JPS59116705A - Optical mixing coupler and its production - Google Patents
Optical mixing coupler and its productionInfo
- Publication number
- JPS59116705A JPS59116705A JP22898682A JP22898682A JPS59116705A JP S59116705 A JPS59116705 A JP S59116705A JP 22898682 A JP22898682 A JP 22898682A JP 22898682 A JP22898682 A JP 22898682A JP S59116705 A JPS59116705 A JP S59116705A
- Authority
- JP
- Japan
- Prior art keywords
- mixing
- substrate
- waveguide
- refractive index
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/30—Optical coupling means for use between fibre and thin-film device
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は二つの光フアイバ一群を接続して一方の光フア
イバ一群を通して伝送される光を混合した後、他方の光
フアイバ一群に送るカブラに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coupler that connects two sets of optical fibers and mixes the light transmitted through one set of optical fibers before sending it to the other set of optical fibers.
従来、光ミキシングカブラとしてはオ/図に示すように
入射側および出射側に接続するファイバ束(アレイ状)
/3./lIの幅をもちファイバーのコア径相当の厚み
のミキシング用導波路/!;’1−11ラスなどの固体
誘電体の平板で形成し、これを高分子材料の側板/乙、
/乙によって接着したものが報告されている。これは信
頼性や精度、ファイバー接続部における伝送損失性能な
どの点て十分満足のいくものではなく問題が多い。Conventionally, optical mixing couplers have been used with fiber bundles (arrayed) connected to the input side and output side as shown in the figure.
/3. A mixing waveguide with a width of /lI and a thickness equivalent to the fiber core diameter/! ;'1-11 It is formed from a solid dielectric flat plate such as lath, and this is made of a side plate made of a polymer material.
/B has been reported to have been glued together. This method is not fully satisfactory in terms of reliability, accuracy, transmission loss performance at fiber connections, etc., and has many problems.
また第2図に示すようにミキシングカプラ15の両端に
入力用、および出力用の分岐した導波路を幅方向に間隔
をおいて設けたものも提案されているが、この場合入力
用および出力用のn本の導波路分の幅をもったミキシン
グ導波路部が必要になり、それらn本導波路からの光を
幅方向に等強度ニするように混合するためには前記ミキ
シングカプラが相当長くなる。Furthermore, as shown in FIG. 2, it has been proposed that branched waveguides for input and output are provided at both ends of the mixing coupler 15 at intervals in the width direction; A mixing waveguide section with a width equal to n waveguides is required, and in order to mix the lights from these n waveguides so that they have equal intensities in the width direction, the mixing coupler must be quite long. Become.
また2本以上のファイバーを束にして加熱軟化状態でね
しり、融着させてミキシング部をつくる方法があるが、
これは光伝送部の形状が予期しない複雑な形状に変形す
るため信頼性の面で問題がある。There is also a method of creating a mixing section by bundling two or more fibers together, twisting them in a heated, softened state, and fusing them together.
This poses a problem in terms of reliability because the shape of the optical transmission section deforms into an unexpectedly complicated shape.
本発明は上記従来の問題点を解決し、小型でありながら
光のミキシング効果が高い高精度の光ミキシングカプラ
を提供することを目的としている。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and provide a high-precision optical mixing coupler that is small but has a high light mixing effect.
また本発明の他の目的は上記のミキシングカプラを安定
した品質で安価に量産することのできる方法を提供する
ことにある。Another object of the present invention is to provide a method by which the above-mentioned mixing coupler can be mass-produced at low cost and with stable quality.
上記の目的を達成する本発明の光ミキシングカプラは透
明基板中に周囲部分よりも屈折率か犬で断面がほぼ円形
の領域からなる導波路を一体に形成し、前記導波路は中
央に位置する単一路からなるミキシング部とこのミキシ
ングカプラからそれぞれ複数に分岐して基板の対向する
両側面にそれぞれ至る分岐部で構成し、且つ前記導波路
の全長にわたりその径を接続される光ファイバーのコア
径とほぼ同一にして構成される。The optical mixing coupler of the present invention which achieves the above object integrally forms in a transparent substrate a waveguide consisting of an area having a substantially circular cross section with a refractive index higher than that of the surrounding area, and the waveguide is located at the center. It consists of a mixing section consisting of a single path and a plurality of branch sections each branching from this mixing coupler and reaching each of the opposite sides of the substrate, and the diameter thereof extends over the entire length of the waveguide and is equal to the core diameter of the optical fiber to be connected. are configured almost identically.
上記構成において、導波路の分岐部は望ましい実施例で
は導波路の全ての分岐点における分岐数を三路に統一シ
、ミキシング部から基板端面に向けて導波路に沿い間隔
をおいてIl[α次二分岐ずつ枝分かれするように形成
する。In the above configuration, in a preferred embodiment, the branching portion of the waveguide is such that the number of branches at all branching points of the waveguide is unified to three, and the number of branches at all branching points of the waveguide is unified to three, and Il[α Next, form two branches each.
これにより、基板端部に接続された光ファイバーから基
板の分岐部導波路に入る光は、二本−組のファイバーか
らの光がファイバーのコア径にほぼ等しい単一路で充分
均一に混合され、次いでこの混合された伝送光に他の7
アイノ(−組からの混合光が混合されるというように導
波路を進むに従い順次一対のファイバーの混合光が追加
され最終的に単一路のミキシング部で三路を通して導入
された光が混合される。またミキシング部で混合された
光は基板の他端面に接続されたファイン(一群に分岐入
射するまでの間に上記と同様に1つの分岐点毎に三路に
枝分かれしつつ他端に至る。As a result, the light entering the branch waveguide of the substrate from the optical fiber connected to the end of the substrate is sufficiently uniformly mixed with the light from the two sets of fibers in a single path approximately equal to the core diameter of the fiber, and then In this mixed transmission light, other 7
The mixed light from the pair of fibers is added sequentially as it progresses through the waveguide, and finally the light introduced through the three paths is mixed in the single-path mixing section. Furthermore, the light mixed in the mixing section branches into three paths at each branch point and reaches the other end, as described above, before branching into a group of fine lights connected to the other end surface of the substrate.
本発明においては」二記した以外に、7つの分岐点から
三つ以上の分岐路が枝分かれするように構成することも
勿論可能である。In the present invention, it is of course possible to configure the present invention so that three or more branching paths branch out from the seven branching points, in addition to the two described above.
たたし7つの分岐点からの分岐路数があまり多くなると
最外側に位置する分岐路間の成す角度が大きくなって均
一混合のために比較的長い導波路が必要となってくるの
で全体をコンパクト化するためには前者の二分岐単位の
構造が望ましい。However, if the number of branches from the seven branch points increases too much, the angle between the outermost branches will become large, and a relatively long waveguide will be required for uniform mixing. The former bifurcated unit structure is desirable for compactness.
本発明の光ミキシングカプラによれば、分岐部から導入
された光が接続ファイバーのコア径にほぼ等しい径をも
つミキシング部において混合されるので短かい距離の間
に確実に均一混合が行なわれる。According to the optical mixing coupler of the present invention, since the light introduced from the branching section is mixed in the mixing section having a diameter approximately equal to the core diameter of the connecting fiber, uniform mixing is reliably performed over a short distance.
またこのような分岐部とミキシング部とを単一の基板内
に一体的に形成しているので構造が非常に単純でファイ
バーの接続等の組立作業性も非常に容易で扱い易い。Furthermore, since the branching section and the mixing section are integrally formed within a single substrate, the structure is very simple, and assembly work such as fiber connection is very easy and easy to handle.
また後述するように、基板ガラスの面を導波路パターン
の開口を残してマスキングし、この間L1を通して基板
ガラスの屈折率を増加させるイオンを拡散浸透させるこ
とにより導波路を形成する製造方法をとった場合、本発
明品ではミキシング部も均
含めて導波路の全体にわたり颯−の径としているため、
イオン透過防止のマスク開口幅が均一なのでイオンの拡
散浸透深さが導波路全長にわたり一様となる。Furthermore, as will be described later, a manufacturing method was used in which the surface of the substrate glass was masked leaving an opening for the waveguide pattern, and during this time, ions that increased the refractive index of the substrate glass were diffused and penetrated through L1 to form a waveguide. In this case, in the product of the present invention, the entire waveguide including the mixing section has a uniform diameter, so
Since the opening width of the mask for preventing ion transmission is uniform, the depth of ion diffusion and penetration is uniform over the entire length of the waveguide.
このため分岐部とミキシング部との接続点におiJる光
損矢がほとんど生じることなく全長にわたり伝播損失を
非常に小さく抑えることができる。Therefore, almost no optical loss occurs at the connection point between the branching part and the mixing part, and the propagation loss can be kept very small over the entire length.
次に図面に示した実施例について本発明の詳細な説明す
る。Next, the present invention will be described in detail with reference to the embodiments shown in the drawings.
第3図は本発明に係る光ミキシング部路(7) 平面断
面図、第1図は側面図であり、ガラス、合成樹脂等の透
明材料からなる偏平な平行六面体の基板/中に、この基
板部分よりも屈折率の犬な領域、例えば中心での屈折率
が最大で周囲に向けてパラ一体に設けである。FIG. 3 is a plan sectional view of the light mixing section (7) according to the present invention, and FIG. 1 is a side view. It is a region where the refractive index is higher than that of the other parts, for example, the refractive index at the center is maximum and it is provided in a para-integral manner toward the periphery.
そして導波路ノは基板中央に単一路からなる最終段のミ
キシング部2Bを配し、このミキシング部、2Bの両端
からそれぞれ複数に分岐して基板の対向する両側面7に
、/Bに至る分岐部、2Aて構成されている。The waveguide has a single-path final stage mixing section 2B in the center of the substrate, and branches from both ends of this mixing section 2B into a plurality of branches to reach /B on both opposing sides 7 of the substrate. It is composed of 2 parts and 2 parts.
ミキシング部、2Bの一方に位置する弊分岐部−2人に
おける導波路は、基板/の両側面/A、/Bに端部を露
出させて間隔をおき平行に設けた偶数本の導入路グA・
・・・・と、これら導入路グA・・・・・がらの伝送光
を三路単位で合流するオ/段の合流路tAと、さらにこ
れら合流路5A・・・・・の伝送光を三路単位で合流す
るオフ段の合流路gで構成され、このようにして順次三
路単位で導波路を合流させて最終段の合流路+Aを三路
とし、この二本の最終段分岐路乙Aがらの伝送光をミキ
シング部、2Bで最終的に混合する。The waveguides in our branch section located on one side of the mixing section 2B are an even number of inlet paths arranged parallel to each other at intervals with their ends exposed on both sides of the substrate /A and /B. A.
. . ., an O/stage merging path tA that merges the transmitted light from these introduction paths 5A in units of three paths, and further the transmission light from these merging paths 5A... It is composed of off-stage merging paths g that merge in three-way units, and in this way, the waveguides are sequentially merged in three-way units to form the final-stage merging path +A as three paths, and these two final-stage branch paths The transmitted light from A is finally mixed in a mixing section 2B.
そしてこの混合光は上記と対象的なパターンで配置した
導波路により順次分割する。This mixed light is then sequentially divided by waveguides arranged in a pattern symmetrical to that described above.
すなわちミキシング部、2Bからの混合光を三路からな
るオフ段の分岐路乙Bで均等に分割し、さらにこの各オ
フ段分岐路乙B−6Bの伝送光をオ一段分岐路5Bで三
路ずつに分岐させ、このように順次1つの分岐点7にお
いて三路ずつに分岐させて最終段分岐路<zBで所定数
(偶数)の光フアイバ一群3・・・・・・に接続する。In other words, the mixed light from the mixing section 2B is divided equally by the three-way off-stage branch path B-6B, and the transmitted light from each off-stage branch path B-6B is divided into three paths by the first-stage branch path 5B. In this way, they are sequentially branched into three paths at one branch point 7, and connected to a predetermined number (even number) of optical fiber groups 3 at the final branch path <zB.
ここで第5図に示すように各分岐点7山・・における両
分岐路の成す分岐角θはあまり大きくすると合流後にお
りる混合効率が悪くなりまた波光損失等が生しるので好
ましくは50以下より好ましくは70以下にすることが
望ましい。また分岐後の導波路の形状は緩やかな曲率R
を与えておくことが望ましい。Here, as shown in Fig. 5, if the branching angle θ formed by the two branching paths at each of the seven branching points is too large, the mixing efficiency after merging will deteriorate and light loss will occur, so it is preferably 50. It is more preferable to set it to 70 or less. In addition, the shape of the waveguide after branching has a gentle curvature R.
It is desirable to provide.
本発明において分岐路の平面パターンは第5図に示すよ
うに左右対称の7字型にする以外にオ乙図に示すように
一方の分岐路を分岐前から通しの直線路とし、これに対
して他方の分岐路が枝分かれする形に形成してもよい。In the present invention, the plane pattern of the branching road is not only a symmetrical 7-shaped pattern as shown in Fig. 5, but also a straight line running through one branching road from before the branch as shown in Fig. The other branch path may be formed into a branching shape.
分岐角θが充分に小さい場合はいずれの形状でも光の混
合均一度(混合路における断面内での/ぐワー分布)は
ほとんど差がないことが本発明者らの実験で確められて
いる。The inventors' experiments have confirmed that when the branching angle θ is sufficiently small, there is almost no difference in the light mixing uniformity (light distribution within the cross section of the mixing path) regardless of the shape. .
次に本発明の光ミキシングカプラを製造する好適な方法
についてオフ図により説明する。Next, a preferred method for manufacturing the optical mixing coupler of the present invention will be explained using off-line diagrams.
まずアルカリを含有するガラス例えばアルカリはうげい
酸ガラスからなる透明基板3/を準備し、この基板の片
面側をオフ図(イ)に示すようGi所望の導波路パター
ン例えば第3図のパターンの開口33を残してイオン透
過防止用マスク32で覆う。First, a transparent substrate 3/ made of alkali-containing glass, such as alkali borosilicate glass, is prepared, and one side of this substrate is formed into a desired Gi waveguide pattern, for example, the pattern shown in FIG. The opening 33 is left and covered with a mask 32 for preventing ion transmission.
−例として基板3/の厚みを3mmとし、パターン開口
33の幅を約Sμm、全分岐点7・・・・の分岐角θを
102分岐点近傍の導波路のわん曲面率半径RをIIQ
mmとする。- As an example, the thickness of the substrate 3/ is 3 mm, the width of the pattern opening 33 is approximately S μm, the branch angle θ of all branch points 7 is 102, the radius of curvature R of the waveguide near the branch point is IIQ
Let it be mm.
またマスク32としてはチタンなどの金属を高周波スパ
ック法で!μm程度の膜厚に形成し、この膜の一部を周
知のフォトリソグラフィー技術を用いてエノヂングして
所望のパターン開口33を形成する。次いてマスク32
の面側を電子分極率が大きく基板ガラスに対する屈折率
増大に寄与するイオンを含む溶融塩lI3の浴に浸漬す
る。In addition, the mask 32 is made of metal such as titanium using the high frequency spackle method! The film is formed to a thickness of about μm, and a part of this film is etched using a well-known photolithography technique to form a desired pattern opening 33. Next, mask 32
The surface side of the substrate is immersed in a bath of molten salt lI3 containing ions having a large electronic polarizability and contributing to an increase in the refractive index of the substrate glass.
この塩II3としてはタリウム(Tl)イオン、セシウ
ム(Cs)イオン、銀(Ag)イオンの少なくとも一種
を含む硝酸塩または硫酸塩を使用することができる。As this salt II3, a nitrate or sulfate containing at least one of thallium (Tl) ions, cesium (Cs) ions, and silver (Ag) ions can be used.
次にガラス基板3/のマスク面の反対側の面に例えば粘
土とKNO3をペースト状にしてつけた導電ペースト層
lグを介して電極I1.2を密着させ、この電極り!を
直流電源ゲ乙の陰極側に接続し、溶融塩グ3中に設けら
れた電極l/を電源l乙の陽極に接続して直流電圧を印
加する。溶融塩13゜ガラス基板3/の温度を基板ガラ
スの軟化湿度より低い例えばSSO”Cに設定し、直流
電圧例えば5■を数分間印加するとガラス基板表面に垂
直な断面で半円形の高屈折率層夕/が得られる。Next, the electrode I1.2 is closely attached to the opposite side of the mask surface of the glass substrate 3 via a conductive paste layer made of a paste of clay and KNO3, for example. is connected to the cathode side of the DC power source 3, and the electrode 1/ provided in the molten salt 3 is connected to the anode of the power source 1 to apply a DC voltage. When the temperature of the molten salt 13° glass substrate 3/ is set to, for example, SSO''C, which is lower than the softening humidity of the substrate glass, and a DC voltage of, for example, 5 cm is applied for several minutes, a semicircular high refractive index is formed in a cross section perpendicular to the glass substrate surface. The layer / is obtained.
この高屈折率部、5′/は基板ガラス中の7価のイオン
が溶融塩13中のタリウムイオンなどガラスの屈折率増
大に寄与するイオンで置き換えられて形成されたもので
、マスクの開口33直下で屈折率が最大で上記点を中心
として半径方向に次第に減少するような屈折率分布を有
している。This high refractive index portion 5'/ is formed by replacing the seven-valent ions in the substrate glass with ions that contribute to increasing the refractive index of the glass, such as thallium ions in the molten salt 13, and It has a refractive index distribution such that the refractive index is maximum immediately below and gradually decreases in the radial direction around the above point.
上記のようにして形成される高屈折率部51の基板表面
での幅は前述の数値例の場合で約jOμmである。The width of the high refractive index portion 51 formed as described above on the substrate surface is approximately jOμm in the numerical example described above.
なお基板の両面間に電界をかけてイオン交換を促進する
以外に電界を印加せずに自然拡散によるイオン交換法を
用いてもさしつかえない。In addition to promoting ion exchange by applying an electric field between both surfaces of the substrate, it is also possible to use an ion exchange method using natural diffusion without applying an electric field.
次いでガラス基板3/表面のマスク3.2をエツチング
や研磨等で取り除き、高屈折率部りlの側の基板面を電
子分極率の小さいすなわち基板ガラスに対する屈折率増
大に寄与の小さいす) IJウムイて直流電圧を印加し
、例えばSVで約100分間程度のイオン交換処理を行
なって上記イオンS2を基板中に拡散させると基板面に
垂直な断面においてほぼ円形の導波路53が形成される
。この導波路53の径は上記数値例の場合で約50μm
である。Next, the mask 3.2 on the glass substrate 3/surface is removed by etching, polishing, etc., and the substrate surface on the side of the high refractive index portion 1 is treated with an IJ that has a small electronic polarizability, that is, it has a small contribution to increasing the refractive index with respect to the substrate glass. When a DC voltage is applied at high speed and an ion exchange process is performed for about 100 minutes using SV, for example, to diffuse the ions S2 into the substrate, a substantially circular waveguide 53 is formed in a cross section perpendicular to the substrate surface. The diameter of this waveguide 53 is approximately 50 μm in the above numerical example.
It is.
次いで溶融塩からガラス基板を取り出し所定の寸法に切
断した後、側面を平滑面に研磨仕上げする。Next, the glass substrate is taken out from the molten salt and cut into a predetermined size, and then the side surfaces are polished to a smooth surface.
以上のようにして第3図の導波路パターンをもつ光ミキ
シングカブラを得ることができる。In the manner described above, an optical mixing coupler having the waveguide pattern shown in FIG. 3 can be obtained.
実験の結果では、コア径jOμで中心と外周との屈折率
差が7%の屈折率分布型ファイバー3・・・・・・をざ
本ずつそれぞれ上記ミキシングカブラの両側面/A、
/Bに接続し、波長0.ざ3μmの光をミキらの出射光
を測定してカブラの挿入損失を調べた△
ところ約/dB という低損失で且つg本のファイバ
ーにおいていずれもはぼ均一な光強度が得られた。According to the experimental results, a graded index fiber 3 with a core diameter of jOμ and a refractive index difference of 7% between the center and the outer periphery was placed on each side of the above mixing coupler /A,
/B, wavelength 0. The insertion loss of the coupler was investigated by measuring the emitted light of 3 μm in diameter.As a result, a low loss of approximately /dB and a nearly uniform light intensity was obtained in all g fibers.
上述した方法によれば大型の母基板を用いることによっ
て7回の処理工程で多数のミキサーカブラを一挙に製造
することができるので非常に生産性が高くまた製品間で
の品質のバラツキも少なく大量生産に適している。According to the method described above, by using a large motherboard, it is possible to manufacture a large number of mixer coverrs at once in seven processing steps, resulting in extremely high productivity and less variation in quality between products. suitable for production.
第1図および第2図は従来の光ミキシングカブラを示す
平面断面図、第3図は本発明の一実施例を示す平面断面
図、牙1図は同側面図、第5図は本発明における導波路
の分岐形状の一例を示す平面図、牙6図は他の分岐形状
の例を示す平面図。
牙7図は本発明の光ミキシングカブラを製造する方法の
一例を段階的に示す側断面図である。
基板・・・・・・・/、3/ 、2.33・・・・・
・・・導波路、2A・・・・・・・・分岐部 2B・・
・・・・・・ミキシング部3・・・・−・・・光ファイ
バー 7・・・・・・・・分岐点32・・・・・・・・
マスク 33・・・・・・・・開 口り/、4’、2
・・・・・・・・電極 ’73・・・・・・溶融塩5
/・・・・・・・・高屈折率部 3.2・・・・・・・
・イオン第1図
第3図
第5図
(イ)
(ロ)
第6図
(ニ)1 and 2 are plan sectional views showing a conventional optical mixing head; FIG. 3 is a plan sectional view showing an embodiment of the present invention; FIG. 1 is a side view of the same; and FIG. FIG. 6 is a plan view showing an example of a branch shape of a waveguide, and FIG. 6 is a plan view showing another example of a branch shape. Figure 7 is a side sectional view showing step-by-step an example of a method for manufacturing the optical mixing head of the present invention. Board.../, 3/, 2.33...
...Waveguide, 2A...Branch section 2B...
...Mixing section 3 ... Optical fiber 7 ... Branch point 32 ...
Mask 33......Opening/, 4', 2
...... Electrode '73... Molten salt 5
/・・・・・・・High refractive index part 3.2・・・・・・・
・Ion Figure 1 Figure 3 Figure 5 (A) (B) Figure 6 (D)
Claims (1)
ほぼ円形の領域からなる導波路を一体に形成し、前記導
波路は中央に位置する単一路からなるミキシング部とこ
のミキシング部両端からそれぞれ複数に分岐して基板の
対向する両側面にそれぞれ至る分岐部で構成し、且つ前
記導波路の全長にわたりその径を接続される光ファイバ
ーのコア径とほぼ同一にしたことを特徴とする光ミキシ
ングカブラ0 2、特許請求の範囲オ/項において、導波路の全ての分
岐点における分岐数を三路に統一シ、ミキシング部から
基板端面に向けて導波路に沿い間隔をおいて順次二分岐
ずつ枝分かれするように構成した光ミキシングカプラ。 3) ガラス基板面分子め定めた光路のパターンに開口
を残してイオン透過防止マスクで被覆し、前記基板ガラ
スの屈折率増加に寄・与する度合が基板中のイオンより
も大きく且つ該イオンと交換可能なイオ門を含むイオン
源に前記マスク面を接触させ、前記マスク開口を通して
前記イオン源中のイオンをガラス中に拡散させる牙/の
イオ孝閂程と、前記マスクを除去する工程と、前記オフ
イオン交換工程におけるイオン源中のイオンよりも基板
ガラスの屈折率増加に寄与する度合が小さく、且つガラ
ス中ノイオンと交換可能なイオンを含むイオン源に前記
基板面を接触させるオコのイオン交換工程を含むことを
特徴とする光ミキシングカプラの製造方法。[Claims] 1) A mixing device in which a waveguide consisting of a region having a refractive index higher than the surrounding area and having a substantially circular cross section is integrally formed in a transparent substrate, and the waveguide consists of a single path located at the center. The mixing part is composed of a plurality of branching parts each branching from both ends of the mixing part and reaching each of the opposite sides of the substrate, and the diameter thereof is made almost the same as the core diameter of the optical fiber to be connected over the entire length of the waveguide. An optical mixing coupler 02, characterized in that, in the claims, the number of branches at all branch points of the waveguide is unified to three, and the number of branches at all branch points of the waveguide is unified to three, and the interval is An optical mixing coupler configured to sequentially branch into two branches at a time. 3) Cover the surface of the glass substrate with an ion transmission prevention mask while leaving an opening in the predetermined optical path pattern, and cover the surface of the glass substrate with an ion transmission prevention mask that contributes to an increase in the refractive index of the substrate glass to a greater extent than the ions in the substrate, and contacting the mask surface with an ion source containing exchangeable ion gates and diffusing ions in the ion source into glass through the mask openings; and removing the mask; On-off ion exchange in which the substrate surface is brought into contact with an ion source containing ions that contribute less to the increase in the refractive index of the substrate glass than the ions in the ion source in the off-ion exchange step and that can be exchanged with the ions in the glass. A method for manufacturing an optical mixing coupler, comprising the steps of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22898682A JPS59116705A (en) | 1982-12-24 | 1982-12-24 | Optical mixing coupler and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22898682A JPS59116705A (en) | 1982-12-24 | 1982-12-24 | Optical mixing coupler and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59116705A true JPS59116705A (en) | 1984-07-05 |
Family
ID=16884973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22898682A Pending JPS59116705A (en) | 1982-12-24 | 1982-12-24 | Optical mixing coupler and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59116705A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01105904U (en) * | 1987-12-29 | 1989-07-17 | ||
JPH03505792A (en) * | 1989-03-27 | 1991-12-12 | ユナイテッド テクノロジーズ コーポレーション | Integrated optics star coupler |
JPH04131807A (en) * | 1990-09-21 | 1992-05-06 | Nec Corp | Plane type optical branching/coupling device |
US5390267A (en) * | 1991-08-21 | 1995-02-14 | The Furukawa Electric Co., Ltd. | Optical fiber/terminal connecting device |
-
1982
- 1982-12-24 JP JP22898682A patent/JPS59116705A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01105904U (en) * | 1987-12-29 | 1989-07-17 | ||
JPH03505792A (en) * | 1989-03-27 | 1991-12-12 | ユナイテッド テクノロジーズ コーポレーション | Integrated optics star coupler |
JPH04131807A (en) * | 1990-09-21 | 1992-05-06 | Nec Corp | Plane type optical branching/coupling device |
US5390267A (en) * | 1991-08-21 | 1995-02-14 | The Furukawa Electric Co., Ltd. | Optical fiber/terminal connecting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4693544A (en) | Optical branching device with internal waveguide | |
JP2573632B2 (en) | Tape-type optical fiber manufacturing equipment | |
JPH0321881B2 (en) | ||
EP0509789B1 (en) | Method of manufacturing assembly of optical waveguide substrate and optical fiber aligning substrate | |
US4989937A (en) | Light waveguide coupler having three or more gates and utilizing the beam splitter principle and the method for manufacture | |
JPS59116705A (en) | Optical mixing coupler and its production | |
JP2003156648A (en) | Polarization fiber and method for manufacturing the same, ribbon fiber and optical waveguide device using the same, and optical fiber array and method for manufacturing the same | |
JP2573633B2 (en) | Tape-type optical fiber manufacturing equipment | |
JPS6333706A (en) | Fiber type optical wave circuit element and its production | |
JP2001281479A (en) | High-polymer optical waveguide element and method for manufacturing the same | |
JPS58209709A (en) | Star coupler for multimode optical fiber and its manufacture | |
JPH0449081B2 (en) | ||
JPH0312612A (en) | Connecting element between optical elements | |
JPH0350241B2 (en) | ||
JPH0244041B2 (en) | ||
JPS61169802A (en) | Start coupler | |
JPH0310282B2 (en) | ||
JPS6066210A (en) | Production of optical waveguide | |
JPH04216509A (en) | Connection method for waveguide type optical device and optical fiber | |
JPH0377482B2 (en) | ||
JPS59159122A (en) | Mixing/branching circuit of light | |
JPH0439042B2 (en) | ||
JPH01164906A (en) | Branch coupler for optical fiber | |
JP2004279637A (en) | Optical demultiplexer/multiplexer, and method for fablicating optical demultiplexer/multiplexer | |
JPS58154820A (en) | Formation of waveguide for optical switch |