JPS59168835A - Apparatus for measuring muscle hardness - Google Patents
Apparatus for measuring muscle hardnessInfo
- Publication number
- JPS59168835A JPS59168835A JP4334383A JP4334383A JPS59168835A JP S59168835 A JPS59168835 A JP S59168835A JP 4334383 A JP4334383 A JP 4334383A JP 4334383 A JP4334383 A JP 4334383A JP S59168835 A JPS59168835 A JP S59168835A
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- measured
- detection
- living body
- detects
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 〔技術分野〕 不発明は筋肉硬さ測定装置に関する。[Detailed description of the invention] 〔Technical field〕 The invention relates to a muscle stiffness measuring device.
筋肉の硬さ測定については応力−ひずみ曲線を求める硬
さ計、連続振動刺激を与えて硬式を測定する筋コシプラ
イアンス計(塚原進:筋コンブライアシス計;医用電子
と生体工学、土−凸。For measuring muscle stiffness, there is a hardness meter that measures the stress-strain curve, and a muscle stiffness meter that measures hardness by applying continuous vibration stimulation (Susumu Tsukahara: muscle combiasis meter; medical electronics and bioengineering, soil-convex). .
57159(1963))寺があるが、筋肉のような生
体組織の硬度ということなると測定にさ筐ざまな困難な
問題がある。即ち生体組、1哉は生体から切り離されて
しまっては本床の生体と異なるものとなるため、生体そ
の′fまの費で測定することが心安である。しかしなが
ら生体は物置代謝、血液循環といったものに支えられて
おりさらに面倒なことには生体が他の工業的生産物と異
なり単一な物質ではなく、複雑なる複合材料によって作
られたものであるということである。従って状況によっ
ていつも正確に−Iであυえないし、個体差誼測足部位
による差などがある。これらの困#ζをふまえてもなお
生体の<=Jかしら硬きというものを定量的にとらえる
ことが必要である。57159 (1963)), but there are many difficult problems in measuring the hardness of biological tissues such as muscles. In other words, if the living body is separated from the living body, it will be different from the actual living body, so it is safe to measure at the cost of the living body. However, living organisms are supported by things such as storage metabolism and blood circulation, and what is more complicated is that unlike other industrial products, living organisms are not made of a single substance, but are made of complex composite materials. That's true. Therefore, -I cannot always be accurately determined depending on the situation, and there are individual differences depending on the location of the foot measurement. Even with these problems in mind, it is still necessary to quantitatively understand the hardness of living organisms.
第1図は従来例の硬さ測定装置である応カー歪+計を示
しておシ、図中fi+は生体m織であり、(2)は変位
計、(3)は圧力センサ、(4)は保持カバー、(6)
は押付は用治具である。この装置を用いて得られた曲線
が第2図でるる。■は変位軸、Uは応力軸、0は押付け
た時の曲線、■は離す時のしステリシスを有するもどり
曲線である。しかしながら個体差、測定部位による差な
どがあって正確な筋肉の硬さを測定できなかった。Fig. 1 shows a stress strain meter which is a conventional hardness measuring device. In the figure, fi+ is a biological fabric, (2) is a displacement meter, (3) is a pressure sensor, and (4) is a displacement meter. ) is the retaining cover, (6)
is a jig for pressing. The curve obtained using this device is shown in Figure 2. (2) is the displacement axis, U is the stress axis, 0 is the curve when pressed, and (2) is the return curve with steresis when released. However, due to individual differences and differences depending on the measurement site, it was not possible to accurately measure muscle stiffness.
本発明は呼吸による動きに代表されるような体動による
測定の誤差、ばらつきを少なくし、筋肉の硬さを正確に
611j泥できる筋肉硬さ測定装置を提供するにある。An object of the present invention is to provide a muscle stiffness measuring device that can accurately measure muscle stiffness by reducing measurement errors and variations caused by body movements such as those caused by breathing.
第°5図は本発明の一実施例の回路構成図であって、図
中+6) l’j:加速度センサ等の振動検出センサ、
(7)は該振動検出センサ(6)の振動検出信号よシ時
間分析や周波数分析−よる振動t−ドを検出する検出部
、(8)は予め時間分析や周波数分析にょって各種硬式
に応じた振動上−ドを内部記憶手段に記憶しておいて、
検出部(7)で慣用した振動七−ドと記′憶しである各
振動上−ドとを比較して一致せる振動t−ドを判定し、
当該熾動七−ドに対応した既知の硬さを表示部(9)に
よって硬度として数字で、或いはパークラフ等の適宜表
示方式によって表示するのである。第4図は一実施例の
訓速度セシサからなる振動検出センff +6+と、生
体(1)の被6111だ部位に単発衝撃を与えるゴム等
の弾性体からなる球体(lO)との関係を示しており、
球体(1o)を打ち下ろすと、生体(1)を通じて単発
iti 4振動がfk動恢検出シサ(6)に伝わり、こ
の振動は電気1g号に変換されるのである。第5図は被
測定部位が人体の肩の僧帽筋の場合における振動検出セ
ンサ(6)の配置例を示している。Figure 5 is a circuit configuration diagram of an embodiment of the present invention, in which +6) l'j: vibration detection sensor such as an acceleration sensor;
(7) is a detection unit that detects vibrations based on the vibration detection signal of the vibration detection sensor (6) by time analysis or frequency analysis; (8) is a detection unit that detects vibrations by time analysis or frequency analysis; Store the corresponding vibration top in the internal storage means,
The detecting section (7) compares the commonly used vibration 7-mode with each memorized vibration 7-mode and determines the vibration t-mode that matches.
The known hardness corresponding to the percussion seventh is displayed as a hardness numerically on the display section (9) or by an appropriate display method such as a percrow. FIG. 4 shows the relationship between a vibration detection sensor ff +6+ consisting of a velocity sensor of one embodiment and a sphere (lO) made of an elastic body such as rubber that applies a single impact to the target part of the living body (1). and
When the sphere (1o) is thrown down, a single iti 4 vibration is transmitted to the fk motion detection scissor (6) through the living body (1), and this vibration is converted into an electric 1g. FIG. 5 shows an example of the arrangement of the vibration detection sensor (6) in the case where the part to be measured is the trapezius muscle of the shoulder of a human body.
さて振動検出センサ(6)で電気信号に変侠された振動
は第0図(a) 、(b)で示すような減衰信号となっ
て、開始時点から各ピークまでの時間をT1. 、 T
2 。Now, the vibration converted into an electric signal by the vibration detection sensor (6) becomes a damped signal as shown in FIGS. 0(a) and (b), and the time from the start point to each peak is T1. , T
2.
T3とすると、被測定部位の硬ちが軟かい程各時間Tl
r T2. T3が長く、例えば第6図(a)のTl
、 T2 、 T3は第61’1(b)の夫々に対応
する時間屓、T≦、Tりより犬さく、この場合第6図(
a)の振動上−ドは被測定部位が軟かいことを示し、第
6図(b)の振動上−ドは被測定部位が硬いことを示し
ている。つまシ谷種の硬式における第0図(a)、(b
)に示すような時間軸波形を予め測定分類してその分類
精米を認識部(8)に記1意しておくのである。そして
検出部(7)では積分手段等の適宜回路で一振動囲始時
点とじ−ク間の時間を測定して振動上−ドを・咲出する
のである。検出部(7)の振動上−ド検出デ〜りは認識
部(8)に読み込まれ、内M1占己憶手段の配憶内容と
を比較きれ、一致する振動t−ドがあるとその振#七−
ドに対応する硬式データが表示部(9)に送られ被測定
部位の硬式が妖示されるのである。Assuming T3, the softer the hardness of the part to be measured, the longer Tl
rT2. T3 is long, for example, Tl in FIG. 6(a)
, T2, and T3 are the time periods corresponding to each of No. 61'1(b), T≦, and T3, respectively. In this case, Fig. 6 (
The vibration top in a) shows that the part to be measured is soft, and the vibration top in FIG. 6(b) shows that the part to be measured is hard. Figures 0 (a) and (b) in the hard format of Tsumashi Tani
) are measured and classified in advance, and the classifications are recorded in the recognition section (8). Then, in the detecting section (7), a suitable circuit such as an integrating means measures the time between start and stop at the start of one vibration cycle, and detects the vibration top. The vibration top detection data of the detection unit (7) is read into the recognition unit (8), which compares it with the stored content of the M1 self-occupying storage means, and if there is a matching vibration top, the vibration is recognized. #7-
The hard type data corresponding to the part to be measured is sent to the display section (9), and the hard type of the part to be measured is displayed.
向、振動検出センtt61の検出信号の周波数を分析テ
ると周波数成分が被測定部位が硬い程高域に移動するた
め、この周波数成分を分析することによって上述と同僚
な硬さ判定が行なえる。第7図(a)は被測定部位が軟
い場合の周波数成分を、同図(b)は被測ボ部位が硬い
場合の周波数成分を夫々示す。When the frequency of the detection signal from the vibration detection center tt61 is analyzed, the harder the part to be measured is, the higher the frequency component moves, so by analyzing this frequency component, it is possible to determine the stiffness as described above. FIG. 7(a) shows frequency components when the part to be measured is soft, and FIG. 7(b) shows frequency components when the part to be measured is hard.
さて上述の実施例では衝撃手段たる球体(1o)と、振
動検出センサ(6)とは別体でβるが、生体(1)を介
する振動(!−検出するため測定誤差が生じる恐れがあ
る。Now, in the above-mentioned embodiment, the sphere (1o) serving as the impact means and the vibration detection sensor (6) are separate parts, but there is a possibility that measurement errors may occur because vibrations (!-) are detected through the living body (1). .
そこで、衝撃手段たる球体(1o)同にカ■速度センサ
(6a)を設け、表面に圧力℃シ+j(’6b)を設け
て構成した振動検出センサ(6)により振すJ七−ドを
検出するのが第8図に示す実施例でめる。この場合、ゴ
ムのような弾性体からなる球体(1o)が第9図に示す
ように生体(1)の僧帽筋のよ′)な被測定部位に打ち
下ろされると・加M度センサ(6a)が衝芙時の加速度
を、圧力tシ+1(6b)が1面電力を検出して、との
恢出信号に基いて検出部(7)が周波数成分又は時間軸
による振!#七−ドを検出するのである。Therefore, the sphere (1o) serving as the impact means is equipped with a speed sensor (6a), and a vibration detection sensor (6) configured by providing a pressure C+j ('6b) on the surface of the sphere (1o) shakes the J7-. Detection is performed in the embodiment shown in FIG. In this case, when a sphere (1o) made of an elastic material such as rubber is lowered onto a part to be measured, such as the trapezius muscle of a living body (1), as shown in FIG. 6a) detects the acceleration at the time of thrust, and the pressure t+1 (6b) detects the surface power.Based on the calculated signals, the detection unit (7) detects the vibration according to the frequency component or the time axis. #7-Code is detected.
この実施例では振動検出センサ(6)を生体(1)に取
付ける必要がないため、測定の手間かはふけ第10図の
ように人体の被測定部位に直接球体1o)を打ち下−ろ
して単元衝撃を与えるだけでよく、使用勝手がよい。In this embodiment, there is no need to attach the vibration detection sensor (6) to the living body (1), so the measurement can be done by dropping the sphere 1o directly onto the part to be measured as shown in Figure 10. It is easy to use, as you only need to apply a single impact.
助検出センサ(6)を構成しても勿論よい。Of course, it is also possible to configure an auxiliary detection sensor (6).
不究明は上述のように単発衝撃を生体の被(lt11屋
部位に加える衝撃手段を備えているので、生体の被測定
部位に単発衝撃を与えることができるものであって、振
動検出セシサ、認識手段によって単発衝撃による振動t
−ドの検出2判定を行なうため、呼吸前で代衣芒れる体
動釦よる誤差、ばらつきがなくなり正しい筋肉の硬式が
測定でさるという゛効果を央する。As mentioned above, the device is equipped with an impact means that applies a single impact to the part of the living body to be measured, so it can apply a single impact to the part of the living body to be measured. Vibration due to single impact by means
- In order to perform the 2nd judgment of detection of the body, the effect of eliminating the error and variation caused by the body movement button that is changed before breathing, and that the correct muscle hardness is measured is achieved.
尚弾性体たる球体に振!#I検出セシサを一体に設ける
ことによって、生体に振動検出セシサを取り付けること
による誤差やばらつきを防ぐことかでさ、また構成が簡
単であるため取扱いも容易となる。Shake it into an elastic sphere! By integrally providing the #I detection sensor, errors and variations caused by attaching the vibration detection sensor to a living body can be prevented, and the structure is simple, making it easy to handle.
凍1図は従来例の概略構成図、第2図は同上によって検
出される応力−ひずみ特性図、第5図は本発り]の一実
施例の回路構成図、第4図、第5図は同上の使用説明図
、第6図(a) 、(b)及び′7A7図(a) 、(
b)は同上が検出、+IIだに用いる振動上−ドの原理
説明用の測定図、第8図は本発明の別の実〃゛山例の球
体の拡大断面図、第9図、第10図は同上の使用説明図
、第11図は本発明の他の実施例の球体の拡大断面図で
あり、(6)は振!1SIJ俟出ヒシサ、(7)は検出
部、(8)は認識部、(10)は球体である。
代理人 弁理士 石 1)艮 七
第1図
112図
口
s3図
第4図
第5図
坪f・
116図
(o) (b)
(0) (b)瀉8図
119図
1ilo図
0
til1図Figure 1 is a schematic configuration diagram of a conventional example, Figure 2 is a stress-strain characteristic diagram detected by the same method, and Figure 5 is a circuit configuration diagram of an embodiment of this invention, Figures 4 and 5. 6(a), (b) and '7A7(a), (
b) is a measurement diagram for explaining the principle of the vibration top used in the above detection and +II; FIG. 8 is an enlarged sectional view of a sphere of another practical example of the present invention; FIGS. 9 and 10. The figure is an explanatory view of the use of the same as above, FIG. 11 is an enlarged cross-sectional view of a sphere according to another embodiment of the present invention, and (6) is a swing! 1SIJ, (7) is a detection section, (8) is a recognition section, and (10) is a sphere. Agent Patent Attorney Ishi 1) Ai 7 Figure 1 112 Figure s 3 Figure 4 Figure 5 Tsubo f・ 116 Figure (o) (b) (0) (b) 瀉8 Figure 119 Figure 1 Ilo Figure 0 Til 1 Figure
Claims (2)
手段と、生体の被測定部位に加えた単発衝撃による振動
を検出する〃l速度センサや圧力t′Jす等の振妨侠出
セシサと、振動検出セシサによって得られた検出信号よ
り振動モードを検出する検出手段と、該検出+段で検出
した振動上−ドと予め測定隣みの各硬式に対応した振動
上−ドとを比較して被測定部位の硬式を刊建する認識手
段とを備えて成ることを特徴とする筋肉硬式測足装d0(1) An impact means that applies a single IIJ7d to the part to be measured of the living body, and a vibration interrupter such as a speed sensor or pressure t'J that detects the vibration caused by the single impact applied to the part to be measured of the living body. , a detection means that detects the vibration mode from the detection signal obtained by the vibration detection sensor, and a vibration top mode detected by the detection stage is compared in advance with a vibration top mode corresponding to each hard type adjacent to the measurement. A muscular rigid foot measuring device d0, characterized in that it comprises a recognition means for determining the rigid type of the part to be measured.
し、該衝撃手段に振動検出しシサを一体に設けて1戎る
こと全特徴とする待針dd求の範囲第1項記載の筋肉硬
式測定装置。(2) The scope of the search for the guide needle dd according to item 1, characterized in that the entire impact means is constructed from a sphere made of an elastic material of No. Muscle hardness measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4334383A JPS59168835A (en) | 1983-03-15 | 1983-03-15 | Apparatus for measuring muscle hardness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4334383A JPS59168835A (en) | 1983-03-15 | 1983-03-15 | Apparatus for measuring muscle hardness |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59168835A true JPS59168835A (en) | 1984-09-22 |
Family
ID=12661194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4334383A Pending JPS59168835A (en) | 1983-03-15 | 1983-03-15 | Apparatus for measuring muscle hardness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59168835A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6151492A (en) * | 1984-08-14 | 1986-03-13 | 日立建機株式会社 | Lifting device for crane |
US5319625A (en) * | 1992-03-05 | 1994-06-07 | Pioneer Electronic Corporation | Apparatus using demodulators to detect crosstalk from a signal read from a recording medium |
US5361136A (en) * | 1992-03-05 | 1994-11-01 | Pioneer Electronic Corporation | Apparatus for detecting crosstalk in reproduced high-vision signal |
JP2010281742A (en) * | 2009-06-05 | 2010-12-16 | Nihon Univ | Intervertebral disk hardness measuring device |
JP2011005058A (en) * | 2009-06-27 | 2011-01-13 | Nec Corp | Mechanical characteristic measuring device and method for using mechanical characteristic measuring device |
-
1983
- 1983-03-15 JP JP4334383A patent/JPS59168835A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6151492A (en) * | 1984-08-14 | 1986-03-13 | 日立建機株式会社 | Lifting device for crane |
JPH024515B2 (en) * | 1984-08-14 | 1990-01-29 | Hitachi Construction Machinery | |
US5319625A (en) * | 1992-03-05 | 1994-06-07 | Pioneer Electronic Corporation | Apparatus using demodulators to detect crosstalk from a signal read from a recording medium |
US5361136A (en) * | 1992-03-05 | 1994-11-01 | Pioneer Electronic Corporation | Apparatus for detecting crosstalk in reproduced high-vision signal |
JP2010281742A (en) * | 2009-06-05 | 2010-12-16 | Nihon Univ | Intervertebral disk hardness measuring device |
JP2011005058A (en) * | 2009-06-27 | 2011-01-13 | Nec Corp | Mechanical characteristic measuring device and method for using mechanical characteristic measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5143087A (en) | Analysis and treatment of swallowing dysfunction | |
US4949729A (en) | Grip rate measurement | |
EP2658442B1 (en) | Device for real-time measurement of parameters of mechanical stress state and biomechanical properties of soft biological tissue | |
JP3597201B2 (en) | Method and apparatus for recording mechanical vibration of living soft tissue | |
Aitken et al. | An on-water analysis system for quantifying stroke force characteristics during kayak events | |
WO1997014354A3 (en) | Method and device for the quantitative analysis of sleep disturbances | |
EP0422325A1 (en) | Method of and apparatus for measuring instantaneous power | |
WO2011147221A1 (en) | Dual-sensing pulse diagnosis apparatus | |
CN1112902C (en) | O-ring test method and apparatus for human body | |
Cross | The sweet spots of a tennis racquet | |
CN105997018A (en) | Pulse feeling device and wearable electronic equipment | |
CN105266806A (en) | Spasticity evaluation system and device based on myotatic reflex threshold value and resistance variable | |
JPS59168835A (en) | Apparatus for measuring muscle hardness | |
US6231525B1 (en) | System and method for providing quantified hand analysis | |
CA1270908A (en) | Methods and apparatus for investigating muscles and/or joints | |
US20220183617A1 (en) | Method and device for measuring or determining at least one biomechanical parameter of soft biological tissues | |
CN115200765A (en) | Acupuncture manipulation and force measurement evaluation system | |
Kroemer | Human muscle strength: definition, generation and measurement | |
JP4179713B2 (en) | Muscle strength meter and multi-biological information detection device | |
JPH0919422A (en) | Muscle force measuring device and muscle force measuring method | |
US20230052280A1 (en) | Tissue Load Sensor with Reduced Calibration Requirements | |
Bertozzi et al. | Setup and method for assessing hand vibration and perceived discomfort during road race and gravel bike handlebars vibration | |
JPS6115713B2 (en) | ||
JP3456613B2 (en) | Muscle strength measurement device | |
Kindermann | Correspondence (letter to the editor): Validity of Exercise ECG |