JPS5916949A - Soft-nitriding steel - Google Patents
Soft-nitriding steelInfo
- Publication number
- JPS5916949A JPS5916949A JP12303382A JP12303382A JPS5916949A JP S5916949 A JPS5916949 A JP S5916949A JP 12303382 A JP12303382 A JP 12303382A JP 12303382 A JP12303382 A JP 12303382A JP S5916949 A JPS5916949 A JP S5916949A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- soft
- less
- ductility
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は軟窒化用鋼、特に軟窒化処理後の芯部の靭性が
優れ、かつ表面硬化層の延性も優れた軟窒化用鋼に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steel for soft nitriding, and particularly to a steel for soft nitriding that has excellent toughness in the core portion after soft nitriding treatment and excellent ductility in the hardened surface layer.
軟窒化処理は、AI 変態点以下、一般に570℃程
度の温度で、例えばシアン系化合物の塩浴、+−t X
ガス(吸熱型変性ガス)またはNX ガス(発熱型変性
ガス)等により被処理物を処理して、窒素と共に一部の
炭素を鋼中に侵入させ、表層部を硬化させる表面硬化法
の1種である。The soft nitriding treatment is performed at a temperature below the AI transformation point, generally around 570°C, for example, in a cyanide compound salt bath, +-t
A type of surface hardening method in which the workpiece is treated with gas (endothermic denatured gas) or NX gas (exothermic denatured gas), and some carbon along with nitrogen penetrates into the steel to harden the surface layer. It is.
この方法は浸炭−焼入法の如く被処理物に大きな歪を生
じさせることかなく、また窒化法の如く長時間を要する
こともないので、機械部品等の量産に適した方法である
が、これに適する鋼種としての軟窒化用鋼の開発は未だ
十分でなく、知時間の軟窒化処理で所望の特性が得られ
るものはこれ壕でみられなかった。This method is suitable for mass production of mechanical parts, etc., because it does not cause large distortions in the workpiece like the carburizing-quenching method, nor does it require a long time like the nitriding method. The development of steel for soft nitriding as a steel type suitable for this purpose has not yet been sufficiently developed, and no steel has yet been found that can obtain the desired properties through long-term soft nitriding treatment.
例えば、従来多用されている軟窒化用鋼としてはJIS
−SCM、435 (0,35C−0,75Mn −
1,ICr −0,2Mo )やSACM 645 (
0,45C−0,4St−1,5Cr −0,2Mo
−1,OAA )かある。また、Cr系肌焼鋼に■を添
加した軟窒化用鋼も2.3提案されており、外国規格(
AISI 6118)もある。For example, JIS steel for soft nitriding, which is commonly used
-SCM, 435 (0,35C-0,75Mn-
1,ICr-0,2Mo) and SACM 645 (
0,45C-0,4St-1,5Cr-0,2Mo
-1, OAA). In addition, 2.3 steel for soft nitriding, which is made by adding ■ to Cr-based case hardening steel, has been proposed, and foreign standards (
AISI 6118) is also available.
軟窒化処理は低温処理であるために、熱処理歪は浸炭−
焼入法などに比べて非常に少ないものの、これを完全に
なくすことは不可能であり、特に非対称形の被処理材で
はかなりの歪が生ずる。このため、被処理材には、通常
、軟窒化処理後に若干の塑性変形を伴う冷間矯正加工を
施すが、前記の従来鋼にこれを施すと、表面に微細なり
ラックが生じる。これは、従来鋼に株0.2%以上のC
rが添加されており、特KSACM645などにはさら
に多量のMが添加されているため、最表面層にCr窒化
物やA7窒化物を含む非常に硬くて脆い化合物層が生成
し、耐摩耗性は向上するものの、表面層の延性の劣化が
甚しくなるためである。Because nitrocarburizing is a low-temperature process, the heat treatment strain is similar to that of carburizing.
Although the amount of distortion is very small compared to hardening methods, it is impossible to completely eliminate this distortion, and considerable distortion occurs especially in asymmetrically shaped workpieces. For this reason, the material to be treated is usually subjected to a cold straightening process that involves slight plastic deformation after the nitrocarburizing treatment, but when this process is applied to the conventional steel described above, fine racks are produced on the surface. This means that conventional steel has a C content of 0.2% or more.
Since r is added, and especially in KSACM645, a large amount of M is added, a very hard and brittle compound layer containing Cr nitride and A7 nitride is formed on the outermost surface layer, which improves wear resistance. This is because although the ductility of the surface layer improves, the ductility of the surface layer deteriorates significantly.
また、従来の■添加Cr系肌焼鋼では、■添加量が0.
05%以上、通常は0.1%以上であるため、芯部にお
いて粗大な■炭窒化物が生成し、芯部の靭性が劣ってお
り、さらに経済的にも問題があったO
さらIc 1Cr ’? AA’を多量に添加した上記
のSACM645の場合、上述した矯正加工時のクラッ
ク発生の問題のほかに、軟窒化処理後に表面部から芯部
への硬さ勾配が急激になりすぎ、高負荷下に使用される
歯車やベアリングなどでは表面硬化部と芯部の境界付近
からの剥離現象が起きやすく、疲労強度、耐ピツチング
性あるいは耐スポーリング性の点でも問題があった。こ
の急激な硬さ勾配は、表面硬さがCrおよびAlの高含
有によりHV800〜1100と非常に高くなるのに対
して、有効硬化深さくビッカース硬さHV=400に対
応する表面からの距離)は高々0.15n程度と小さい
ことによる。In addition, in the conventional case-hardened steel with ■addition of Cr, the amount of ■addition is 0.
05% or more, usually 0.1% or more, coarse carbonitrides are generated in the core, resulting in poor toughness of the core, and there are also economical problems. '? In the case of the above-mentioned SACM645 containing a large amount of AA', in addition to the above-mentioned problem of crack generation during straightening, the hardness gradient from the surface to the core becomes too steep after soft-nitriding treatment, making it difficult to handle under high loads. In gears, bearings, etc. used in steel, peeling occurs easily near the boundary between the hardened surface part and the core part, and there are also problems in terms of fatigue strength, pitting resistance, and spalling resistance. This steep hardness gradient is due to the fact that the surface hardness is extremely high at HV800 to 1100 due to the high content of Cr and Al, whereas the effective hardening depth (distance from the surface corresponding to Vickers hardness HV = 400) This is due to the fact that it is as small as about 0.15n at most.
よって、本発明の目的は、適度の表面硬さと硬化深さの
確保により耐摩耗性、疲労強度および耐ピツチング性に
すぐれていると共に、硬化層の延性の向上により軟窒化
処理後の冷間矯正加工時にクラックが発生しにくく、シ
かも芯部の靭性も良好な軟窒化用鋼を提供することであ
る。Therefore, the object of the present invention is to provide excellent wear resistance, fatigue strength, and pitting resistance by ensuring appropriate surface hardness and hardening depth, and to improve cold straightening after soft nitriding by improving the ductility of the hardened layer. To provide a steel for nitrocarburizing that is less likely to generate cracks during processing and has good toughness in both the core and the core.
本発明者らは、上記の目的で軟窒化用鋼の研究を続けた
結果、CrおよびA/の添加量を従来の軟窒化用銅にお
ける水準より大幅に制限すると、適度の表面硬さくHv
500〜600)が得られると同時に、硬化表面層の延
性は著しく向上するとの知見を得た。これは、Crおよ
びA/が軟窒化処理中に表面層に微細なCr炭窒化物お
よびAl窒化物を析出させるため表面層の著しい硬さ向
上をもたらす一方で、最表層にはCr窒化物やMN化物
を含む非常に脆い化合物層が生成して、硬化表面層の延
性を甚しく劣化させるため、これらの元素の量の制限が
上記の結果を生むものと考えられる。一方。As a result of continuing research on steel for soft nitriding for the above purpose, the present inventors found that when the addition amount of Cr and A/ is significantly limited compared to the level of conventional copper for soft nitriding, moderate surface hardness Hv
500 to 600), and at the same time, the ductility of the hardened surface layer was found to be significantly improved. This is because Cr and A precipitate fine Cr carbonitrides and Al nitrides in the surface layer during the soft-nitriding process, resulting in a significant hardness improvement of the surface layer, while Cr nitrides and Al nitrides are present in the outermost layer. It is believed that limiting the amount of these elements produces the above results because a very brittle compound layer containing MN oxides forms, severely degrading the ductility of the hardened surface layer. on the other hand.
Cr添加量の制限によ多生ずる硬化深さの減少は、硬化
深さを大きくするのに有効なVを添加することにより補
うことができ、硬化深さの向上には従来よシ少量の0.
05チ未満の量でも十分に有効で、このような量である
と0゜05%以上のVを添加した時に認められる芯部靭
性の急激な低下が避けられることも判明した。■炭窒化
物は最表面層より少し内部に入った部位に多く析出する
ため、表面硬さはめまシ高くならない。そのため、V添
力11によシ硬化表面層の延性をほとんど劣化させずに
、大きな硬化深さを得ることができる。これにより、表
面からの硬さ勾配が緩やかになシ、疲労強度、耐ピツチ
ング性も改善される。The reduction in hardening depth that often occurs due to the limitation of the amount of Cr added can be compensated for by adding V, which is effective in increasing the hardening depth. ..
It has also been found that an amount of less than 0.05% V is sufficiently effective, and that such an amount can avoid the rapid decrease in core toughness that is observed when V is added in an amount of 0.05% or more. ■Since carbonitrides precipitate in large quantities in areas slightly inside the outermost layer, the surface hardness does not increase significantly. Therefore, a large hardening depth can be obtained with the V addition force 11 hardly deteriorating the ductility of the hardened surface layer. As a result, the hardness gradient from the surface becomes gentle, and fatigue strength and pitting resistance are also improved.
また、特に高い疲労強度が要求される場合には、Bまた
はMOを添加することによって焼入性を高め、軟窒化処
理前の加工(、熱間圧延、熱間鍛造)あるいは熱処理(
焼ならしなど)後の組織を微細パーライトあるいはイイ
ナイトにし、芯部硬さを高めろことによって、疲労強度
の一層の向上を図れることも見出された。In addition, when particularly high fatigue strength is required, hardenability can be increased by adding B or MO, and processing (hot rolling, hot forging) or heat treatment (
It has also been found that fatigue strength can be further improved by changing the structure after normalizing (such as normalizing) to fine pearlite or iinite and increasing the core hardness.
さらに、軟窒化処理前に切削を施す場合には、切削性向
上に有効なs、pbまたけCaを添加するのが好ましい
。Further, when cutting is performed before soft-nitriding treatment, it is preferable to add Ca across s and pb, which is effective for improving machinability.
ここに、本発明は、
C: 0.15〜0.50%! si: 1.20%
以下。Here, in the present invention, C: 0.15 to 0.50%! si: 1.20%
below.
Mn : OJO〜1.30%、 Cr : 0.2
0%未満。Mn: OJO~1.30%, Cr: 0.2
Less than 0%.
V : 0.02%以上、 0.05%未満。V: 0.02% or more, less than 0.05%.
sol、AJ : 0.10%以下、 N : 0.0
06〜0.015%。sol, AJ: 0.10% or less, N: 0.0
06-0.015%.
さらに必要により、B : 0.0005〜0.005
0%およびMo 70.05〜0.25% の1種もし
くは2種、ならびに/またはS : 0.04〜0.1
3%。Furthermore, if necessary, B: 0.0005 to 0.005
0% and one or two of Mo 70.05-0.25% and/or S: 0.04-0.1
3%.
Pb : 0.03〜0.35%および(:a : 0
.0010〜0.0100%のうちの1種もしくけ2種
以上を含有し、
残部1i’eと不可避的不純物からなる軟窒化用鋼にあ
る。Pb: 0.03-0.35% and (:a: 0
.. 0010 to 0.0100%, and the remainder is 1i'e and unavoidable impurities.
本発明に係る鋼の組成を上述の範囲内に限定した理由に
ついて次に説明する。The reason why the composition of the steel according to the present invention is limited within the above range will be explained next.
CTCは強度確保のための基本成分であり、芯部強度確
保のためには最低0.15%必要である。しかし、’
0.50%を越えると芯部の延性、靭性が低下し、切削
性、冷間加工性が低下すると共に、軟窒化後の表面硬さ
、硬化深さが急激に減少し始める。したがって、本発明
におけるC量は下限を0.15%、上限を0.50%と
した。CTC is a basic component for ensuring strength, and a minimum of 0.15% is required to ensure core strength. but,'
When it exceeds 0.50%, the ductility and toughness of the core portion decrease, machinability and cold workability decrease, and the surface hardness and hardening depth after nitrocarburizing begin to decrease rapidly. Therefore, the lower limit of the amount of C in the present invention is 0.15% and the upper limit is 0.50%.
Si : Siは通常、脱酸剤として添加されるが、固
溶強化および焼戻し軟化抵抗の向上にも有効で、結果と
して軟窒化処理後の芯部硬さを高める。したがって、添
加量は多いほどよいが、1.20%を越えると軟窒化特
性の劣化が始まる。特に表面硬さの低下が著しくなると
ともに、冷間加工性や溶接性にも害を及はすので、上限
を1.20%とした。Si: Si is usually added as a deoxidizing agent, but it is also effective in solid solution strengthening and improving resistance to temper softening, and as a result increases the hardness of the core after nitrocarburizing. Therefore, the higher the amount added, the better, but if it exceeds 1.20%, the soft-nitriding properties begin to deteriorate. In particular, the surface hardness decreases markedly, and it also harms cold workability and weldability, so the upper limit was set at 1.20%.
Mn : Mnは製鋼時の脱酸剤として不可欠であると
共に、芯部の強度・靭性の向上にも有効であって、軟窒
化処理品の性能確保のために最低0.60%は必要であ
る。しかし、1.30%を越えると切削性が著しく低下
し始めるので、下限を0.60%、上限を1.30%と
した。Mn: Mn is essential as a deoxidizing agent during steel manufacturing, and is also effective in improving the strength and toughness of the core, and a minimum content of 0.60% is required to ensure the performance of soft-nitrided products. . However, if it exceeds 1.30%, the machinability begins to deteriorate significantly, so the lower limit was set to 0.60% and the upper limit was set to 1.30%.
Cr : Crは軟窒化による侵入Nと結合して表面硬
さを高め、かつ硬化深さを大きくする極めて有効な元素
である。したがって、耐摩耗性と疲労強度を向上させる
には多量に添加することが望ましいが、0.20%以上
になると表面硬化層の延性が急激に劣化し始める。その
ため、軟窒化処理時に発生した熱処理歪を除去するため
に通常行なわれる冷間矯正加工時に、加工に伴う弾性変
形および塑性変形によって表面にクラックが発生しやす
くなる。以上の理由からCrtitは0.20%未満と
した。Cr: Cr is an extremely effective element that combines with N intruded by nitrocarburizing to increase surface hardness and hardening depth. Therefore, it is desirable to add a large amount to improve wear resistance and fatigue strength, but if it exceeds 0.20%, the ductility of the hardened surface layer begins to deteriorate rapidly. Therefore, during cold straightening, which is usually performed to remove heat treatment strain generated during nitrocarburizing, cracks are likely to occur on the surface due to elastic deformation and plastic deformation accompanying the processing. For the above reasons, Crtit was set to less than 0.20%.
■:Vは軟窒化による侵入Nおよび侵入Cと結合してf
fi flllなバナジウム炭窒化物を析出することに
より、表面硬さおよび表面深さを向上させる。特に、V
#′iCrに比して、前述したように、表面硬さの上
昇に対する寄与は比較的小さく、硬化深さの増加に対す
る寄与が大きいため、疲労強度の向上効果が大きい割に
は、硬化表面層の延性の低下は小さい。上記の硬化は微
量のV添加により発揮されるとはいえ、少なくとも0.
02%の量は必要である。また、0.05%未満である
限り、芯部の靭性はほとんど変化しないが、0.05%
以上になると、含有Nと結合して芯部に粗大な■窒化物
75;析出し、芯部靭性が急激に劣化しはじめるので、
0.02%以上、0.05%未満の範囲とした。■: V combines with intruded N and intruded C due to soft nitriding, and f
Surface hardness and surface depth are improved by precipitating vanadium carbonitride. In particular, V
#' Compared to iCr, as mentioned above, the contribution to the increase in surface hardness is relatively small, and the contribution to increase in hardening depth is large, so although the effect of improving fatigue strength is large, the hardened surface layer The decrease in ductility is small. Although the above hardening is achieved by adding a small amount of V, at least 0.
An amount of 0.02% is necessary. In addition, as long as it is less than 0.05%, the toughness of the core hardly changes, but 0.05%
If the temperature exceeds this level, coarse nitrides (75) will combine with the N content and precipitate in the core, and the toughness of the core will begin to deteriorate rapidly.
The range was 0.02% or more and less than 0.05%.
sol、Al: AlもCrと同様に侵入Nと結合して
表面硬さを高めるのに有効な元素である。特にVとの複
合汐加では■とAlの交互作用が生じ、有効硬化深さを
増大させる効果が助長される。すなわち、Al による
適度な表面硬さ向上作用と、■による硬化深さ向上作用
が重畳し、硬化深さがより一層増加する。しかし、0.
10%を越えると、硬化深さはむしろ低下しはじめると
共に、硬化表面層の延性も急激に劣化し、矯正加工時に
表面にクラックが生じやすくなるので、上限を0.10
%とした。sol, Al: Like Cr, Al is also an element effective in bonding with intruding N to increase surface hardness. In particular, when combined with V, an interaction between ■ and Al occurs, promoting the effect of increasing the effective hardening depth. That is, the moderate surface hardness improving effect of Al and the hardening depth improving effect of (2) are superimposed, and the hardening depth is further increased. However, 0.
If it exceeds 10%, the hardening depth will actually begin to decrease, and the ductility of the hardened surface layer will also rapidly deteriorate, making it easier for cracks to occur on the surface during straightening, so the upper limit should be set at 0.10%.
%.
N:Nは結晶粒度を微細化させ、それにより芯部の靭性
な向上させる。このためには0.006%以上必要であ
るが、0.015%を越えると、芯部における■窒化物
の生成が顕著になり、逆に芯部の靭性が劣化しはじめる
ので、下限を0.006%、上限を0.015%とした
。N: N refines the grain size, thereby improving the toughness of the core. For this purpose, 0.006% or more is required, but if it exceeds 0.015%, the formation of nitrides in the core will become noticeable, and the toughness of the core will begin to deteriorate, so the lower limit should be set to 0. .006%, with an upper limit of 0.015%.
tlBを重量添加すると焼入性が向上するため、軟窒化
処理前の加工(熱間圧延、熱間鍛造)あるいけ熱処理(
焼ならし等)後の硬さが大きくなる。Adding tlB by weight improves hardenability, so processing (hot rolling, hot forging) or heat treatment (
The hardness increases after normalizing, etc.).
したがって、これに軟窒化処理を施すと、結果として芯
部硬さが向上するので、疲労強度が向上する。そのため
、Bの添加は特に高い疲労弛度が要求される場合に有効
である。Bを添加する場合、上記の向上を得るには少な
くとも0.0005% の量が必要であるが、0.00
50% を越えるとその効果が飽和しはじめるので、下
限を0.0005%、上限を0.0050%とした。Therefore, when this is subjected to nitrocarburizing treatment, the core hardness is improved as a result, and the fatigue strength is improved. Therefore, the addition of B is effective when particularly high fatigue relaxation is required. When adding B, an amount of at least 0.0005% is required to obtain the above improvement, but 0.00% is required.
If it exceeds 50%, the effect begins to be saturated, so the lower limit was set at 0.0005% and the upper limit was set at 0.0050%.
Mo : MoもBと同様に焼入性を向上させ、軟窒化
処理前の熱間加工あるいは熱処理後の硬さを大きくシ、
疲労強度の一層の向上に有効である。このためには、M
Oを添加する場合、少なくとも0.05%の量は必要で
あるが、0.25%を越えて添加すると焼入性が上がり
すぎて切削性が劣化すると共に、経済的にも不利である
ので、下限を0.05%、上限を0.25%とした。Mo: Like B, Mo also improves hardenability, greatly reduces the hardness during hot working before nitrocarburizing or after heat treatment.
This is effective in further improving fatigue strength. For this, M
When adding O, it is necessary to add at least 0.05%, but if it is added in excess of 0.25%, the hardenability will increase too much, the machinability will deteriorate, and it is also economically disadvantageous. , the lower limit was set to 0.05%, and the upper limit was set to 0.25%.
なお、BとMoはともに表面硬さに対してdPlとんと
影響しない。また、疲労強度の要求水準が特に高くない
場合には、BとMOを添加しなくてもよい。It should be noted that neither B nor Mo has much influence on the surface hardness than dPl. Further, if the required level of fatigue strength is not particularly high, B and MO may not be added.
S、 Pb、 Ca :これらの成分は、軟窒化処理前
に切削を施す場合の切削性向上に有効である。軟窒化処
理前に深穴穿孔、重切削、高速切削などが施される場合
には、切削性が要求される度合に応じて、これらの元素
の1種又は2@以上を含有させることができる。これら
の元素は硬化特性に対しては影響を及ぼさない。S, Pb, Ca: These components are effective in improving machinability when cutting is performed before soft-nitriding treatment. When deep hole drilling, heavy cutting, high-speed cutting, etc. are performed before soft-nitriding treatment, one or more of these elements can be included depending on the degree of machinability required. . These elements have no effect on the hardening properties.
構造用鋼の切削性を高めるのに必要最少限の添加量は、
S : 0.04%、 Pb ; 0.03%、 Ca
: 0.0010% ”C” アルo 4 ft S
h o、 13%、 Pb Vio、35%を越え
ると強度・靭性の低下が甚しくなり、一方ca は溶
製上0.0100%を越えて添加するのは困難であるの
で、Sについては下限を0.04%、上限を0.13%
、1〕bについては下限を0.03%、上限を0.35
%、CaKついては下限を0.0010%、上限を0.
0100%とした。The minimum amount added to improve the machinability of structural steel is:
S: 0.04%, Pb; 0.03%, Ca
: 0.0010% “C” Aro 4ft S
If it exceeds 13% for H o, 35% for Pb Vio, the strength and toughness will deteriorate significantly, while it is difficult to add more than 0.0100% for ca in melting, so for S, the lower limit is set. 0.04%, upper limit 0.13%
, 1] For b, the lower limit is 0.03% and the upper limit is 0.35
%, and for CaK, the lower limit is 0.0010% and the upper limit is 0.
It was set to 0100%.
次に本発明を実施例によって説明する。Next, the present invention will be explained by examples.
実施例
第1表に示す組成を有する鋼を高周波溶解炉により大気
溶解し、鋼塊にしたのち、1250℃に加熱し、直径3
0龍の丸棒に熱間鍛造し、鍛造ままの材料およびさらに
950°Cで1時間の焼ならしをした材料のそれぞれに
ついて、JIS 3号シャルピー試験片(直径25im
X厚さ10問)を作成した。これら一連の試験片に対し
、アンモニアガス+ RXガス(1: 1)の混合ガス
中において570℃で4時間ガス軟窒化処理を行なった
。得られた軟窒化処理試験片について、室温(20℃)
でシャルピー衝撃試験を行なうと共に、試験片の表面硬
さく表面から0.025 mmの位置のビッカース硬さ
)および硬化深さくビッカース硬さHv=400に対応
する表面からの距離)を測定した。結果を第1表に併記
する。Example Steel having the composition shown in Table 1 was melted in the atmosphere in a high-frequency melting furnace to form a steel ingot, which was then heated to 1250°C and made into a steel ingot with a diameter of 3
JIS No. 3 Charpy test pieces (25 mm diameter
10 questions) were created. These series of test pieces were subjected to gas soft nitriding treatment at 570° C. for 4 hours in a mixed gas of ammonia gas + RX gas (1:1). The obtained soft-nitrided test piece was heated to room temperature (20°C).
A Charpy impact test was conducted on the specimen, and the surface hardness (Vickers hardness at a position 0.025 mm from the surface) and hardening depth (distance from the surface corresponding to Vickers hardness Hv = 400) were measured. The results are also listed in Table 1.
また、一部の銅の焼ならし相については、旋削により直
径25u1長さ300 mmの丸棒を作成し、上記条件
下で軟窒化処理を施した後、第1図に示すような要領で
静的は試験を行ない、硬化表面にクランクが生じたとき
のたわみ景を測定し、結果を同じく第1表に併記しブと
。Regarding the normalized phase of some copper, a round bar with a diameter of 25μ and a length of 300 mm was created by turning, and after being subjected to soft nitriding treatment under the above conditions, it was processed as shown in Figure 1. We conducted a static test and measured the deflection when a crank occurs on the hardened surface, and the results are also listed in Table 1.
鋼種N1〜17は本発明に係る鋼であり、鋼種1’h1
8〜20はCr含有量の点で、鋼種1’%21〜23は
■含有量の点でまた鋼種嵐24はBOl、AA!の点で
それぞれ本発明の範囲外である比較鋼であり、残りの鋼
種嵐25,26および27はそれぞれJIS −SCM
435. JIS −SACM645およびJIS
−S 4 QCに相当する従来鋼である。Steel types N1 to 17 are steels according to the present invention, and steel types 1'h1
8 to 20 in terms of Cr content, steel grade 1'% 21 to 23 in terms of ■ content, and steel grade Arashi 24 in terms of BOl, AA! These are comparative steels that are outside the scope of the present invention, and the remaining steel grades Arashi 25, 26, and 27 are JIS-SCM
435. JIS-SACM645 and JIS
- It is a conventional steel corresponding to S 4 QC.
第1表の結果かられかるように、本発明鋼はいずれも表
面硬さがHV500〜600m囲内と適度であり、しか
も硬化深さは0.15m1以上あり、従来鋼SCM 4
35やSACM 645よりも優れている。As can be seen from the results in Table 1, all of the steels of the present invention have a moderate surface hardness within the HV range of 500 to 600 m, and a hardening depth of 0.15 m1 or more, compared to the conventional steel SCM 4.
35 and SACM 645.
また衝撃値はいずれも4.7ユ・m/詞以上ある。さら
に静的向は試験を行なった鋼種Nll〜9のクラック発
生時のたわみ鰍はすべて3.5間以上になっている。In addition, the impact value of each song is over 4.7 Yu·m/word. Furthermore, in the static direction, the deflection at the time of cracking of the steel types N11 to 9 tested was all 3.5 or more.
これに対して、比較鋼の鋼種lV!1118〜20は硬
化深さと衝撃値は十分であるが、表面硬さが600以上
あり、クランク発生時のたわみ量が2・0朋以下と小さ
く、表面の延性に問題がある。また、鋼種歯21は硬化
深さが小さく、遅22〜24け衝撃値が2.4ユ・m1
cr&以下と小さくなっている。On the other hand, the comparative steel type lV! 1118-20 has sufficient hardening depth and impact value, but has a surface hardness of 600 or more, a small amount of deflection at the time of cranking of 2.0 or less, and has a problem in surface ductility. In addition, the steel teeth 21 have a small hardening depth and a slow impact value of 2.4 U·m1.
It is smaller than cr&.
一方、従来鋼である鋼種隨25,27は硬化深さが小さ
く、さらにN[127は表面硬さがHV442〜445
と不十分である。逆に、鋼種1’426は表面硬さがH
V990〜995−と非常に高く、クラック発生時のた
わみ量が0.2間と極端に小さくなっている。On the other hand, conventional steel grades 25 and 27 have a small hardening depth, and N[127 has a surface hardness of HV442 to 445.
and insufficient. On the other hand, steel type 1'426 has a surface hardness of H.
V is very high at 990 to 995-, and the amount of deflection when cracking occurs is extremely small at between 0.2.
次に、■含有、量以外は実質的に同一組成と見なせる鋼
種Nct21,3,4,22.23の焼ならし材につい
てのシャルピー衝撃値を■含有量(に対してプロットし
て、第2図のグラフを得た。このグラフから明らかなよ
うに、■含有量が0.05%以上になると衝撃値が急激
に低下し、靭性の急激な劣化が生ずることがわかる。Next, the Charpy impact values of normalized steels of steel types Nct21, 3, 4, and 22.23, which can be considered to have substantially the same composition except for the content and amount, are plotted against the content (), and the second The graph shown in the figure was obtained.As is clear from this graph, when the content (1) exceeds 0.05%, the impact value rapidly decreases and the toughness rapidly deteriorates.
第3図は、Cr含有量以外は実質的に同一組成とみなせ
る鋼種Il!15,4,20,19.18の焼ならし材
についての軟窒化処理後の静曲げ試験の結果(表面クラ
ック発生時のたわみ量)をCr含有量に対してプロット
したグラフである。このグラフから明らかなように、C
r含有量が0.2%を越えると、たわみ量は急激に低下
しはじめる。すなわち、硬化層の延性が急激に小さくな
る。Figure 3 shows steel type Il!, which can be considered to have substantially the same composition except for the Cr content. It is a graph in which the results of static bending tests (the amount of deflection when surface cracks occur) after soft-nitriding treatment for normalized materials Nos. 15, 4, 20, and 19.18 are plotted against the Cr content. As is clear from this graph, C
When the r content exceeds 0.2%, the amount of deflection begins to decrease rapidly. That is, the ductility of the hardened layer decreases rapidly.
第1図は、静曲げ試験の要領を模式的に示す図第2図は
、シャルピー衝撃試験における衝撃値と■含有量との関
係を示すグラフ;および第3図は、静曲げ試験における
クランク発生時のたオっみ量とCr含有量との関係を示
すグラフである。
出願人代理人 弁理士 広瀬章−
襄/図
井
瓜2図
V蜘量 (Φ童2)Figure 1 is a graph showing the outline of the static bending test; Figure 2 is a graph showing the relationship between the impact value and content in the Charpy impact test; and Figure 3 is a graph showing the relationship between the impact value and content in the static bending test. It is a graph showing the relationship between the amount of slack and Cr content over time. Applicant's representative Patent attorney Akira Hirose-Yo/Tui Kaori 2 Figure V Kumanyo (ΦDou 2)
Claims (1)
Si 二 1,20 % 以下。 Mn : 0.60〜1.30%、 Cr : 0.
20%未満。 V : 0.02%以上、0.05%未満。 sol、AJ : 0.10%以下、N二0.006〜
0.015%。 残部Feと不可避的不純物からなる軟窒化用鋼。 (2) C: 0.15〜0.50%、 St :
1.20%以下。 Mn : 0.60〜1.30%、 Cr : 0.
20%未満。 V : 0.02%以上、 0.05%未満。 sol、A6 : 0.10%以下、 N : 0.0
06〜0.015%。 さらにB : 0.0005〜0.0050%およびM
o:0.05〜0.25%の1種または2種を含有し、
残部Feと不可避的不純物からなる軟窒化用鋼。 (3) C: 0.15〜0.50%、 Si :
1.20%以下。 Mn : 0.60〜1.30%、 Cr : 0.
20%未満。 V : 0.02%以上、 0.05%未満。 gol、AJl! : 0.10%以下、 N :
0.006〜0.015%。 さらにS : 0.04〜0.13%、FD:す、LJ
、j〜0.35%およびCa:0.0010〜0.01
00%のうちの1種また/′i2種以上を含有し、残部
Feと不可避的不純物からなる軟窒化用鋼。 (4) C: 0.15〜0.50%、 Si :
1.20%以下。 Mn : 0.60〜1.30%、 Cr : 0.
20%未満。 V : 0.02%以上、 0.05%未満。 sol、AJ : 0.10%以下、 N : 0.
006〜0.015%。 さらにB + 0.0005〜0.0050%およびM
O=0.05〜0.25%の1種または2種と、S:0
.04〜0.13%、 Pb : 0.03〜0.35
%およびCa : 0.0010〜0.0100%のう
ちの1種または2種以上とを含有し、 残部Feと不可避的不純物からなる軟窒化用鋼。[Claims] (1 N C: 0.15 to 0.50 9 et al.
Si2 1.20% or less. Mn: 0.60-1.30%, Cr: 0.
Less than 20%. V: 0.02% or more, less than 0.05%. sol, AJ: 0.10% or less, N2 0.006~
0.015%. A steel for soft nitriding consisting of the remainder Fe and unavoidable impurities. (2) C: 0.15-0.50%, St:
1.20% or less. Mn: 0.60-1.30%, Cr: 0.
Less than 20%. V: 0.02% or more, less than 0.05%. sol, A6: 0.10% or less, N: 0.0
06-0.015%. Furthermore, B: 0.0005-0.0050% and M
o: Contains 0.05 to 0.25% of one or two types,
A steel for soft nitriding consisting of the remainder Fe and unavoidable impurities. (3) C: 0.15-0.50%, Si:
1.20% or less. Mn: 0.60-1.30%, Cr: 0.
Less than 20%. V: 0.02% or more, less than 0.05%. gol, AJl! : 0.10% or less, N:
0.006-0.015%. Furthermore, S: 0.04-0.13%, FD: S, LJ
, j ~ 0.35% and Ca: 0.0010 ~ 0.01
A steel for soft nitriding, which contains one or more of the following: (4) C: 0.15-0.50%, Si:
1.20% or less. Mn: 0.60-1.30%, Cr: 0.
Less than 20%. V: 0.02% or more, less than 0.05%. sol, AJ: 0.10% or less, N: 0.
006-0.015%. Additionally B + 0.0005-0.0050% and M
One or two types of O = 0.05 to 0.25% and S: 0
.. 04-0.13%, Pb: 0.03-0.35
% and Ca: 0.0010 to 0.0100%, and the remainder is Fe and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12303382A JPS5916949A (en) | 1982-07-16 | 1982-07-16 | Soft-nitriding steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12303382A JPS5916949A (en) | 1982-07-16 | 1982-07-16 | Soft-nitriding steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5916949A true JPS5916949A (en) | 1984-01-28 |
Family
ID=14850545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12303382A Pending JPS5916949A (en) | 1982-07-16 | 1982-07-16 | Soft-nitriding steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5916949A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61170543A (en) * | 1985-01-23 | 1986-08-01 | Sumitomo Metal Ind Ltd | Wear resisting steel for nitriding |
JPS63216950A (en) * | 1987-03-06 | 1988-09-09 | Mitsubishi Steel Mfg Co Ltd | Low alloy steel for soft nitriding |
JPS644457A (en) * | 1987-06-25 | 1989-01-09 | Daido Steel Co Ltd | Low alloy tufftrided steel |
JPH01177338A (en) * | 1987-12-30 | 1989-07-13 | Aichi Steel Works Ltd | Non-heat treated steel for nitriding |
US4930909A (en) * | 1988-07-11 | 1990-06-05 | Nippon Seiko Kabushiki Kaisha | Rolling bearing |
JPH0565594A (en) * | 1991-09-09 | 1993-03-19 | Sanyo Special Steel Co Ltd | Soft-nitriding steel |
US5985044A (en) * | 1994-12-15 | 1999-11-16 | Sumitomo Metal Industries, Ltd. | Forged, non-heat treated, nitrided steel parts and process of making |
EP1098012A1 (en) * | 1999-11-05 | 2001-05-09 | Sumitomo Metals (Kokura), Ltd. | Non-heat treated, soft-nitrided steel parts |
JP2010013729A (en) * | 2008-06-06 | 2010-01-21 | Sumitomo Metal Ind Ltd | Steel for nitrocarburizing use, steel product for nitrocarburizing use and crankshaft |
-
1982
- 1982-07-16 JP JP12303382A patent/JPS5916949A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61170543A (en) * | 1985-01-23 | 1986-08-01 | Sumitomo Metal Ind Ltd | Wear resisting steel for nitriding |
JPH0471987B2 (en) * | 1985-01-23 | 1992-11-17 | Sumitomo Metal Ind | |
JPS63216950A (en) * | 1987-03-06 | 1988-09-09 | Mitsubishi Steel Mfg Co Ltd | Low alloy steel for soft nitriding |
JPS644457A (en) * | 1987-06-25 | 1989-01-09 | Daido Steel Co Ltd | Low alloy tufftrided steel |
JPH01177338A (en) * | 1987-12-30 | 1989-07-13 | Aichi Steel Works Ltd | Non-heat treated steel for nitriding |
US4930909A (en) * | 1988-07-11 | 1990-06-05 | Nippon Seiko Kabushiki Kaisha | Rolling bearing |
JPH0565594A (en) * | 1991-09-09 | 1993-03-19 | Sanyo Special Steel Co Ltd | Soft-nitriding steel |
US5985044A (en) * | 1994-12-15 | 1999-11-16 | Sumitomo Metal Industries, Ltd. | Forged, non-heat treated, nitrided steel parts and process of making |
EP1098012A1 (en) * | 1999-11-05 | 2001-05-09 | Sumitomo Metals (Kokura), Ltd. | Non-heat treated, soft-nitrided steel parts |
US6391124B1 (en) | 1999-11-05 | 2002-05-21 | Sumitomo Metals (Kokura) Ltd. | Non-heat treated, soft-nitrided steel parts |
JP2010013729A (en) * | 2008-06-06 | 2010-01-21 | Sumitomo Metal Ind Ltd | Steel for nitrocarburizing use, steel product for nitrocarburizing use and crankshaft |
JP4609585B2 (en) * | 2008-06-06 | 2011-01-12 | 住友金属工業株式会社 | Soft nitriding steel, soft nitriding steel and crankshaft |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3524229B2 (en) | High toughness case hardened steel machine parts and their manufacturing method | |
JP5207805B2 (en) | Steel parts with excellent bending fatigue strength and manufacturing method thereof | |
JPH0953149A (en) | Case hardening steel with high strength and high toughness | |
JPH0421757A (en) | High surface pressure gear | |
JP3405468B2 (en) | Manufacturing method of mechanical structural parts | |
JPS5916949A (en) | Soft-nitriding steel | |
JP3381738B2 (en) | Manufacturing method of mechanical structural parts with excellent mechanical strength | |
JPS6033338A (en) | Steel to be carburized | |
JPS5916948A (en) | Soft-nitriding steel | |
JP4010023B2 (en) | Soft nitrided non-tempered crankshaft and manufacturing method thereof | |
JP4737601B2 (en) | High temperature nitriding steel | |
JPH07286257A (en) | Production of nitriding steel member excellent in cold forgeability and fatigue strength | |
JPH10147814A (en) | Production of case hardening steel product small in heat treating strain | |
JPH0447023B2 (en) | ||
JPH04371547A (en) | Production of high strength and high toughness steel | |
JP3340016B2 (en) | Structural steel for soft nitriding | |
JP2623124B2 (en) | Steel material for nitriding | |
JPH0254416B2 (en) | ||
JP2706940B2 (en) | Manufacturing method of non-heat treated steel for nitriding | |
JPS61217553A (en) | Case hardening boron steel producing small strain by heat treatment | |
JPS62205245A (en) | Non-heattreated steel for hot forging | |
JPH0227408B2 (en) | ||
JPH0559432A (en) | Production of carburized gear excellent in fatigue strength | |
JP7310723B2 (en) | Steel part and its manufacturing method | |
JPH05279794A (en) | Soft-nitriding steel |