石材料は益々高性能化が求められるようになった。
Permanent magnetic materials are extremely important electrical and electronic materials used in a wide range of fields, from various household appliances to peripheral terminals for large Combi Utah. In recent years, with the demand for smaller size and higher efficiency of electrical and electronic equipment, permanent magnet materials are required to have increasingly higher performance.

現在の代表的な永久磁石材料は、アルニコ、ハードフェ
ライトおにび希土類コバルト磁石である。
Current typical permanent magnet materials are alnico, hard ferrite, and rare earth cobalt magnets.

近年のコバルトの原料事情の不安定化に伴ない、コバル
トを20〜30wt%含むアルニコ磁石の需要は減り、
鉄の酸化物を主成分とする安価なハードフェライトが磁
石材料の主流を占めるようになった。
As the raw material situation for cobalt has become unstable in recent years, demand for alnico magnets containing 20 to 30 wt% cobalt has decreased.
Inexpensive hard ferrite, whose main component is iron oxide, has come to dominate magnet materials.

一方、希土類コバルト磁石はコバルトを50〜60wt
%も含むうえ、希土類鉱石中にあまり含まれていないS
Wlを使用するため大変高価であるが、他の磁石に比べ
て、磁気特性が格段に高いため、主として小型で付加価
値の高い磁気回路に多用されるようになった。
On the other hand, rare earth cobalt magnets contain 50 to 60wt of cobalt.
% and S, which is not contained in rare earth ores very much.
Although it is very expensive because it uses Wl, it has much higher magnetic properties than other magnets, so it has come to be used mainly in small, high-value-added magnetic circuits.

そこで、本発明者は先に、高価なSmやらを含有しない
新しい高性能永久磁石としてFa−8−R系(RはYを
含む希土類元素)永久磁石を提案した(特願昭57−1
45072号)。また、さらに、Fe−B−R系の磁気
異方性焼結体からなる永久磁石のn1配度特性を改良す
るために、Feの一部を6で置換覆ることにより、生成
合金のキニLり一点を上昇させて温度特性を改善したF
e−Co−El−R光異方性焼結体からなる永久磁石を
提案した(特願昭57−166663号)。上記の新規
な永久磁石は次の工程により製造される。
Therefore, the present inventor previously proposed an Fa-8-R-based (R is a rare earth element containing Y) permanent magnet as a new high-performance permanent magnet that does not contain expensive Sm (Patent Application No. 57-1).
No. 45072). Furthermore, in order to improve the n1 coordination characteristics of the permanent magnet made of the magnetically anisotropic sintered body of the Fe-B-R system, by substituting and covering a part of Fe with 6, F with improved temperature characteristics by raising the temperature by one point.
A permanent magnet made of e-Co-El-R optically anisotropic sintered body was proposed (Japanese Patent Application No. 166663/1982). The novel permanent magnet described above is manufactured by the following steps.

(1)出発原料として、純度99.9%の電解鉄、81
9.4%を含有し残部はFe及び/V、SL、C等の不
純物からなるフェロボロン合金、純度99.7%以上の
希土類金属、あるいはさらに、純度99.9%の電解ら
を高周波溶解し、その後水冷銅鋳造、(2)スタンプミ
ルにより35メツシユスルーまでに粗粉砕し、次にボー
ルミルにより3時間粉砕く 3〜10μm) 、 (31!l界(10KOe)中配向、成形(1,5t 
4にて加圧)、 (4)焼結、1000℃〜1200℃、1時間、 Ar
中、焼結後放冷。
(1) As a starting material, electrolytic iron with a purity of 99.9%, 81
A ferroboron alloy containing 9.4% with impurities such as Fe and /V, SL, and C, a rare earth metal with a purity of 99.7% or more, or an electrolytic material with a purity of 99.9% is melted by high frequency. , then water-cooled copper casting, (2) coarsely pulverized with a stamp mill to 35 mesh through, then pulverized with a ball mill for 3 hours (3 to 10 μm), oriented in (31!L field (10KOe)), molded (1.5t
(4) Sintering, 1000°C to 1200°C, 1 hour, Ar
Medium, left to cool after sintering.

上述したFe−B −R系、Fe−Co−8R系(Rは
Yを含む希土類元素)永久磁石を製造するための出発原
料の希土類金属は、一般にCa還元法、電解法により製
造される。
Rare earth metals as starting materials for producing the above-mentioned Fe-B-R series and Fe-Co-8R series (R is a rare earth element containing Y) permanent magnets are generally produced by a Ca reduction method or an electrolytic method.

一般に、Ca還元法により製造される希土類金属は、例
えば、陶の場合、下記(1)式の反応により、陶の分離
精製が行なわれている。
In general, rare earth metals produced by the Ca reduction method, for example, in the case of ceramics, are separated and purified by the reaction of the following formula (1).

FeCア2 2mF3 + 3Ca−一→2M+ 3Ca F 2・
・・(1)ところが、出の溶湯の粘度が高いため、陶と
Ca F 2及びCa CR2との分離が悪く、M中に
Cat”2及びCa(J2が混入したり、あるいは炉材
、NdF3、Ca C12中不純物の02が、陶と固溶
してM2O3生成物となってM中に存在したり、さらに
は、陶の融点が1050℃と高いため、1200℃〜1
300℃に加熱還元する際に反応炉の炉材と反応して純
度が低下し、製造した磁性合金の磁気特性に悪影響を及
ぼす等の問題があった。
FeCa2 2mF3 + 3Ca-1 → 2M+ 3Ca F2・
...(1) However, due to the high viscosity of the molten metal, it is difficult to separate the ceramic from CaF2 and CaCR2, and Cat''2 and Ca(J2) may be mixed into M, or the furnace material, NdF3 , 02, an impurity in Ca C12, becomes a solid solution with ceramics and becomes an M2O3 product and exists in M. Furthermore, since the melting point of ceramics is as high as 1050℃, 1200℃~1
When heated and reduced to 300° C., it reacts with the furnace material of the reactor, resulting in a decrease in purity, which has a negative effect on the magnetic properties of the produced magnetic alloy.

また、電解法により製造する場合、陶の融点が1050
℃と高いため、溶湯及び塩浴の温度を1200℃程度の
降温に上ける必要があり、そのため炉耐火物、弗化物な
どから不純物の混入が避【プられない等種々の問題があ
った。
In addition, when manufacturing by electrolytic method, the melting point of the ceramic is 1050
℃, it was necessary to raise the temperature of the molten metal and the salt bath to about 1200℃, which caused various problems such as the unavoidable contamination of impurities from furnace refractories, fluorides, etc.

この発明は、Fe−Et−R系、Fe−Co−BR系(
RはYを含む希土類元素)永久磁石における出発原料の
希土類金属の純度が磁石合金の磁気特性に及ぼず影響が
重大であることに鑑み、純度の高い磁石合金の素材用希
土類金属を目的とし、磁石合金の素材溶製時に希土類金
属を純度の高い形態で使用できる配合合金を目的として
いる。
This invention is based on Fe-Et-R system, Fe-Co-BR system (
(R is a rare earth element containing Y) In view of the fact that the purity of the rare earth metal that is the starting material in a permanent magnet does not affect the magnetic properties of the magnet alloy and has a significant effect, we aim for a rare earth metal for the raw material of the magnet alloy with high purity. The aim is to create a blended alloy that allows rare earth metals to be used in highly pure form when melting magnetic alloy materials.

すなわち、この発明は、Fe5wt%へ一20wt。That is, in this invention, Fe5wt% to 20wt%.

C02wt%・〜33wt%の1種または2種を、但し
2種含有のときは総量で3wt%〜20wt%を含有し
、残部は実質的に希土類金属からなることを要旨とする
磁石素材用希土類合金、さらに、上記希土類合金に、B
を10wt%以下含有づ゛ることを要旨どする!i磁石
素材用希土類合金ある。
A rare earth material for a magnet material containing one or two of C02 wt% to 33 wt%, but when two types are contained, the total amount is 3 wt% to 20 wt%, and the remainder is substantially composed of rare earth metals. alloy, and further, the above rare earth alloy, B
The main point is that it contains 10wt% or less of i There are rare earth alloys for magnet materials.

この発明は、希土類金属を得るCa還元の際に、磁石の
基本成分のFe 、Co 、Bを添加溶融させることに
より、陶の融点、溶湯の粘度及び溶湯温度を低下させる
ことができ、不純物の少ないXFe合金、  ゛・tk
Fe13合金、M6合金、NdFeCoB合金として、
ずなわち磁石素材の溶製時の配合合金として、極めてす
ぐれた合金が1qられるという知見に基づくものである
This invention is capable of lowering the melting point of the ceramic, the viscosity of the molten metal, and the temperature of the molten metal by adding and melting Fe, Co, and B, which are the basic components of the magnet, during Ca reduction to obtain rare earth metals. Less XFe alloy, ゛・tk
As Fe13 alloy, M6 alloy, NdFeCoB alloy,
This is based on the knowledge that 1q of extremely excellent alloys can be used as blended alloys when melting magnet materials.

詳述すれば、第1図及び第2図にFeまたはωの添加に
伴なう陶の融点の変化を示す如く、Fe添加の場合、F
e添加とともに陶の融点1050℃は低下し、10%添
加のとき、共晶組織となって融点が710℃と最低とな
り、添加量の増加とともに再び融点が上昇しており、ω
の添加の場合、添加量の増加とともに融点が低Fし、ら
添加量20%のとき共晶組織どなって融点が600℃に
なり、さらに添加すると再び融点がTRしていることが
わかる。
To be more specific, as shown in Figures 1 and 2, which show the changes in the melting point of ceramics due to the addition of Fe or
The melting point of ceramic, 1050°C, decreases with the addition of e, and when 10% is added, a eutectic structure is formed and the melting point is the lowest at 710°C, and as the amount of addition increases, the melting point rises again.
It can be seen that when F is added, the melting point decreases as the amount added increases, and when F is added at 20%, a eutectic structure develops and the melting point reaches 600° C., and when further addition is made, the melting point becomes TR again.

さらに具体的に示すと、RF3あるいはR2O3をCa
還元する際、すなわち、 RF3あるいはR2O3をア
ルミナ製ルツボ内でCaとともにフラツクスとしてCa
 Cj 2を用い、950℃で加熱還元中に、Fe 、
Co 、Bを添加溶融すると、1<が陶の場合は、下記
(2)、(3)、(4)の反応により、陶の融点、溶湯
の粘度、温度が低下し、不純物の少ないt’!:lFe
合金、tJdFeE1合金、tVkICo合金、tUF
ecoB合金が19られる。
To be more specific, RF3 or R2O3 is Ca
When reducing, RF3 or R2O3 is mixed with Ca as a flux in an alumina crucible.
Fe,
When Co and B are added and melted, if 1< is ceramic, the following reactions (2), (3), and (4) will lower the melting point of the ceramic, the viscosity, and temperature of the molten metal, resulting in t' with less impurities. ! :lFe
Alloy, tJdFeE1 alloy, tVkICo alloy, tUF
ecoB alloy 19.

Ca CI 2 NaF 3 +Ca+Fe−−→FeNd+CaF 2
    −−f2)CaC夕2 1? F 3+ Ca + Co −−→Co hJ 
十Ca F 2    −− (31CaC夕2 m F 3 +Ca 十Fe 4− Fe s B 6
−−→Fe [3Nd + Ca F 2・・・・・・
・(4) 上記にはCa 3%i元法による場合を説明したが、溶
融塩電解法により磁石素材用希土類合金を製造すること
ができる。
CaCI2NaF3+Ca+Fe--→FeNd+CaF2
--f2) CaC evening 2 1? F 3+ Ca + Co −-→CohJ
10Ca F 2 -- (31CaC 2 m F 3 +Ca 10Fe 4- Fe s B 6
−-→Fe [3Nd + Ca F2...
- (4) Although the case using the Ca 3% i primary method has been described above, the rare earth alloy for magnet material can be manufactured by the molten salt electrolysis method.

溶融塩電解法による場合には次の工程によってmFe合
金を作製することができる。電解浴として、弗化ネオジ
ム、弗化バリウムおよび弗化リヂウムの混合塩を使用し
、原料としてネオジム酸化物を用いた。電解槽を黒鉛と
窒化ホウ素焼結体で作製し、陽極を黒鉛、陰極を鉄板に
より作製した。
In the case of molten salt electrolysis, mFe alloy can be produced by the following steps. A mixed salt of neodymium fluoride, barium fluoride and rhidium fluoride was used as the electrolytic bath, and neodymium oxide was used as the raw material. The electrolytic cell was made of graphite and boron nitride sintered body, the anode was made of graphite, and the cathode was made of iron plate.

950℃で電解すると、陰極鉄板に析出した陶は鉄と反
応して、低融点Nci Fe合金となり、電解槽底部に
沈澱し、連続生産することができる。なお、NdcO合
金を製造する場合には陰極に6を用いるとよい。また、
塩浴中にFe酸化物、B酸化物、00M化物を混合し、
通常の希土類電解精錬によっても、mFe 、1Nul
 B Fe 、IUcoなどの合金を得ることができる
When electrolyzed at 950° C., the ceramic deposited on the cathode iron plate reacts with iron to form a low melting point Nci-Fe alloy, which settles at the bottom of the electrolytic cell, allowing continuous production. In addition, when manufacturing an NdcO alloy, it is preferable to use 6 for the cathode. Also,
Mix Fe oxide, B oxide, and 00M compound in a salt bath,
Even by ordinary rare earth electrolytic refining, mFe, 1Nul
Alloys such as BFe, IUco, etc. can be obtained.

次に、この発明による磁石素材用希土類合金の組成を限
定した理由を説明する。
Next, the reason for limiting the composition of the rare earth alloy for magnet material according to the present invention will be explained.

Feは、3wt%未満、20wt%を越える含有では、
陶の融点が1000℃以上となり、得られる合金中に、
Ca F 2及びCaC:R2が混入したり、あるいは
炉材、NiF 3 、CaCj2中不純物の02が、動
と固溶して動203生成物となってM中に存在したり、
陶の純度が低下し、これを素材とする磁石合金の磁気特
性を劣化さぼるため、 3wt%〜20wt%の範囲が
好ましい。
If the Fe content is less than 3 wt% and more than 20 wt%,
The melting point of the ceramic is over 1000℃, and the resulting alloy contains
CaF 2 and CaC:R2 may be mixed in, or the impurity 02 in the furnace material, NiF 3 and CaCj2 may become a solid solution with the moiety and exist in M as a moiety 203 product.
The content is preferably in the range of 3 wt% to 20 wt%, since the purity of the ceramic will be lowered and the magnetic properties of the magnet alloy made from it will be deteriorated.

COは、2wt%未満、33wt%を越える含有では、
28%B、50%以下ら、残部Feの場合、上記磁石合
金と同等の磁気特性を示し、残留磁束密度の温度係数が
0.1%/℃以下と覆ぐitた特性を右する。
If the CO content is less than 2 wt% and more than 33 wt%,
In the case of 28% B, 50% or less, and the balance Fe, it exhibits magnetic properties equivalent to the above magnet alloy, and the temperature coefficient of residual magnetic flux density is 0.1%/° C. or less, which is the same as that of the magnetic alloy.

また、Rの主成分、覆なわち50原子%以上を軽希土類
金属とした磁気異方性磁石合金は、組成(原子%)が1
2%〜20%R,4%〜24%B1残部Fθあるいはさ
らに5%〜45%Coff1右の場合、最もづ゛ぐれた
磁気特性を示し、特に軽希土類金属が陶のとぎは、(B
 l−1) maxはその最大値が33MGOe以上に
達づる。
In addition, a magnetic anisotropic magnet alloy in which the main component of R, that is, 50 atomic % or more is a light rare earth metal, has a composition (atomic %) of 1
In the case of 2% to 20% R, 4% to 24% B1 balance Fθ or further 5% to 45% Coff1 right, the magnetic properties are the most irregular, and especially light rare earth metals are used for ceramic sharpening (B
l-1) The maximum value of max reaches 33 MGOe or more.

さらに、Fo−B−R系、Fe−Co−EI  R系1
(&石合金に下記添加元素Mを少なくとも1種を含有さ
けることができる。なお、2種以上添加覆る場合は当該
添加元素Mの最大値以下の含有とする。
Furthermore, Fo-BR system, Fe-Co-EI R system 1
(It is possible to avoid containing at least one of the following additive elements M in the stone alloy. In addition, when two or more kinds are added, the content shall be below the maximum value of the additive element M.

TL  4.5%以−1・、NL  4.5%以下、B
j  5  %以下、■ 9.5%以上、Nb  12
.5%以下、Ta  10.5%1ス下、Cr  8.
5%以下、MO9,5%以下、W 9.5%以下、Mn
  3.5%以下、N9.5%以下、Sb  2.5%
以下、C@7  %以下、Sl 3.5%以下、Zy 
 5.5%以下、He  5.5%以下、以下に、この
発明による実施例を示しその効果を明らかにする。
TL 4.5% or more -1・, NL 4.5% or less, B
j 5% or less, ■ 9.5% or more, Nb 12
.. 5% or less, Ta 10.5% or less, Cr 8.
5% or less, MO9.5% or less, W 9.5% or less, Mn
3.5% or less, N9.5% or less, Sb 2.5%
Below, C @ 7% or less, Sl 3.5% or less, Zy
5.5% or less, He 5.5% or less. Examples according to the present invention will be shown below to clarify its effects.

実施例 1 1VkIF3粉末、Fe粉末、Ca粉末をアルミナ製ル
ツボ内で、フラックスどしてCaCR2を用い、アルゴ
ンガス雰囲気中で1070℃で加熱溶融して、4.1w
t%FθM合金を得た。
Example 1 1VkIF3 powder, Fe powder, and Ca powder were fluxed in an alumina crucible and heated and melted at 1070°C in an argon gas atmosphere using CaCR2 to produce 4.1w.
A t% FθM alloy was obtained.

1:1られた4、1wt%FeNe1合金中に含まれる
不純物量を、市販の陶金属中に含まれる不純物量ととも
に第1表に示す。結果から明らかな如く、不純物量が著
しく低減されていることがわかる。
The amount of impurities contained in the 1:1 4,1 wt% FeNe1 alloy is shown in Table 1 together with the amount of impurities contained in commercially available ceramic metals. As is clear from the results, it can be seen that the amount of impurities is significantly reduced.

次に、出発原料として、上記の4.1wt%Fet!l
I合金、純度99.9%の電解鉄、El  19,4%
を含有する)10ボロン合金を高周波溶解し、その後水
冷銅型に鋳造し、1−の鋳塊を作製した。
Next, as a starting material, the above 4.1 wt% Fe! l
I alloy, 99.9% pure electrolytic iron, El 19.4%
10 boron alloy (containing ) was high-frequency melted and then cast in a water-cooled copper mold to produce an ingot of 1-.

この鋳塊を粉砕スタンプミルにより35メツシユスルー
までに粗粉砕し、序でボールミルにより3時間粉砕して
粒径3〜1101Iの微粉となした。つぃ−C,ru界
(10KOo)中配向したのち、1,514にて加圧成
形し15 mm刈5m口+’X 10nunの成形体を
得た。
This ingot was coarsely pulverized with a crushing stamp mill to a throughput of 35 meshes, and then pulverized with a ball mill for 3 hours to form a fine powder with a particle size of 3 to 1101I. After being oriented in the Tsui-C,ru field (10KOo), it was pressure-molded at 1,514 to obtain a molded body with a length of 15 mm and a width of 5 m and a width of 10 mm.

得られた成形体を、1100℃、1時間、 Ar中の焼
結条件で焼結し、焼結後放冷し−C磁石合金を1ηだ。
The obtained molded body was sintered at 1100° C. for 1 hour under sintering conditions in Ar, and after sintering, it was allowed to cool to form a -C magnet alloy of 1η.

このときの磁石合金の組成は、原子%で15%Nd、8
%B、77%Feテあり、保磁力HCl0KOe、95
留磁束密度3r 12.5KG、の磁気特性を示し、最
大エネルギー積(BH)maxは35MGOorあった
The composition of the magnet alloy at this time is 15% Nd, 8
%B, with 77% Fe, coercive force HCl0KOe, 95
It exhibited magnetic properties with a residual magnetic flux density of 3r 12.5 KG, and a maximum energy product (BH) max of 35 MGOor.

比較のため、出発原料の陶として、第1表にポリ−不純
物を含有する市販の陶を使用した以外は全く同じ製造条
件で作製した同一組成の原子%で15%M、8%B、7
7%Feの比較磁石合金は、保磁力Hc 10KOe、
残留磁束密度Dr 12.IKG、の磁気特性を示し、
最大エネルギー積(81−1)maxは31M G O
eであり、この発明による磁石素材用希土類合金を使用
することにより、希土類金属に含まれる不純物の影響が
少なく、磁気特性が大ぎく向上リ−ることかわかる。
For comparison, commercially available ceramics containing poly-impurities as shown in Table 1 were used as the starting material ceramics, but the same composition was produced under exactly the same manufacturing conditions in atomic % of 15% M, 8% B, 7
The comparative magnet alloy of 7% Fe has a coercive force Hc of 10KOe,
Residual magnetic flux density Dr 12. Indicates the magnetic properties of IKG,
Maximum energy product (81-1) max is 31M G O
It can be seen that by using the rare earth alloy for magnet materials according to the present invention, the influence of impurities contained in the rare earth metal is small and the magnetic properties are greatly improved.

実施例2 KF3粉末、フェロボロン粉末、Fe粉末、Ca II
)末をアルミナ製ルツボ内で、フラックスとしてCaC
l2を用い、アルゴンガス雰囲気中で1020°Cで加
熱溶融して、17wt%Fe2wt%BX合金を得た。
Example 2 KF3 powder, ferroboron powder, Fe powder, Ca II
) powder as a flux in an alumina crucible.
12 and heated and melted at 1020° C. in an argon gas atmosphere to obtain a 17 wt % Fe 2 wt % BX alloy.

得られた17wt%Fe2wt%BM合金中に含まれる
不純物量を、市販の陶金属中に含まれる不純物量ととも
に第1表に示す。結果から明らかな如く、不純物量が著
しく低減されていることがわかる。
The amount of impurities contained in the obtained 17wt%Fe2wt%BM alloy is shown in Table 1 together with the amount of impurities contained in commercially available ceramic metals. As is clear from the results, it can be seen that the amount of impurities is significantly reduced.

次に、出発原料として、上記の17wt%Fe2wt%
BNd合金、純度99.9%の電解鉄、El  19.
4%を含有するフェロボロン合金を高周波溶解し、イの
後水冷銅型に鋳造し、1−の鋳塊を作製した。
Next, as a starting material, the above 17wt%Fe2wt%
BNd alloy, 99.9% pure electrolytic iron, El 19.
A ferroboron alloy containing 4% was high-frequency melted, and then cast in a water-cooled copper mold to produce an ingot of 1-.

この鋳塊を粉砕スタンプミルにより35メツシユスルー
までに粗粉砕し、序でボールミルにより3時間粉砕して
粒径3〜10umの微粉となした。ついで、磁界(10
KOe)中配向したのち、i、st 、gにて加圧成形
し、15mmX 15mmX 1001mの成形体を得
た。
This ingot was coarsely pulverized by a crushing stamp mill to a throughput of 35 meshes, and then pulverized by a ball mill for 3 hours to form a fine powder with a particle size of 3 to 10 um. Then, the magnetic field (10
After orientation in KOe), pressure molding was performed at i, st, and g to obtain a molded product measuring 15 mm x 15 mm x 1001 m.

得られた成形体を、1100℃、1時間、 Ar中の焼
結条件で焼結し、焼結後放冷して磁石合金を得た。
The obtained compact was sintered at 1100° C. for 1 hour under sintering conditions in Ar, and after sintering, it was allowed to cool to obtain a magnet alloy.

このときの磁6合金の組成は、原子%で15%M、8%
B、77%Feであり、保磁力)1c 15.5KOe
、 ’Aリ不純物を金石づる市販の陶を使用した以外は
全   使用した場合よりく同じ製造条件で作製した同
一組成の原子%で15    とができtc0%陶、8
%B、20%θ、57%「eの比較磁石合金は、保磁力
Hc  9 K Oe、残留磁束密度[31’ 11.
5K G、の磁気特性を示し、最大エネルギー積 (B
H)maxは30MGOQであり、この発明による磁石
素材用希土類合金を使用することににす、希土類金属に
含まれる不純物の影響が少なく、磁気特性が大きく向」
二Jることがわかる。
The composition of the magnetic 6 alloy at this time is 15% M, 8% in atomic percent.
B, 77% Fe, coercive force) 1c 15.5KOe
Except for using commercially available ceramics containing A-impurities, 15 atomic% and TC0% ceramics with the same composition made under the same manufacturing conditions as those produced under the same manufacturing conditions, 8
% B, 20% θ, 57% e, coercive force Hc 9 K Oe, residual magnetic flux density [31' 11.
It exhibits magnetic properties of 5K G, and the maximum energy product (B
H) max is 30MGOQ, and by using the rare earth alloy for magnet material according to this invention, the influence of impurities contained in rare earth metals is small, and the magnetic properties are greatly improved.
It turns out that 2J.

実施例 4 Nsj F 3  、Ba F 2 、 L+ Fの混
合塩浴を使用し、原料とし’Cm203を使用して電解
法によりMFe合金をtlだ。浴槽側壁を黒鉛、底面を
BN焼結体、陽極を黒鉛、陰極を鉄板で作製した。塩浴
を950℃に加熱して電解を行ない、10.2wt%F
eNj含金を得1こ。
Example 4 Using a mixed salt bath of Nsj F 3 , Ba F 2 , and L+F, an MFe alloy was prepared by an electrolytic method using 'Cm203 as a raw material. The side walls of the bathtub were made of graphite, the bottom surface was made of BN sintered body, the anode was made of graphite, and the cathode was made of iron plate. Electrolysis was performed by heating the salt bath to 950°C, and 10.2wt%F
eNj containing 1 piece.

得られた10.2wt%FeNd合金中に含まれる不純
物量を第1表に示す。電解法の場合にも純度の高いKI
Fe合金を得ることができ、この合金を使用してmFe
B永久磁石を作製すると、従来の市販純陶をb磁気特性
のづ−ぐれたを畳るこ 以下余白
Table 1 shows the amount of impurities contained in the obtained 10.2 wt% FeNd alloy. KI with high purity even when using electrolytic method
Fe alloy can be obtained and this alloy can be used to produce mFe
B When a permanent magnet is made, conventional commercially available pure ceramics are folded into a shape with magnetic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は陶にFaを添加したときの融点の変化を示すグ
ラフであり、第2図は陶にらを添加したときの融点の変
化を示すグラフである。 出願人  住友特殊金属株式会社 代理人  押  1) 良  久し1;、j第1図 第2図 Co(wt%) 第1頁の続き [相]発 明 者 濱村敦 大阪府三島郡島本町江川二丁目 15−17住友特殊金属株式会社山 崎製作所内
FIG. 1 is a graph showing the change in melting point when Fa is added to ceramics, and FIG. 2 is a graph showing changes in melting point when chives are added to ceramics. Applicant Sumitomo Special Metals Co., Ltd. Agent 1) Hisashi Yoshi1;,j Figure 1 Figure 2 Co (wt%) Continued from page 1 [Phase] Inventor Atsushi Hamamura Egawa, Shimahon-cho, Mishima-gun, Osaka Prefecture 2-15-17 Sumitomo Special Metals Co., Ltd. Yamazaki Works

Claims (1)

【特許請求の範囲】 I  Fe5wt%〜20wt、 C;o 2wt%〜
33wt%の1種または2種を、但し2種含有のとぎは
総量”で3wt%〜20wt%を含有し、残部は実質的
に希土類金属からなることを特徴とする磁石素材用希土
類合金 2  「e3wt%〜20Wt、 Co 2wt%〜3
3wt%の1種または2種を、但し2種含有のときは総
量で3wt%〜20wt%を含有し、さらにBを10w
t%以下含有し、残部は実質的に希土類金属からなるこ
とを特徴とする磁石素材用希土類合金
[Claims] I Fe5wt%~20wt, C;o 2wt%~
Rare earth alloy 2 for magnet materials characterized by containing 33 wt% of one or two types, but the total amount of the two types being 3 wt% to 20 wt%, and the remainder substantially consisting of rare earth metals. e3wt%~20Wt, Co 2wt%~3
3wt% of one or two types, but when two types are included, the total amount is 3wt% to 20wt%, and further 10w of B.
A rare earth alloy for magnet materials, characterized in that it contains t% or less, and the remainder consists essentially of rare earth metals.
JP58051109A 1983-03-25 1983-03-25 Alloy of rare earth metal for magnet material Granted JPS59177346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58051109A JPS59177346A (en) 1983-03-25 1983-03-25 Alloy of rare earth metal for magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58051109A JPS59177346A (en) 1983-03-25 1983-03-25 Alloy of rare earth metal for magnet material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP21674486A Division JPS6263642A (en) 1986-09-12 1986-09-12 Rare earth alloy for magnet stock and its production

Publications (2)

Publication Number Publication Date
JPS59177346A true JPS59177346A (en) 1984-10-08
JPS6248744B2 JPS6248744B2 (en) 1987-10-15

Family

ID=12877633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58051109A Granted JPS59177346A (en) 1983-03-25 1983-03-25 Alloy of rare earth metal for magnet material

Country Status (1)

Country Link
JP (1) JPS59177346A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100402A (en) * 1983-08-04 1985-06-04 ゼネラル モ−タ−ズ コ−ポレ−シヨン Iron-rare earth element-boron permanent magnet by high temperature heat treatment
JPS6130639A (en) * 1984-07-03 1986-02-12 ゼネラル モーターズ コーポレーシヨン Metal thermal reduction for rare earth element oxide with calcium metal
JPS61174364A (en) * 1985-09-17 1986-08-06 Mori Kaneo Permanent magnet
US4767450A (en) * 1984-11-27 1988-08-30 Sumitomo Special Metals Co., Ltd. Process for producing the rare earth alloy powders
US4769063A (en) * 1986-03-06 1988-09-06 Sumitomo Special Metals Co., Ltd. Method for producing rare earth alloy
US4837109A (en) * 1986-07-21 1989-06-06 Hitachi Metals, Ltd. Method of producing neodymium-iron-boron permanent magnet
US5034146A (en) * 1986-06-26 1991-07-23 Shin-Etsu Chemical Co., Ltd. Rare earth-based permanent magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210934A (en) * 1981-06-16 1982-12-24 Gen Motors Corp Highly magnetic rare earth-transition metal magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210934A (en) * 1981-06-16 1982-12-24 Gen Motors Corp Highly magnetic rare earth-transition metal magnet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100402A (en) * 1983-08-04 1985-06-04 ゼネラル モ−タ−ズ コ−ポレ−シヨン Iron-rare earth element-boron permanent magnet by high temperature heat treatment
JPH0420242B2 (en) * 1983-08-04 1992-04-02 Gen Motors Corp
JPS6130639A (en) * 1984-07-03 1986-02-12 ゼネラル モーターズ コーポレーシヨン Metal thermal reduction for rare earth element oxide with calcium metal
JPS6137341B2 (en) * 1984-07-03 1986-08-23 Gen Motors Corp
US4767450A (en) * 1984-11-27 1988-08-30 Sumitomo Special Metals Co., Ltd. Process for producing the rare earth alloy powders
JPS61174364A (en) * 1985-09-17 1986-08-06 Mori Kaneo Permanent magnet
US4769063A (en) * 1986-03-06 1988-09-06 Sumitomo Special Metals Co., Ltd. Method for producing rare earth alloy
US5034146A (en) * 1986-06-26 1991-07-23 Shin-Etsu Chemical Co., Ltd. Rare earth-based permanent magnet
US4837109A (en) * 1986-07-21 1989-06-06 Hitachi Metals, Ltd. Method of producing neodymium-iron-boron permanent magnet

Also Published As

Publication number Publication date
JPS6248744B2 (en) 1987-10-15

Similar Documents

Publication Publication Date Title
TWI401704B (en) R-Fe-B rare earth permanent magnet material
EP1420418A1 (en) R-Fe-B sintered magnet
JPH0521218A (en) Production of rare-earth permanent magnet
JPWO2002103719A1 (en) Rare earth permanent magnet material
JP4743211B2 (en) Rare earth sintered magnet and manufacturing method thereof
KR900006193B1 (en) Making method for nd-fe-b permanent magnet
WO2005015580A1 (en) R-t-b sintered magnet and rare earth alloy
US4221613A (en) Rare earth-cobalt system permanent magnetic alloys and method of preparing same
JPS59177346A (en) Alloy of rare earth metal for magnet material
JPH0369981B2 (en)
JP4170468B2 (en) permanent magnet
JPS6263642A (en) Rare earth alloy for magnet stock and its production
JPH0435548B2 (en)
US20070240790A1 (en) Rare-earth sintered magnet and method for producing the same
JP2610798B2 (en) Permanent magnet material
JPH061726B2 (en) Method of manufacturing permanent magnet material
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPS59204211A (en) Isotropic permanent magnet and manufacture thereof
JPH0435549B2 (en)
JPH0355540B2 (en)
JPH0620818A (en) Rare earth cobalt magnet
JP3009804B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPS6179747A (en) Permanent magnet alloy
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0477066B2 (en)