JPS5913453B2 - Method for manufacturing multicomponent glass fiber matrix - Google Patents
Method for manufacturing multicomponent glass fiber matrixInfo
- Publication number
- JPS5913453B2 JPS5913453B2 JP12367779A JP12367779A JPS5913453B2 JP S5913453 B2 JPS5913453 B2 JP S5913453B2 JP 12367779 A JP12367779 A JP 12367779A JP 12367779 A JP12367779 A JP 12367779A JP S5913453 B2 JPS5913453 B2 JP S5913453B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- component
- glass fiber
- base material
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】
本発明は、多成分系ガラスファイバ母材の製造法に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a multicomponent glass fiber matrix.
多成分系ガラスファイバは、SiO2に、Na2O、に
2Oなどのアルカリ金属酸化物を添加したもので、低温
度で溶融紡糸が行えること、レイリー散乱が少ないなど
の利点がある。Multi-component glass fiber is made by adding alkali metal oxides such as Na2O and 2O to SiO2, and has advantages such as being able to be melt-spun at low temperatures and having little Rayleigh scattering.
ところで、このような多成分系ガラスファイバを製造す
るには、上記アルカリ金属のハロゲン化物の常温での蒸
気圧5 が著るしく低く、気化させることが不可能であ
るため、いわゆる気相化学析出法(CVD法)を利用し
て行うことができなかつた。このため、従来の多成分系
ガラスファイバの製造は、ルツボを用いた溶融法に頼る
ほかはなかつた。0 しかしながら、この方法において
は個々の原料を超高純度化処理した後、これらの原料を
混合し、然る後溶融するプロセスを経なければならず、
プロセスが煩雑で操作が面倒であつた。By the way, in order to manufacture such a multi-component glass fiber, the vapor pressure of the alkali metal halide at room temperature 5 is extremely low and it is impossible to vaporize it, so so-called vapor phase chemical precipitation is required. This could not be done using the CVD method. For this reason, conventional multi-component glass fiber production has had no choice but to rely on a melting method using a crucible. 0 However, this method requires a process of ultra-purifying the individual raw materials, mixing these raw materials, and then melting them.
The process was complicated and the operation was troublesome.
特に、NaNO3、KNO3、L1N03等の粉末材料
を使用する場合に5 は、均一に混合するのが面倒であ
るだけではなく、ルツボ等で長時間かけて溶融する必要
があるため不純物が混入する傾向があり、低損失の光フ
ァイバを確実に形成するのが困難であつた。本発明は上
記事情に鑑みてなされたもので、そ’0 の目的とする
ところは、プロセスが単純であると共に低損失の光ファ
イバを確実に形成できる等の利点を有する多成分系ガラ
スファイバ母材の製造法を提供することである。In particular, when using powdered materials such as NaNO3, KNO3, L1N03, etc.5, it is not only troublesome to mix them uniformly, but also they need to be melted for a long time in a crucible, etc., so they tend to be contaminated with impurities. Therefore, it was difficult to reliably form a low-loss optical fiber. The present invention has been made in view of the above circumstances, and its object is to create a multi-component glass fiber matrix that has advantages such as a simple process and the ability to reliably form a low-loss optical fiber. The objective is to provide a method for manufacturing materials.
その特徴は、SiCl4、GeCl4、POCl3、B
Br3等のガラス主原料と、’5 金属塩水溶液からな
る霧状物とを火炎内に供給して多成分系ガラス微粉末を
形成し、これを棒状基材の外周又は先端に付着堆積させ
ることにある。以下、図面を参照して本発明を詳細に説
明する。まず、SlCl4、GeCl4、P0Cl3、
BBr310等のガラス主原料をH2、O2、Aに、H
e、N2等の各種ガスと一緒に多重管バーナ9内に供給
して火炎9’内で火炎加水分解や熱酸化等の気相反応を
行わせる。一方、NaNO3、KNO3、LlNO3等
のアルカリ金属の硝酸塩や炭酸塩、硫酸塩、ハロゲノ5
ン化物などの水溶液を導入管1からイオン交換樹脂2
の充填されたカラム3に通して精製した後、導管4を経
て同様のイオン交換樹脂5の充填されたカラム6に通し
て更に精製して、超高純度化されたアルカリ金属の塩水
溶液を調製する。その後、この水溶液をカラム6から導
出し、導管7を経て霧発生機8に導入し、えられたNa
NO3,KNO3,LlNO3等の霧状物もしくは微粒
子状物を噴射口12から前記火炎9′内に噴射する。上
記霧発生機8には、超音波を利用したものや、高純度ア
ルゴンガスなどを用いる通常の霧吹きなどが用いられる
。Its characteristics are SiCl4, GeCl4, POCl3, B
Supplying a glass main raw material such as Br3 and a mist consisting of an aqueous solution of '5 metal salt into a flame to form a multi-component glass fine powder, and depositing this on the outer periphery or tip of a rod-shaped base material. It is in. Hereinafter, the present invention will be explained in detail with reference to the drawings. First, SlCl4, GeCl4, P0Cl3,
Main glass raw materials such as BBr310 are converted into H2, O2, A, H
It is supplied into the multi-tube burner 9 together with various gases such as e and N2, and gas phase reactions such as flame hydrolysis and thermal oxidation are carried out within the flame 9'. On the other hand, nitrates, carbonates, sulfates, and halogenated metals such as NaNO3, KNO3, LlNO3, etc.
An aqueous solution of ion exchange resin, etc., is introduced from introduction pipe 1 into ion exchange resin 2.
After passing through a column 3 packed with ion exchange resin 5 for purification, it is further purified through a column 6 packed with the same ion exchange resin 5 via a conduit 4 to prepare an ultra-highly purified aqueous alkali metal salt solution. do. After that, this aqueous solution is led out from the column 6 and introduced into the fog generator 8 through the conduit 7, and the obtained Na
A mist or particulate matter such as NO3, KNO3, LlNO3 is injected into the flame 9' from the injection port 12. The fog generator 8 may be one that uses ultrasonic waves or a normal fog generator that uses high-purity argon gas or the like.
かくしてえられたSlO2,GeO2,B2O3,p2
O5とNa2O,K2O,Li2O等のアルカリ金属の
酸化物とからなる多成分系の媒状ガラス微粒子を棒状基
材10の下端に付着堆積し、棒状基材10を引き上げな
がら媒状ガラス微粒子を軸方向に成長させて多成分系ガ
ラスの多孔質プリフオーム11を形成する。Thus obtained SlO2, GeO2, B2O3, p2
Multi-component medium glass fine particles consisting of O5 and oxides of alkali metals such as Na2O, K2O, Li2O, etc. are adhered and deposited on the lower end of the rod-shaped base material 10, and while the rod-shaped base material 10 is pulled up, the medium glass fine particles are pivoted. A porous preform 11 of multi-component glass is formed by growing the glass in the same direction.
次いで、上記のようにして形成された多成分系ガラスの
多孔質プリフオームをゾ―ンメルトまたは加熱炉等で加
熱して透明ガラス化する。Next, the porous preform of multi-component glass formed as described above is heated in a zone melt or a heating furnace to form transparent glass.
然る後、透明ガラスに所定の処理を施して多成分系ガラ
スの光フアイバを形成する。例えば、コアとなる透明ガ
ラスとクラツドとなる透明ガラスとを別々に形成した場
合には、これらを白金ルツボ等により溶融した後引き出
す方法により光フアイバを形成できる。また、コアとな
る多孔質プリフオームを形成した後、この上にクラツド
となる多孔質プリフオームを形成して一体の多孔質プリ
フオームを形成し、これを透明ガラス化した場合には、
延伸して延伸ロツドを形成し、この延伸ロツドを紡糸す
る方法により光フアイバを形成することもできる。その
他の通常の各種の方法でステツブ型または二乗分布型の
光フアイバを形成することもできる。また多成分系ガラ
ス微粒子の基材への付着堆積は、その先端のみならず外
周に形成させてもよい。Thereafter, the transparent glass is subjected to a predetermined treatment to form a multi-component glass optical fiber. For example, when transparent glass serving as the core and transparent glass serving as the cladding are formed separately, an optical fiber can be formed by melting them in a platinum crucible or the like and then drawing them out. Furthermore, after forming a porous preform as a core, a porous preform as a cladding is formed on top of this to form an integrated porous preform, and when this is made into transparent glass,
Optical fibers can also be formed by drawing to form a drawn rod and spinning this drawn rod. A variety of other conventional methods can also be used to form the stave or square distribution optical fiber. Further, the multi-component glass fine particles may be deposited on the base material not only on the tip but also on the outer periphery.
以上説明したように、本発明においてはSiCl4,G
eCl4,POCl3,BBr3等のガラス主原料と金
属塩水溶液からなる霧状物とを火炎内に供給することに
より多成分系ガラスの多孔質プリフオームを形成し、然
る後この多孔質プリフオームから多成分系ガラスの光フ
アイバを形成している。従つて、金属塩水溶液を霧状物
として火炎内に供給するようにしたので、気相化学析出
法(CVD法)が採用でき、工程が簡単になるとともに
これら金属酸化物をガラス中に効率よく高濃度に添加す
ることができる。また、金属塩水溶液の形で取扱うので
、イオン交換法、溶媒抽出法などの高度な精製手段を取
ることができ、高純化が容易となり、しかも気相化学析
出法によつて酸化物としているので、不純物の混入が極
めて少なく、光フアイバとしたとき、伝送損失の小さい
ものが得られる。以下、実施例を示し、本発明を具体的
に説明する。実施例 1
第1図に示す装置において、30%NaNO3水溶液を
導入管1を経てイオン交換樹脂2の充填されたカラム3
に通した後、導管4を経て同様のイオン交換樹脂5の充
填されたカラム6に通して精製し、この精製された水溶
液を導管7を経て超音波を利用した霧発生機8に導入し
た。As explained above, in the present invention, SiCl4,G
A porous preform of multi-component glass is formed by supplying a mist consisting of glass main raw materials such as eCl4, POCl3, BBr3 and an aqueous metal salt solution into a flame, and then a multi-component preform is formed from this porous preform. It forms an optical fiber made of glass. Therefore, by supplying the metal salt aqueous solution into the flame as a mist, a vapor phase chemical deposition method (CVD method) can be adopted, which simplifies the process and efficiently deposits these metal oxides into the glass. Can be added at high concentrations. In addition, since the metal salt is handled in the form of an aqueous solution, it is possible to use advanced purification methods such as ion exchange and solvent extraction methods, making it easy to achieve a high degree of purification.Moreover, it is made into an oxide by vapor phase chemical precipitation. , the amount of impurities mixed in is extremely low, and when used as an optical fiber, a product with low transmission loss can be obtained. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 In the apparatus shown in FIG. 1, a 30% NaNO3 aqueous solution is introduced into a column 3 filled with an ion exchange resin 2 through an inlet pipe 1.
After passing through a conduit 4, the aqueous solution was purified by passing through a column 6 filled with a similar ion exchange resin 5, and the purified aqueous solution was introduced through a conduit 7 into a fog generator 8 using ultrasonic waves.
一方、多重管バーナ9内にSiCl42OOc〆分、G
eCl4lOOcq?、BBr35Occ/分、POC
l32Occ/I3−を供給すると共に、前記のように
精製されたNaNO3水溶液に超音波を利用した霧発生
機8において50W,80KHzの超音波をかけて形成
された霧状物50cc/分を噴射口12から火炎q内に
噴射して、棒状基材10の下端にコアとなる多成分系ガ
ラスの?孔質プリフオーム11を形成した。On the other hand, in the multi-tube burner 9, SiCl42OOc, G
eCl4lOOcq? , BBr35Occ/min, POC
132Occ/I3- was supplied, and 50cc/min of a mist formed by applying ultrasonic waves of 50 W and 80 KHz to the purified NaNO3 aqueous solution in the fog generator 8 using ultrasonic waves was injected into the injection port. 12 into the flame q to form a core of multi-component glass at the lower end of the rod-shaped base material 10. A porous preform 11 was formed.
次に、上記と同様にして、SiCl42OOCq分、G
eCl45Occ/分、BBr35Occ/へPOCl
32Occ/へ30%NaNO3水溶液40CC/分を
使用してクラツドとなる多成分系ガラスの多孔質プリフ
オーム11を形成した。Next, in the same manner as above, SiCl42OOCq, G
eCl45Occ/min, POCl to BBr35Occ/
A porous preform 11 of multi-component glass serving as a cladding was formed using 40 CC/min of a 30% NaNO3 aqueous solution to 32 Occ/min.
次いで、コアとなる多孔質プリフオームとクラツドとな
る多孔質プリフオームとをそれぞれ加熱炉中で加熱して
透明ガラス化し、2種の透明ガラスを形成した。Next, the porous preform serving as the core and the porous preform serving as the cladding were respectively heated in a heating furnace to become transparent vitrification, thereby forming two types of transparent glasses.
その後、白金二重ルツボの内側にコアとなる透明ガラス
を入れる一方、その外側にクラツドとなる透明ガラスを
入れ、然る後温度800℃、引取り速度20an/分で
引き出してコアとクラツドとからなる多成分系ガラスの
光フアイバを形成した。得られた光フアイバは第2図に
示すようにステツプ型の屈折率分布を有し波長0.83
μmでの伝送損失11dB/Kmであつた。実施例 2
NaN03水溶液の代わりに32%KNO3水溶液を使
用した以外は、実施例1と同様の方法で光フアイバを形
成した。Thereafter, a transparent glass core was placed inside a platinum double crucible, while a transparent glass cladding was placed outside of the crucible, and the crucible was pulled out at a temperature of 800°C and a drawing speed of 20 an/min to separate the core and cladding. A multi-component glass optical fiber was formed. The obtained optical fiber has a step-type refractive index distribution as shown in Figure 2, and has a wavelength of 0.83.
The transmission loss in μm was 11 dB/Km. Example 2
An optical fiber was formed in the same manner as in Example 1, except that a 32% KNO3 aqueous solution was used instead of the NaN03 aqueous solution.
得られた光フアイバは、実施例1の光フアイバと同様に
ステツプ型の屈折率分布を有し、波長0.83μmでの
伝送損失は10dB/Kmであつた。実施例 3
第3図に示す装置において、30%NaNO3水溶液と
30%KNO3水溶液との等量混合溶液を導入パイプ1
をとおしてイオン交換樹脂を充てんしたカラム2に導ち
びき、精製し、アルゴンガスを用いた霧吹き8に導入し
た。The obtained optical fiber had a step-type refractive index distribution like the optical fiber of Example 1, and the transmission loss at a wavelength of 0.83 μm was 10 dB/Km. Example 3 In the apparatus shown in FIG. 3, a mixed solution of equal amounts of 30% NaNO3 aqueous solution and 30% KNO3 aqueous solution was introduced into pipe 1.
The mixture was introduced into a column 2 filled with ion exchange resin for purification, and then introduced into an atomizer 8 using argon gas.
一方、多重管バーナ9内に、SiCl4lOOCc/分
、POCl35Occ/分、023000CC/分を供
給して燃焼させると共に前記精製混合溶液を霧吹き8に
よつて霧状化した霧状物0.39/分を噴射口12から
火炎qに噴射しつつ棒状基材10を回転させかつ回転軸
方向に往復移動させて棒状基材10の外周に多成分系ガ
ラスの多孔質プリフオーム11を形成した。On the other hand, SiCl4lOOCc/min, POCl35Occ/min, and 023000 CC/min are fed into the multi-tube burner 9 and burned, and the purified mixed solution is atomized by the atomizer 8 to produce a mist of 0.39/min. A porous preform 11 of multi-component glass was formed on the outer periphery of the rod-shaped substrate 10 by rotating the rod-shaped substrate 10 while injecting the flame q from the injection port 12 and moving it back and forth in the direction of the rotation axis.
捧状基材10の回転速度は20rp11往復移動速度は
300m71/分であつた。この作業中屈折率を連続的
に変えてグレーデツトを作製するため多重管バーナ9に
供給するSlCl4の量を棒状基材10の一往復移動ご
とに50cc/分ずつ100cc/分→200cc/分
まで増加させた。得られたブリフオーム11をカーボン
抵抗炉中で約1400℃の温度で透明ガラス化したのち
、棒状基材10をくりぬき、更に加熱して中実化したの
ち、先端部より溶融紡糸して多成分系ガラスのグレーデ
ツドインデツクス形光フアイバが得られた。The rotational speed of the triangular base material 10 was 20 rpm, and the reciprocating speed was 300 m71/min. During this process, the amount of SlCl4 supplied to the multi-tube burner 9 was increased by 50 cc/min from 100 cc/min to 200 cc/min for each reciprocating movement of the rod-shaped base material 10 in order to create a graded by continuously changing the refractive index. I let it happen. The obtained BRIFORM 11 was transparently vitrified at a temperature of about 1400°C in a carbon resistance furnace, and then the rod-shaped base material 10 was hollowed out and further heated to make it solid, and then melt-spun from the tip to form a multi-component system. A glass graded index type optical fiber was obtained.
.このものの屈折率分布は第4図に示す様に二乗分布を
示し、波長0.83μmでの伝送損失は12dB/Km
であつた。比較例
従来の二重ルツボ法による例を示す。.. The refractive index distribution of this material shows a square distribution as shown in Figure 4, and the transmission loss at a wavelength of 0.83 μm is 12 dB/Km.
It was hot. Comparative Example An example using the conventional double crucible method is shown.
まずコア用ガラスをえるために、SiO265wt%、
GeO2lOwt%、B2O3lOwt%,NaCO3
l5wt%を白金ルツボ内に入れ、約1400℃に加熱
して溶融状態とし、さらに温度を上昇し、撹拌器を用い
て攪拌した。この攪拌により均質化された溶融ガラスを
鋳型に流しこみ固化させた後とりだしてコア用の多成分
系ガラスプロツクとした。一方同様な方法で、SlO2
7Owt%、B2O32Owt%,NaCO3lOwt
%,のクラツド用多成分系ガラスプロツクをえた。次に
コア用のガラスプロツクを切断、研摩して白金二重ルツ
ボの中心ルツボ内にぴつたり収容できる形状とした。ま
た、クラツド用ガラスプロツクを複数個に切断した後、
それぞれ研摩して外側ルツボ内を埋めるようにした。こ
れらコア、クラツド用ガラスが収容された二重ルツボを
約1000℃に加熱して溶融し、二重ルツボ底部の開口
から引きだしてコア径80μm外径150μmの多成分
系ガラスフアイバをえた。かくしてえられた多成分系ガ
ラスよりなるフアイバの伝送損失は、波長0.83μm
で15dB/Kmであつた〇First, in order to obtain glass for the core, SiO265wt%,
GeO2lOwt%, B2O3lOwt%, NaCO3
15 wt% was put into a platinum crucible, heated to about 1400°C to make it into a molten state, the temperature was further raised, and the mixture was stirred using a stirrer. The molten glass homogenized by this stirring was poured into a mold, solidified, and then taken out to form a multicomponent glass block for a core. On the other hand, in a similar manner, SlO2
7Owt%, B2O32Owt%, NaCO3lOwt
%, we have developed a multi-component glass block for cladding. Next, the glass block for the core was cut and polished to a shape that would fit snugly into the central crucible of the double platinum crucible. In addition, after cutting the glass proc for the cladding into multiple pieces,
Each was polished to fill the inside of the outer crucible. The double crucible containing the glass for the core and the cladding was heated to about 1000° C. to melt it, and was pulled out from the opening at the bottom of the double crucible to obtain a multicomponent glass fiber having a core diameter of 80 μm and an outer diameter of 150 μm. The transmission loss of the fiber made of multi-component glass thus obtained is at a wavelength of 0.83 μm.
It was 15dB/Km at
第1図は本発明の実施例1、実施例2に用いられた装置
の概略説明図、第2図は実施例1、実施例2で得られた
光フアイバの屈折率分布図、第3図は実施例3に用いら
れた装置の概略説明図、第4図は実施例3で得られた光
フアイバの屈折率分布図である。
8・・・・・・霧発生機、9・・・・・・多重管バーナ
、10・・・・・・棒状基材、11・・・・・・多孔質
ブリフオーム、12・・・・・・噴射口。Fig. 1 is a schematic explanatory diagram of the apparatus used in Examples 1 and 2 of the present invention, Fig. 2 is a refractive index distribution diagram of the optical fibers obtained in Examples 1 and 2, and Fig. 3 4 is a schematic explanatory diagram of the apparatus used in Example 3, and FIG. 4 is a refractive index distribution diagram of the optical fiber obtained in Example 3. 8...Fog generator, 9...Multi-tube burner, 10...Rod-shaped base material, 11...Porous brifform, 12...・Injection port.
Claims (1)
iCl_4、GeCl_4、POCl_3、BBr_3
等のガラス主原料と金属塩水溶液からなる霧状物とを火
炎内に供給して多成分系ガラス微粉末を形成し、これを
棒状基材上又は先端に付着堆積させることを特徴とする
多成分系ガラスファイバ母材の製造法。1 When manufacturing a multi-component glass fiber base material, S
iCl_4, GeCl_4, POCl_3, BBr_3
A multi-component glass powder is formed by supplying a mist consisting of a main glass raw material such as and a metal salt aqueous solution into a flame to form a multi-component glass fine powder, which is deposited on a rod-shaped base material or at its tip. Manufacturing method of component-based glass fiber base material.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12367779A JPS5913453B2 (en) | 1979-09-26 | 1979-09-26 | Method for manufacturing multicomponent glass fiber matrix |
CA000360496A CA1166527A (en) | 1979-09-26 | 1980-09-18 | Method and apparatus for producing multi-component glass fiber preform |
US06/189,856 US4336049A (en) | 1979-09-26 | 1980-09-22 | Method for producing multi-component glass fiber preform |
DE8080303322T DE3066999D1 (en) | 1979-09-26 | 1980-09-23 | Method and apparatus for producing multi-component glass fiber preform |
EP80303322A EP0026625B1 (en) | 1979-09-26 | 1980-09-23 | Method and apparatus for producing multi-component glass fiber preform |
US06/352,568 US4388098A (en) | 1979-09-26 | 1982-02-26 | Apparatus for producing multi-component glass fiber preform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12367779A JPS5913453B2 (en) | 1979-09-26 | 1979-09-26 | Method for manufacturing multicomponent glass fiber matrix |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5650134A JPS5650134A (en) | 1981-05-07 |
JPS5913453B2 true JPS5913453B2 (en) | 1984-03-29 |
Family
ID=14866561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12367779A Expired JPS5913453B2 (en) | 1979-09-26 | 1979-09-26 | Method for manufacturing multicomponent glass fiber matrix |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5913453B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0442242Y2 (en) * | 1985-06-18 | 1992-10-06 | ||
US8844323B2 (en) | 2010-09-15 | 2014-09-30 | Fujikura Ltd. | Glass preform manufacturing method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3206180A1 (en) * | 1982-02-20 | 1983-08-25 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Process for the production of a preform from which optical fibres can be drawn |
CN113912279B (en) * | 2020-07-10 | 2023-03-31 | 中天科技精密材料有限公司 | Axial deposition doping device and preparation method of powder rod |
-
1979
- 1979-09-26 JP JP12367779A patent/JPS5913453B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0442242Y2 (en) * | 1985-06-18 | 1992-10-06 | ||
US8844323B2 (en) | 2010-09-15 | 2014-09-30 | Fujikura Ltd. | Glass preform manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPS5650134A (en) | 1981-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4388098A (en) | Apparatus for producing multi-component glass fiber preform | |
KR830002158B1 (en) | Method for forming optical waveguide preform having continuously removable starting member | |
JPS58145634A (en) | Manufacture of doped glassy silica | |
US4289516A (en) | Low loss optical fibers | |
JPS5913453B2 (en) | Method for manufacturing multicomponent glass fiber matrix | |
US4116653A (en) | Optical fiber manufacture | |
JPS6143290B2 (en) | ||
JPH0218294B2 (en) | ||
JPS5925741B2 (en) | Method for manufacturing multicomponent glass fiber matrix | |
JPS61106433A (en) | Production of optical fiber base material | |
JPH0146459B2 (en) | ||
JPS603017B2 (en) | Manufacturing method of glass for optical transmitters | |
JPS591220B2 (en) | Manufacturing method of optical fiber base material | |
JPS58223627A (en) | Preparation of parent material for optical fiber | |
JPS60239333A (en) | Method and apparatus for manufacturing base material for optical fiber | |
JPS6138137B2 (en) | ||
JPS59128225A (en) | Manufacture of base material for optical fibre | |
JPS5924097B2 (en) | Glass body manufacturing method | |
JPS60221332A (en) | Manufacture of optical fiber base material | |
JPS6252137A (en) | Production of material for optical transmission | |
JPS581051B2 (en) | Manufacturing method for optical transmission materials | |
JPS5914412B2 (en) | Method for manufacturing multicomponent glass fiber | |
JPH0535692B2 (en) | ||
JPS6230144B2 (en) | ||
JPS59121129A (en) | Preparation of parent material for optical fiber |