Nothing Special   »   [go: up one dir, main page]

JPS59168675A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59168675A
JPS59168675A JP4352583A JP4352583A JPS59168675A JP S59168675 A JPS59168675 A JP S59168675A JP 4352583 A JP4352583 A JP 4352583A JP 4352583 A JP4352583 A JP 4352583A JP S59168675 A JPS59168675 A JP S59168675A
Authority
JP
Japan
Prior art keywords
gate
substrate
film
insulating film
mos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4352583A
Other languages
Japanese (ja)
Inventor
Masanori Noda
昌敬 野田
Sanenari Noda
野田 実也
Koji Otsu
大津 孝二
Hisayoshi Yamoto
久良 矢元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4352583A priority Critical patent/JPS59168675A/en
Publication of JPS59168675A publication Critical patent/JPS59168675A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To obtain an MOS transistor suitable for formation in high density of a large-scale integrated circuit having no deterioration of the characteristic by reducing resistance, by contriving to smooth shallow junction and the completed surface, and moreover by thickening a field oxide film by a method wherein a source region and a drain region are formed comparatively thick according to selectively grown layers formed on a substrate. CONSTITUTION:After a field insulating film 2 is adhered to be formed on the main surface of a semiconductor substrate 1, an opening part 3 is formed at an MOS transistor forming part according to selective etching. Then a passivation film 13 consisting of SiN, etc. is formed on the substrate 1 corresponding to a gate part in the opening part 3 thereof. Then epitaxial layers 9, 10 are selectively grown respectively in the opening part 3 between the passivation film 13 and the field insulating film 2, and the layers 9, 10 thereof are made as a source region and a drain region. Then after the whole is oxidized, the passivation film 13 on the gate part is removed, then a gate insulating film 4 is formed on the substrate 1 corresponding to the gate part, a gate material film 5 is adhered to be formed, patterning is performed to form the gate part 7, and an aiming MOS transistor is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置特に1t1J密度化に適したMOS
トランジスタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to semiconductor devices, particularly MOS devices suitable for 1t1J densification.
The present invention relates to a method for manufacturing a transistor.

背景技術とその問題点 大規模築積回路(1,31)を高密度化するためには、
素子の水平、垂直方向への寸法縮小及び素子表面の平滑
化等の条件が必要となる。具体的には浅い接合の形成方
法、また新しい素子間分離技術等が開発されている。し
かしながら、MOS)ランジスタに於いて接合を浅くし
ていくことを図ればソース及びドレイン等の篩f&抗化
が問題となり、又素子表面の平t^化のためにフィール
ド絶縁膜等を薄くすれば容量の増加が問題となるもので
あった。
Background technology and its problems In order to increase the density of large-scale built-up circuits (1, 31),
Conditions such as reducing the dimensions of the element in the horizontal and vertical directions and smoothing the element surface are required. Specifically, methods for forming shallow junctions, new isolation techniques between elements, etc. are being developed. However, if we try to make the junction shallower in a MOS transistor, sieving f & resistance of the source and drain etc. becomes a problem, and if we try to make the field insulating film etc. thinner to make the element surface flat, The problem was the increase in capacity.

発明の目的 本発明は」二連の問題点をIW決し、高密度化に適した
MO3l・ランジスタの製法を提イ!(するものである
Purpose of the Invention The present invention solves the two problems and proposes a manufacturing method for MO3L transistors suitable for high density. (It is something to do.

発明の概要 本発明は、半導体基体の一十曲上に開口を有する第1の
絶縁)―を形成する工程、開口内の基体」二に順次第2
の絶縁層、ケートを形成する工程、少なくともゲー1−
の側面に第3の絶縁層を形成する工程、第1及び第3の
絶縁層の間に半導体I−を形成し夫々ソース、ドレイン
領域とする工程を具備するものである。
SUMMARY OF THE INVENTION The present invention provides a step of forming a first insulator having an opening on a semiconductor substrate, a step of forming an insulator in the opening, and a step of forming an insulator in the opening in the substrate.
a step of forming an insulating layer, a gate, at least a gate 1-
The method includes a step of forming a third insulating layer on the side surface of the semiconductor device, and a step of forming a semiconductor I- between the first and third insulating layers to serve as source and drain regions, respectively.

この発明によれば、ソース、ドレインの低抵抗化が容易
で且つ同時に接合を浅くすることができる。又、表面が
きわめて平滑化される。
According to this invention, it is easy to reduce the resistance of the source and drain, and at the same time, the junction can be made shallow. Also, the surface is extremely smooth.

実施例 次に図面を用いて本発明の実施例について説明する。Example Next, embodiments of the present invention will be described using the drawings.

第1図は本発明の一実施例を示す。FIG. 1 shows an embodiment of the invention.

先ず第1図Aに示す様に第1導電形の半導体基体例えば
シリコン半導体基体(1)の主面上に5i02+SjN
等“による所定の厚さのフィールド絶縁膜(2)を被着
形成し、この絶縁膜(2)に対して選択エツチングを施
してMosトランジスタを形成すべき部分に開口部(3
)を形成する。
First, as shown in FIG.
A field insulating film (2) of a predetermined thickness is formed by etching the insulating film (2), and selective etching is performed on this insulating film (2) to form an opening (3) in a portion where a Mos transistor is to be formed.
) to form.

次に、開口部(3)内にゲート絶縁1模(4)、ケート
拐料膜(電極に相当する)(5)及びゲート材料膜(5
)上にパシベーション膜(6)を連続形成し、選択エツ
チングして第1図Bに示すようにいわゆるゲート部(7
)を形成する。ゲート絶縁膜(4)は例えば5102 
+SiN等を用いうる。ゲート材料膜(5)は多結晶シ
リコン、ゲイ化物、金属等を用いうる。特に、多結晶シ
リコンをゲート材料膜(5)とする場合の不純物のドー
ピングは、不純物を含む多結晶シリコンを用いるか、不
純物含有の5hotからの拡散又はイオン注入で行うか
、あるいはこれらを組合わせて行うごとができる。パシ
ベーション膜(6)はSiN +5i02等を用いうる
Next, in the opening (3), there is a gate insulator (4), a cathode material film (corresponding to an electrode) (5), and a gate material film (5).
) is successively formed with a passivation film (6) and selectively etched to form a so-called gate part (7) as shown in FIG. 1B.
) to form. The gate insulating film (4) is, for example, 5102
+SiN etc. can be used. The gate material film (5) can be made of polycrystalline silicon, ganide, metal, or the like. In particular, when polycrystalline silicon is used as the gate material film (5), impurity doping is performed by using polycrystalline silicon containing impurities, by diffusion or ion implantation from a 5-hot impurity containing impurities, or by a combination of these. It is possible to do things like this. The passivation film (6) may be made of SiN +5i02 or the like.

次に、全面を熱酸化もしくはCVD (化学気相成長)
法によっ−C例えば5I02 +StN又は酸素含有の
多結晶シリコン等による絶縁膜(8)を形成して後、異
方性エツチング例えばイオンミリング等の方法によっ゛
ζ第1図Cに示すように少なくともゲート材料膜(5)
の側面に絶縁膜(8)を残す。
Next, the entire surface is thermally oxidized or CVD (chemical vapor deposition)
After forming an insulating film (8) of -C, for example, 5I02+StN or oxygen-containing polycrystalline silicon, etc., by anisotropic etching, such as ion milling, as shown in Figure 1C, At least gate material film (5)
An insulating film (8) is left on the side surface of the insulating film (8).

次に、第1図りに示す様にゲート部(7)を挾む両側の
開口部(3)内に選択的にエピタキシャル層(9)及び
θ0)を成長させる。この層(9)及びαO)を夫々第
2導電形のソース領域及びドレイン領域とする。選択エ
ピタキシャル層(91,IJωは5iH4−1−llC
l系又は5iH2CI2 + HCi系等のガスを用い
るごとによって成長する。尚、この時成長条件 (温度
、ガス流量等)を制御して多結晶シリコンを選択成長さ
せてもよい。ソース及びドレイン領域(9)及びα0)
への第2導電形不純物のドーピングは、選択成長時に同
時にドーピングするか、第1図り及びEの工程の間で不
純物含有の5i02からの拡散又はイオン注入で行うか
、あるいはこれらを組合わせて行うことができる。
Next, as shown in the first diagram, epitaxial layers (9) and θ0) are selectively grown in the openings (3) on both sides sandwiching the gate portion (7). These layers (9) and αO) are used as a source region and a drain region of the second conductivity type, respectively. Selective epitaxial layer (91, IJω is 5iH4-1-llC
The growth is performed by using a gas such as 1-based or 5iH2CI2 + HCi-based gas. At this time, polycrystalline silicon may be selectively grown by controlling the growth conditions (temperature, gas flow rate, etc.). Source and drain region (9) and α0)
The doping of the second conductivity type impurity can be carried out simultaneously during selective growth, by diffusion or ion implantation from impurity-containing 5i02 between the first drawing and E steps, or by a combination of these. be able to.

次に、第1図Eに示す様に全面酸化した後、ゲート材料
膜(5)上のバシ・\−ジョン膜(6)をエツチング除
去する。基体(1)にはエピタキシャルJ蔭(9)及び
001からめ不純物拡散で浅い接合jz、j2が形成さ
れる。
Next, as shown in FIG. 1E, after the entire surface is oxidized, the barrier film (6) on the gate material film (5) is removed by etching. Shallow junctions jz and j2 are formed in the substrate (1) by epitaxial J-shading (9) and 001 impurity diffusion.

次に、金属、ケイ化物等の配線材を被着してバターニン
グし、ゲート配線(11)及び図示せざるも広い部分に
おいてソース配線、ドレイン配線を形成して第1図Fに
示す目的のMO’S)ランジスタ(12)を形成する。
Next, a wiring material such as metal or silicide is deposited and buttered, and a gate wiring (11) and source wiring and drain wiring are formed in a wide area (not shown) to achieve the purpose shown in FIG. 1F. MO'S) transistor (12) is formed.

この製法によれば、ソース及びドレイン領域(9)及び
α0)を基体to J:に選択成長させたエピタキシャ
ル層又は多結晶シリコン層で構成するため、その選択成
長j愕を厚くすることによって、ソース及びドレインの
低抵抗化が容易となり、同時に基体(1)内のソース及
びドレインの接合を浅くすることができる。そしてフィ
ールド絶縁III +21を薄くすることなく出来上り
の表面もきわめて平滑となる。ゲートチャンネル部分は
直接基体(1)上に形成するため選択成長層の特性に左
右されることがない。またフィールド絶縁膜(2)は比
較的厚く形成できるので容量は増加しない。またゲート
配線(11)を形成する際は、パシベーション膜(6)
を除去するだけで新たにコンタクト用の窓をあける必要
がなく、直ちに金属、ケイ化物等による配線ができるの
で、配線形成がきわめて容易となる。ゲート部及びソー
ス、ドレイン領域はいわゆるセルファラインで形成され
る。
According to this manufacturing method, the source and drain regions (9) and α0) are composed of an epitaxial layer or a polycrystalline silicon layer that is selectively grown on the substrate. It becomes easy to reduce the resistance of the source and the drain, and at the same time, the junction between the source and the drain in the substrate (1) can be made shallow. The resulting surface is also extremely smooth without making the field insulation III+21 thinner. Since the gate channel portion is formed directly on the substrate (1), it is not affected by the characteristics of the selectively grown layer. Furthermore, since the field insulating film (2) can be formed relatively thick, the capacitance does not increase. In addition, when forming the gate wiring (11), the passivation film (6) is
There is no need to open a new contact window just by removing the contact, and wiring can be immediately formed using metal, silicide, etc., making wiring formation extremely easy. The gate portion, source, and drain regions are formed by so-called self-alignment lines.

第2図は本発明の他の実施例である。FIG. 2 shows another embodiment of the invention.

本例は、第2囚人に示す様に半導体基体(1)の主面上
にフィールド絶縁膜(2)を被着形成して後、選択エツ
チングによってMO3I−ランジスタを形成すべき部分
に開口部(3)を形成する。そして、この開口部(3)
内のデー1一部に対応する基体(1)上にSiN等から
なるパシベーション膜(13)を形成する。
In this example, as shown in the second figure, a field insulating film (2) is deposited on the main surface of a semiconductor substrate (1), and then an opening ( 3) Form. And this opening (3)
A passivation film (13) made of SiN or the like is formed on the substrate (1) corresponding to a portion of the data 1 in the substrate.

次に、第2図Bに不ず様にパシベーション膜(13)と
フィールド絶縁膜(2)との間の開口部(3)に夫々エ
ピタキシャルr響(91、α0)を選択成長させる。
Next, as shown in FIG. 2B, epitaxial layers (91, α0) are selectively grown in the openings (3) between the passivation film (13) and the field insulating film (2).

この場合前述と同様に成長条件をコントロールすること
によって多結晶シリコン層を形成することができる。こ
のエピタキシャルJtii (9)及びθωをソース領
域及びドレイン領域とする。
In this case, a polycrystalline silicon layer can be formed by controlling the growth conditions in the same manner as described above. Let this epitaxial Jtii (9) and θω be a source region and a drain region.

次に、第2図Cに示す様に全面酸化して後、デー1一部
上のパシベーション[%(13)を除去する。
Next, after oxidizing the entire surface as shown in FIG.

次に第2図りに不ず様にケート部に対応する基体fil
上にゲート絶縁欣(4)を形成し、次でゲート材料膜(
5)を被着形成しパターニングしてゲート部(7)に形
成し、目的とするMo5t”ランジスクを1#る。
Next, in the second diagram, the base fil corresponding to the cage part is shown.
A gate insulator (4) is formed on top, and then a gate material film (
5) is deposited and patterned to form the gate portion (7) to form the desired Mo5t'' run disk.

この製法においても、ソース及びドレイン領域(9)、
α0)が基体(1)上に形成した選択成長層で構成され
るのでソース、ドレインの低抵抗化が容易で且−り接合
も浅くできる。また表面も平滑化される。
Also in this manufacturing method, the source and drain regions (9),
Since α0) is composed of a selectively grown layer formed on the substrate (1), it is easy to reduce the resistance of the source and drain, and the junction can be made shallow. The surface is also smoothed.

第3図は本発明のさらに他の実施例を示す。この例は相
補形MO3I−ランシスタの集積回路(IC)の例を示
すものである。
FIG. 3 shows yet another embodiment of the invention. This example shows an example of a complementary MO3I-Lancistor integrated circuit (IC).

先ず第3図Aに21(ず様に第1導電型の半導体基体、
例えばN形のシリコン半導体基体(21)を用意する。
First, as shown in FIG.
For example, an N-type silicon semiconductor substrate (21) is prepared.

このシリコン基体(21)は通常の相補形MOSトラン
ジスタICより高不純物濃度の基体(例えば比抵抗0.
1Ωcm)を用いることができる。
This silicon substrate (21) has a higher impurity concentration than a normal complementary MOS transistor IC (for example, a specific resistance of 0.
1Ωcm) can be used.

基体(21)は(100)面の0°の面を主面とする基
板である。そしてこの基体(21)土面の例えばNチャ
ンネルMO3I−ランジスタを形成すべき部分にボロン
のイオン注入又はボロンシリケートガラス膜を拡散源と
L2てP+形の埋込領域(22)を形成する。
The base body (21) is a substrate whose main surface is the 0° (100) plane. Then, a P+ type buried region (22) is formed by implanting boron ions or using a boron silicate glass film as a diffusion source in a portion of the soil surface of the base (21) where, for example, an N-channel MO3I transistor is to be formed.

次に、第3図Bに示す様に熱酸化或いはCVD法によっ
て分離用の絶縁膜(例えはS j02膜)  (23)
を形成した後、ホトエッチグ工程によってMo3t・ラ
ンジスタ及びダイオードを形成する部分の絶縁膜を除去
しフィールド部分のめの絶縁膜(23)を残す。
Next, as shown in FIG. 3B, an isolation insulating film (for example, Sj02 film) is formed by thermal oxidation or CVD (23).
After forming, the insulating film (23) in the portion where the Mo3t transistor and diode will be formed is removed by a photoetching process, leaving the insulating film (23) in the field portion.

次に第3図Cに示す様にエツチング除去による開口部(
24)に選択エピタキシャル技術とイオン注入技術を用
いて例えは1Qi4〜101bcm−’の不純物濃度を
もつP形及びN影領域(25)及び(26)を形成する
Next, as shown in Figure 3C, the opening (
24), P type and N shadow regions (25) and (26) having an impurity concentration of, for example, 1Qi4 to 101 bcm-' are formed using selective epitaxial technology and ion implantation technology.

(29)はN形不純物のリンをイオン注入する場合のマ
スクとなるホトレジスト層である。フィールド部分の絶
縁[3(23)と選択エピタキシャル成長の領域(25
) 、  (26)の間にすき間が生じた場合はスピン
コード5i02(27)によって埋めることが可能であ
る。尚、この時1夕1ノえばNチャン名ルM OS ’
I−ランジスタはチャンネルエンヂ部分のリーク電流が
問題となることがあるが、ボロンドーyco スヒ7 
ニア −) 5io2(27’)を月」いることによっ
てその隣接部分に高濃度領域(28)を形成し゛C解消
できる。
(29) is a photoresist layer that serves as a mask when ion-implanting phosphorus as an N-type impurity. Field part insulation [3 (23) and selective epitaxial growth region (25
) and (26), it can be filled with spin code 5i02 (27). At this time, if you have 1 night and 1 night, N channel name M OS'
Leakage current at the channel end may be a problem with I-transistors, but
By placing 5io2 (27') in the vicinity, a high-concentration region (28) is formed in the adjacent part and C can be eliminated.

次に、第3図1〕にボず様にPチャンネルのMosトラ
ンジスタを形成すべき領域にP+のソース領域(31)
及びトレイン領iI!1(32)を形成し又、Nチャン
ネルMO3I−ランジスクを形成ずべき領域にN+のソ
ース領域(33)及びドレイン領域(34)を形成し、
人々のケート部上にゲート絶縁+1Q (36)を形成
し、史にその上にゲー[材料膜(37)を形成する様に
なず。尚、この場合ソース領域及びドレイン領域は高1
度の基体(2I)及び埋込領域(22)に達しないほう
がよい。これは耐圧低下と接合容量が増加するためであ
る。(38) 、  (39)はダイオードである。斯
くして目的の相補形MOSトランジスタの集積回路が得
られる。
Next, as shown in FIG. 3, a P+ source region (31) is formed in the region where a P channel Mos transistor is to be formed.
and Train Territory II! 1 (32), and an N+ source region (33) and drain region (34) are formed in the region where the N-channel MO3I- transistor is to be formed.
A gate insulator +1Q (36) is formed on the gate part of the gate, and a gate material film (37) is formed on top of it. In this case, the source region and drain region have a height of 1
It is better not to reach the base body (2I) and the embedded area (22). This is because the breakdown voltage decreases and the junction capacitance increases. (38) and (39) are diodes. In this way, the desired integrated circuit of complementary MOS transistors is obtained.

この製法では各トランジスタ間が絶縁膜(23) 。In this manufacturing method, there is an insulating film (23) between each transistor.

高濃度基体(21)及び埋込領域(22)で分離され−
Cいるのでラッチングによる誤動作が起りにくい。
Separated by high concentration substrate (21) and buried region (22) -
Since there is C, malfunctions due to latching are less likely to occur.

又、従来の選択酸化によるバーズビークやチャンネルス
トッパのサイト′拡散が問題とならないので高集積化が
可能である。
Further, since there is no problem with bird's beak or channel stopper site diffusion caused by conventional selective oxidation, high integration is possible.

発明の効果 一ヒ述の本発明によればソース領域及びドレイン領域が
基板上に形成した選択成長層で構成されるために比較的
厚く形成することによって低抵抗化が図れる。同時に浅
い接合が容易に得られる。又、出来−ヒリ表面が極めて
平滑化される。またフィールド酸化膜は比較的厚く形成
することができるので容量の増加は問題なくなる。従っ
て特性を劣化させることなく大規模集積回路の高密度化
に適したMos+−ランジスタが得られる。
Effects of the Invention According to the present invention as described above, since the source region and the drain region are formed of selectively grown layers formed on the substrate, the resistance can be reduced by forming them relatively thick. At the same time, shallow joints can be easily obtained. Also, the cracked surface is extremely smoothed. Further, since the field oxide film can be formed relatively thick, an increase in capacitance is not a problem. Therefore, a Mos+- transistor suitable for increasing the density of large-scale integrated circuits can be obtained without deteriorating the characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A −Fは本発明の一実施例を示す工程順の断面
図、第2図A −1)は本発明の他の実施例をボず]−
稈))10のlli面図、第3図A−Dは本発明のさら
に他の実施例を示す工程順の断面図である。 (1)は半導体基体、(2)は絶縁膜、(3)は開口部
1、(4)はケー゛I−絶縁膜、(5)はゲート材料膜
、(9)はソース領域、00)はドレイン領域である。 第1坪
Figures 1A-F are cross-sectional views showing one embodiment of the present invention in the order of steps, and Figure 2A-1) shows other embodiments of the present invention.
FIGS. 3A to 3D are cross-sectional views showing still another embodiment of the present invention in the order of steps. (1) is a semiconductor substrate, (2) is an insulating film, (3) is an opening 1, (4) is a case I-insulating film, (5) is a gate material film, (9) is a source region, 00) is the drain region. 1st tsubo

Claims (1)

【特許請求の範囲】[Claims] 半導体基体の一生面上に開口を有する第1の絶縁層を形
成する工程と、前記開口内の基体上に順次第2の絶縁層
、ケー1−を形成する工程と、少なくとも■;j記ゲー
トの側面に第3の絶縁層を形成する工程と、前記第1及
び第3の絶縁層の間に半導体層を形成し夫々ソース領域
、ドレイン領域とする工程を自してなる半導体装置の製
法。
a step of forming a first insulating layer having an opening on the entire surface of the semiconductor substrate; a step of sequentially forming a second insulating layer, a first insulating layer, on the substrate in the opening; and at least A method for manufacturing a semiconductor device comprising the steps of: forming a third insulating layer on a side surface of the insulating layer; and forming a semiconductor layer between the first and third insulating layers to form a source region and a drain region, respectively.
JP4352583A 1983-03-15 1983-03-15 Manufacture of semiconductor device Pending JPS59168675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4352583A JPS59168675A (en) 1983-03-15 1983-03-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4352583A JPS59168675A (en) 1983-03-15 1983-03-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59168675A true JPS59168675A (en) 1984-09-22

Family

ID=12666155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4352583A Pending JPS59168675A (en) 1983-03-15 1983-03-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59168675A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141373A (en) * 1986-11-18 1988-06-13 シーメンス、アクチエンゲゼルシヤフト Mos field effect transistor structure, integrated circuit and manufacture of the same
JPS63142867A (en) * 1986-12-05 1988-06-15 Nec Corp Mis transistor and manufacture thereof
JPS63229858A (en) * 1987-03-19 1988-09-26 Nec Corp Manufacture of semiconductor device
US6121120A (en) * 1997-08-07 2000-09-19 Nec Corporation Method for manufacturing semiconductor device capable of flattening surface of selectively-grown silicon layer
JP2001223356A (en) * 1999-12-31 2001-08-17 Hynix Semiconductor Inc Transistor and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141373A (en) * 1986-11-18 1988-06-13 シーメンス、アクチエンゲゼルシヤフト Mos field effect transistor structure, integrated circuit and manufacture of the same
JPS63142867A (en) * 1986-12-05 1988-06-15 Nec Corp Mis transistor and manufacture thereof
JPS63229858A (en) * 1987-03-19 1988-09-26 Nec Corp Manufacture of semiconductor device
US6121120A (en) * 1997-08-07 2000-09-19 Nec Corporation Method for manufacturing semiconductor device capable of flattening surface of selectively-grown silicon layer
JP2001223356A (en) * 1999-12-31 2001-08-17 Hynix Semiconductor Inc Transistor and its manufacturing method
JP4629867B2 (en) * 1999-12-31 2011-02-09 株式会社ハイニックスセミコンダクター Transistor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH04266047A (en) Soi type semiconductor device and preparation thereof equivalent to production of a buried layer
JP3152959B2 (en) Semiconductor device and manufacturing method thereof
JPS6252963A (en) Manufacture of bipolar transistor
JPH0557741B2 (en)
JPS59208851A (en) Semiconductor device and manufacture thereof
JPH0513426A (en) Semiconductor device
JPS59168675A (en) Manufacture of semiconductor device
JPH01130542A (en) Semiconductor device having interelement isolation region and manufacture thereof
JPS6251216A (en) Manufacture of semiconductor device
JPS6197967A (en) Semiconductor device and manufacture thereof
JP2996694B2 (en) Method for manufacturing semiconductor stacked CMOS device
JPH04277617A (en) Manufacture of semiconductor device
JPS60241261A (en) Semiconductor device and manufacture thereof
JPH0794721A (en) Semiconductor device and manufacture thereof
JPS6115372A (en) Semiconductor device and manufacture thereof
JPS61125165A (en) Manufacture of semiconductor device
JPS59222939A (en) Semiconductor device
JPS6331938B2 (en)
JPH0555475A (en) Semiconductor integrated circuit device and its manufacture
JPH03188665A (en) Mos type semiconductor device and its manufacture
JPH06188259A (en) Manufacture of semiconductor device
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JPH06196553A (en) Semiconductor device
JPS63142867A (en) Mis transistor and manufacture thereof
JPH022681A (en) Manufacture of semiconductor element