JPS59126034A - Cooling system for gas turbine - Google Patents
Cooling system for gas turbineInfo
- Publication number
- JPS59126034A JPS59126034A JP114183A JP114183A JPS59126034A JP S59126034 A JPS59126034 A JP S59126034A JP 114183 A JP114183 A JP 114183A JP 114183 A JP114183 A JP 114183A JP S59126034 A JPS59126034 A JP S59126034A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- cooling air
- stage
- air
- blades
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/16—Cooling of plants characterised by cooling medium
- F02C7/18—Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
- F02C7/185—Cooling means for reducing the temperature of the cooling air or gas
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野]
本発明はガスタービンの冷却系統に係り、行に興冷却を
必要とする高温ガスタービンに好適な冷却装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cooling system for a gas turbine, and more particularly to a cooling device suitable for a high-temperature gas turbine that requires continuous cooling.
ガスタービンにおいては熱効率や出力特性などの性能向
上のためにタービン入口温度の向上が追求されている。In gas turbines, improvements in turbine inlet temperature are being pursued in order to improve performance such as thermal efficiency and output characteristics.
タービン入口温度全上昇させるとタービン翼が昇温して
構成材料の耐熱限度を越える虞れがあるので該タービン
翼の冷却が必要になる。従来一般に、中空に形成した諷
内に冷却空気を送入して冷却を行ない、冷却空気を作動
流体中に放出、混入させている。このため(1)主流ガ
スの温度全低下させる。(2)混合による全圧損失金主
じる。などガスタービンの性能低下を招く、従って高温
ガスタービンにおいては燃焼ガス温度上昇のメリツ)1
損わないよう、冷却空気消費量の少なくしかつ混合の影
響を小さくする設計が必要となる。If the turbine inlet temperature is completely increased, the temperature of the turbine blades may rise and exceed the heat resistance limit of the constituent materials, so the turbine blades must be cooled. Conventionally, cooling is generally performed by feeding cooling air into a hollow tube, and the cooling air is discharged and mixed into the working fluid. For this reason, (1) the temperature of the mainstream gas is completely lowered; (2) Total pressure loss due to mixing is the main cause. etc., leading to a decrease in the performance of the gas turbine.Therefore, in high-temperature gas turbines, the merits of increasing the combustion gas temperature) 1
To avoid damage, a design is required that reduces cooling air consumption and minimizes the effects of mixing.
特に第1段静翼は主流ガス温度が最も高く冷却を強化す
る必要があるが、冷却を強化すればする程第1段靜興を
出た主流ガス温度は冷却空気との混合により全圧および
全温か低下するという不具合を招く。In particular, the first stage stationary vane has the highest mainstream gas temperature and needs to be strengthened in cooling, but the more the cooling is strengthened, the more the temperature of the mainstream gas leaving the first stage stationary vane will decrease in total pressure and total temperature due to mixing with cooling air. This causes a problem.
第1図は従来のガスタービンの断面図で、実線矢印Aは
主流ガスを示し、破線矢印Bは冷却空気流を示している
。空気圧縮機(図示していない)で高圧になった空気は
燃焼器1で高温の燃焼ガスとなってタービンに入シ、ケ
ーシング12内に配置された第1段静翼2、第1段励1
43、第2段以降の静翼4.動翼5を通シデイフユーザ
6を通って排気される。動翼はホイール8.スタブシャ
フト11と共に回転して動力を発生する。9はスベー?
、12はケーシング、17はホイールスペースである。FIG. 1 is a cross-sectional view of a conventional gas turbine, where solid arrows A indicate mainstream gas and dashed arrows B indicate cooling air flow. Air that has become highly pressurized by an air compressor (not shown) becomes high-temperature combustion gas in the combustor 1 and enters the turbine, where it passes through the first stage stator vanes 2 and the first stage excitation 1 arranged in the casing 12.
43. Stator blades from second stage onward 4. The air is exhausted through the rotor blades 5 and through the diffuser user 6 . The moving blade is wheel 8. It rotates together with the stub shaft 11 to generate power. Is 9 great?
, 12 is a casing, and 17 is a wheel space.
破線矢印Bで示した冷却空気は、空気圧縮機(図示して
いない)の吐出空気若しくは中間段抽出空気を用い、そ
の1部を第1段静翼2の内部に形成した望洞に導いて該
第1段靜11&2の冷却全行なわせた後、主流ガス中に
流出・混合させる。上記の第1段静翼2の冷却と併行し
て、冷却空気の1部を第1段動翼3および更に下流側の
靜興4゜動JK5等に分流させて並列的に生気冷却が行
なわれる。The cooling air indicated by the broken line arrow B uses the discharge air of an air compressor (not shown) or the intermediate stage extracted air, and a part of it is guided to the observation cavity formed inside the first stage stator vane 2. After the first-stage stills 11 & 2 have been completely cooled, they are discharged and mixed into the mainstream gas. In parallel with the cooling of the first stage stationary blades 2, a part of the cooling air is divided into the first stage rotor blades 3 and the 4-degree moving JK5 on the downstream side, and live air cooling is performed in parallel.
各タービン翼の中で最も高温になる第1段静翼2の所要
冷却空気量は、燃焼器出口ガス温度が1200C’の場
合、主流ガスの4〜5%に及び、冷却作用を済ませた空
気は600〜800Cになって主流ガス中に排出される
。このため、主流ガス温度が第1段静翼2を通過する際
30〜40C下降してしまう。The amount of cooling air required for the first stage stationary vane 2, which has the highest temperature among the turbine blades, is 4 to 5% of the mainstream gas when the combustor outlet gas temperature is 1200C', and the air that has completed the cooling action is 600C. It reaches ~800C and is discharged into the mainstream gas. For this reason, the mainstream gas temperature drops by 30 to 40 C when passing through the first stage stationary blade 2.
上述のごと〈従来のガスタービンの冷却系統は、第1段
静翼2を空気冷却することによって主流ガスを降温させ
て出力低下を招く他、混合損失を生じ、また、空気圧縮
機における動力損失が大きい。As mentioned above, in the conventional gas turbine cooling system, by air cooling the first stage stationary vane 2, the temperature of the mainstream gas is lowered, resulting in a decrease in output, as well as a mixing loss, and a large power loss in the air compressor. .
本発明の目的は、高温ガスタービンの翼の冷却空気消費
量を減らし、かつ主流ガスと冷却空気の混合による悪影
響を減少せしめ得る冷却系統全提供してガスタービンの
効率及び出力特性の向上に貢献するにある。An object of the present invention is to provide an entire cooling system that can reduce the cooling air consumption of the blades of a high-temperature gas turbine and reduce the negative effects of mixing of mainstream gas and cooling air, thereby contributing to improving the efficiency and output characteristics of the gas turbine. There is something to do.
上記の目的を達成するため、本発明の冷却系統は、最も
苛酷な熱的条件下にあって最も多量の冷却空気を消費す
る第1段静翼に着目し、第1段静翼中を流通した冷却空
気を主流ガス中に排出することなく、これをタービン外
部に設けた熱交換器に導いて降温させた後、再び第1段
動翼に導いて第1段動翼の冷却空気として再利用し得る
ように構成1−たことを特徴とする。ただし、第1段動
翼のみならず、第2段動、静翼若しくはそれ以降の動、
静翼の冷却にも併せて利用することを妨げない。In order to achieve the above object, the cooling system of the present invention focuses on the first stage stator vane, which is under the most severe thermal conditions and consumes the largest amount of cooling air, and uses the cooling air flowing through the first stage stator vane. Without discharging it into the mainstream gas, it is guided to a heat exchanger installed outside the turbine to cool it down, and then guided to the first stage rotor blades so that it can be reused as cooling air for the first stage rotor blades. It is characterized by configuration 1-. However, not only the first stage moving blades, but also the second stage moving blades, stationary blades, and subsequent moving blades,
This does not preclude its use in conjunction with cooling of stationary blades.
次に、本発明の1実施例を第2図について説明する。こ
の実施例は第1図に示した従来のガスタービンに本発明
の冷却系統を適用して改良したもので、第1図と同一の
図面8照番号を附した燃焼器1.第1段動翼3.第2段
静翼4.第2段動翼5、ディフューザ6、シャフト7、
およびホイール8は第1図(従来装置)におけると同様
乃至類似の構成部材である。Next, one embodiment of the present invention will be described with reference to FIG. This embodiment is an improved version of the conventional gas turbine shown in FIG. 1 by applying the cooling system of the present invention, and the combustor 1. 1st stage rotor blade3. 2nd stage stationary blade 4. 2nd stage rotor blade 5, diffuser 6, shaft 7,
and wheels 8 are the same or similar components as in FIG. 1 (prior device).
圧縮機(図示せず)から供給される冷却用の圧縮空気破
線矢印B′を第1段静翼2の内径側から翼内に導入し、
該静翼2を冷却して昇温した冷却空気給気配管2の外径
側から流出させ、冷却空気吐出配管13を通して熱交換
器14に導く。熱交換器14では加熱された冷却空気を
冷媒矢印Cによって冷却後、冷却空気給気配管15ff
i通し、回転するスタブシャフト11に設けた給気孔1
6によシターピ/のホイールスペース17に導き、ホイ
ール8とスペーサ9との間に設けられた溝18を通して
第1段動翼3.および冷却を必要とする第2段以降の動
翼に供給する。5第2段以降の静翼4に対してもスペー
サ9.ダイ゛1フラムに設けた通気孔19全通して静翼
4の内径側より冷却空気を供給してもよい。第1段動翼
3以降の翼を冷却した冷却空気は主流ガス中に排出して
混入せしめる。Introducing compressed air for cooling supplied from a compressor (not shown) into the blade from the inner diameter side of the first stage stationary blade 2,
The stator vanes 2 are cooled and heated to flow out from the outer diameter side of the cooled air supply pipe 2, and are led to the heat exchanger 14 through the cooled air discharge pipe 13. In the heat exchanger 14, the heated cooling air is cooled by the refrigerant arrow C, and then transferred to the cooling air supply pipe 15ff.
Air supply hole 1 provided in rotating stub shaft 11 through i
6 into the wheel space 17 of the rotor blade 3.6 and the first stage rotor blade 3. It is also supplied to the second and subsequent stages of rotor blades that require cooling. 5 Spacers 9 are also provided for the stator blades 4 in the second and subsequent stages. Cooling air may be supplied from the inner diameter side of the stationary blade 4 through all the ventilation holes 19 provided in the diaphragm 1. The cooling air that has cooled the blades after the first stage rotor blade 3 is discharged and mixed into the mainstream gas.
以上のように構成した冷却系統においては、第1段静翼
2の冷却に使用した空気を熱交換器14で降温させて第
1段動翼3の冷却用に再使用するので、第1段動翼3の
冷却用として比較的低温の冷却空気音用いることができ
る。このため、第1段静翼2のために消費してしまう冷
却空気量が零である上に、第1段動翼3の冷却に必要な
空気量も(冷却空気が低温になった分だけ)少なくて済
む。In the cooling system configured as described above, the air used for cooling the first stage stator blades 2 is lowered in temperature by the heat exchanger 14 and reused for cooling the first stage rotor blades 3. Relatively low temperature cooling air sound can be used for cooling. Therefore, the amount of cooling air consumed by the first stage stationary blades 2 is zero, and the amount of air required to cool the first stage rotor blades 3 is also reduced (by the amount that the cooling air has become colder). It's done.
一方、第1段静翼2に送入する冷却空気は熱交換器を経
ていないので、その温度は空気圧縮機(図示せず)の吐
出温度とほぼ同じであるが、第1段動翼3以降の冷却翼
に用いる冷却空気量の合計量を第1段静翼2の冷却空気
として用いることができるので、第1段靜lj&2の冷
却に多量の冷却空気を用いることができる。このため、
第1段静翼2内の冷却望気流速を上げることが可能で、
充分な冷却効果を得ることが容易である。また、冷却空
気系統の差圧は、最大で圧縮機出ロ圧カー第1段動翼出
口の圧力差を利用できるので、翼内の冷却構造や熱交換
器14部で圧力損失がある程度生じても、第1段動翼以
降の冷却翼に使用すべき冷却空気量は確保できる。On the other hand, since the cooling air sent to the first stage stator blades 2 does not pass through a heat exchanger, its temperature is almost the same as the discharge temperature of the air compressor (not shown). Since the total amount of cooling air used for the cooling blades can be used as cooling air for the first stage stationary blades 2, a large amount of cooling air can be used for cooling the first stage stator vanes lj&2. For this reason,
It is possible to increase the desired cooling air flow velocity within the first stage stator vane 2,
It is easy to obtain a sufficient cooling effect. In addition, the pressure difference in the cooling air system can utilize the maximum pressure difference at the outlet of the compressor outlet pressure car first stage rotor blade, so there is no pressure loss to some extent in the cooling structure inside the blade or in the heat exchanger 14 section. However, the amount of cooling air that should be used for the cooling blades after the first stage rotor blade can be secured.
なお第1段静翼2に関しては、冷却空気を外径側より導
入し内径側から、燃焼器の外筒の間金通してガスタービ
ンの外部に導いてもよい。また第2段以降の静翼4の冷
却系統については、従来方式のように圧縮機吐出空気ま
たは圧縮機中間段より抽気した冷却空気を直接静R4の
外径側よシ導入してもよい。Regarding the first stage stationary blade 2, the cooling air may be introduced from the outer diameter side and guided from the inner diameter side to the outside of the gas turbine by passing through the outer cylinder of the combustor. Regarding the cooling system for the stator vanes 4 in the second and subsequent stages, the compressor discharge air or the cooling air extracted from the intermediate stage of the compressor may be directly introduced through the outer diameter side of the stator R4 as in the conventional system.
本実施例において第1段静翼2を通過する主流ガスは、
第1段静翼2に接触して若干降温するが、冷却空気の混
入?受けないので降温量が少なく、数C程度に過ぎない
。この降温量は従来装置における第1段静翼流通時の降
温量に比して5〜10チに過ぎない。その上、第1段静
翼2から主流ガス中に冷却空気を排出しないのでこの個
所において主流ガスの混合損失を生じない。In this embodiment, the mainstream gas passing through the first stage stator vane 2 is as follows:
The temperature drops slightly when it comes into contact with the first stage stationary blade 2, but is it possible that cooling air is mixed in? Since it is not exposed to heat, the amount of temperature drop is small, only a few degrees Celsius. This amount of temperature drop is only 5 to 10 inches compared to the amount of temperature drop when the first stage stator blades flow in the conventional device. Furthermore, since cooling air is not discharged from the first stage stationary vane 2 into the mainstream gas, no mixing loss of the mainstream gas occurs at this location.
以上詳述したように、本発明の冷却系統は、ガスタービ
ンの第1段静翼の内部に冷却空気?流通させ、該静翼か
ら流出した冷却空気の少なくとも一部分を熱交換器に導
き、該熱交換器で降温させた冷却空気を第1段動翼に導
いて冷却を行なわせるように構成することにより、高温
ガスタービンにおける翼冷却用空気の消費量を減少せし
め、かつ、主流ガスと冷却空気との混合による損失を防
止することができ、ガスタービンの熱効率向上や出力%
性の改善に貢献するところ多大である。As described above in detail, the cooling system of the present invention has cooling air inside the first stage stationary blades of the gas turbine. At least a portion of the cooling air flowing out from the stationary blades is guided to a heat exchanger, and the cooling air whose temperature has been lowered by the heat exchanger is guided to the first stage rotor blades for cooling. It can reduce the consumption of blade cooling air in high-temperature gas turbines, and prevent loss due to mixing of mainstream gas and cooling air, improving the thermal efficiency of gas turbines and increasing the output percentage.
It makes a huge contribution to improving sexuality.
第1図は従来の冷却系統を備えたガスタービンの断面図
、第2図は本発明の冷却系統の1実施例を備えたガスタ
ービンの断面図である。
1・・・燃焼器、2・・・第1段静翼、3・・・第1段
動翼、4・・・第2段静め、5・・・第2段動翼、6・
・・ディフューザ、7・・・シャツ)、8−・・ホイー
ル、9・・・スヘーサ、10・・・ダイ゛アフラノ・、
11・・・スタブシャフト、12・・・ケーシング、1
3・・・冷却空気吐出配管、14・・・熱交換器、17
・・・ホイールスペース。
代理人 弁理士 秋本正実
早 1 図FIG. 1 is a cross-sectional view of a gas turbine equipped with a conventional cooling system, and FIG. 2 is a cross-sectional view of a gas turbine equipped with an embodiment of the cooling system of the present invention. DESCRIPTION OF SYMBOLS 1... Combustor, 2... 1st stage stator blade, 3... 1st stage moving blade, 4... 2nd stage calming, 5... 2nd stage moving blade, 6...
...Diffuser, 7...Shirt), 8-...Wheel, 9...Shasa, 10...Diafrano...
11... Stub shaft, 12... Casing, 1
3... Cooling air discharge piping, 14... Heat exchanger, 17
...Wheel space. Agent Patent Attorney Masami Akimoto 1 Figure
Claims (1)
させ、該静翼から流出した冷却空気の少なくとも一部分
を熱交換器に導き、該熱交換器で降温させた冷却を気を
第1段動翼に導いて冷却を行なわせるように構成したこ
と1[徴とするガスタービンの冷却系統。(2) Cooling air is circulated inside the first stage stator vanes of the gas turbine, at least a portion of the cooling air flowing out from the stator vanes is guided to a heat exchanger, and the cooling air whose temperature has been lowered by the heat exchanger is transferred to the first stage. A cooling system for a gas turbine characterized in that it is configured to conduct cooling by guiding the moving blades to the rotor blades.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP114183A JPS59126034A (en) | 1983-01-10 | 1983-01-10 | Cooling system for gas turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP114183A JPS59126034A (en) | 1983-01-10 | 1983-01-10 | Cooling system for gas turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59126034A true JPS59126034A (en) | 1984-07-20 |
Family
ID=11493165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP114183A Pending JPS59126034A (en) | 1983-01-10 | 1983-01-10 | Cooling system for gas turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59126034A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4967552A (en) * | 1986-02-07 | 1990-11-06 | Hitachi, Ltd. | Method and apparatus for controlling temperatures of turbine casing and turbine rotor |
US5320483A (en) * | 1992-12-30 | 1994-06-14 | General Electric Company | Steam and air cooling for stator stage of a turbine |
US5536143A (en) * | 1995-03-31 | 1996-07-16 | General Electric Co. | Closed circuit steam cooled bucket |
-
1983
- 1983-01-10 JP JP114183A patent/JPS59126034A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4967552A (en) * | 1986-02-07 | 1990-11-06 | Hitachi, Ltd. | Method and apparatus for controlling temperatures of turbine casing and turbine rotor |
US5320483A (en) * | 1992-12-30 | 1994-06-14 | General Electric Company | Steam and air cooling for stator stage of a turbine |
US5536143A (en) * | 1995-03-31 | 1996-07-16 | General Electric Co. | Closed circuit steam cooled bucket |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8459040B2 (en) | Rear hub cooling for high pressure compressor | |
CN101338701B (en) | For the method and system of the fluid in cooling turbine engines | |
EP2358978B1 (en) | Apparatus and method for cooling a turbine airfoil arrangement in a gas turbine engine | |
JP2971386B2 (en) | Gas turbine vane | |
JP2017101671A (en) | Intercooling system and method for gas turbine engine | |
JPH02233802A (en) | Cooling type turbine blade | |
JP3170686B2 (en) | Gas turbine cycle | |
JPH07208106A (en) | Turbine | |
JP2000054997A (en) | Centrifugal compressor | |
US20160290234A1 (en) | Heat pipe temperature management system for wheels and buckets in a turbomachine | |
JPH11270353A (en) | Gas turbine and stationary blade of gas turbine | |
JP2012072708A (en) | Gas turbine and method for cooling gas turbine | |
JP4867203B2 (en) | gas turbine | |
JPS59126034A (en) | Cooling system for gas turbine | |
JP3182343B2 (en) | Gas turbine vane and gas turbine | |
US9810151B2 (en) | Turbine last stage rotor blade with forced driven cooling air | |
CN114810673B (en) | Two-stage compression backflow internal circulation air cooling system of high-speed centrifugal compressor | |
JPH0425415B2 (en) | ||
JP3329754B2 (en) | Refrigerant recovery type gas turbine | |
JP2008274818A (en) | Gas turbine | |
CN208396755U (en) | A kind of novel advanced technique | |
JPS6022003A (en) | Cooling method for gas turbine blade | |
JP2012031727A (en) | Gas turbine and method for cooling gas turbine | |
CN106285949B (en) | Engine high pressure blower outlet cooling system | |
JPH0454041B2 (en) |