Nothing Special   »   [go: up one dir, main page]

JPS59114667A - Region dividing method - Google Patents

Region dividing method

Info

Publication number
JPS59114667A
JPS59114667A JP57223820A JP22382082A JPS59114667A JP S59114667 A JPS59114667 A JP S59114667A JP 57223820 A JP57223820 A JP 57223820A JP 22382082 A JP22382082 A JP 22382082A JP S59114667 A JPS59114667 A JP S59114667A
Authority
JP
Japan
Prior art keywords
image
value
cytoplasm
threshold
picture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57223820A
Other languages
Japanese (ja)
Other versions
JPH0443311B2 (en
Inventor
Akihide Hashizume
明英 橋詰
Jun Motoike
本池 順
Ryuichi Suzuki
隆一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57223820A priority Critical patent/JPS59114667A/en
Publication of JPS59114667A publication Critical patent/JPS59114667A/en
Publication of JPH0443311B2 publication Critical patent/JPH0443311B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To divide accurately a region of each component element by setting the threshold value which separates the background erythrocyte of nuclear cytoplasm of the component element leucocyte of a blood image in a 3-dimensional color space and in response to the distribution. CONSTITUTION:The minimum value min(g) of a picture (g) is obtained together with the threshold value TgBG corresponding to the fixed percentage value of the upper limit value of the picture. The value of density higher than the center value of histogram by half value width of the density histogram Hb<->BG of a picture (b) of the picture element existing in the region less than the threshold value TgBG of the picture (g) is set as the threshold value TbBG. Then the density histogram HrbBG is obtained for a picture (r-b) which exists in the region more than TgBG of the picture (g). Then threshold values TrbC and TrbN are set based on the histogram HrbBG. The density histrogram is obtained for pictures (r) and (g) which contain no erythrocyte RBC, and the threshold values TrN and TgN which divide the nucleous N and cytoplasm C of the leucocyte are obtained along with the threshold values TrC and TgC which divide the cytoplasm C and the background BG.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は、色彩を用いた画像の領域分割方法に係シ、特
に血球像を白血球の核、細胞質、赤血球および背景の領
域に分割するのに好適な領域分割方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of the Invention The present invention relates to a method for dividing an image into regions using color, particularly for dividing a blood cell image into regions of white blood cell nuclei, cytoplasm, red blood cells, and background. The present invention relates to a suitable region dividing method.

「従来技術」 血球像の入力に関する色分解の波長としては、r:56
0〜600nm、g:510〜5500m、b : 4
00〜430nmが適しているが、従来の領域分割方法
(詳細は特願昭56−185413号明細書を参照のこ
と)では、上記3波長域でのフィルタ組合せについて必
ずしも満足のいく結果を与えない。
"Prior art" The color separation wavelength for blood cell image input is r:56.
0-600nm, g: 510-5500m, b: 4
00 to 430 nm is suitable, but conventional region dividing methods (see Japanese Patent Application No. 185413/1987 for details) do not necessarily give satisfactory results for filter combinations in the above three wavelength ranges. .

例えば、g’ : 550nm 、 b’ :43Qn
m  と選定した場合は、従来領域分割方法でも、第1
図(a)のように白血球の核N、細胞質C9赤血球RB
C。
For example, g': 550nm, b': 43Qn
If m is selected, even with the conventional area division method, the first
As shown in figure (a), nucleus N of white blood cell, cytoplasm C9 red blood cell RB
C.

背景BGの分割は可能であるが、g:525nm。It is possible to separate the background BG, but at g: 525 nm.

b : 420 nmとした場合は、第1図tb)のよ
うに白血球の核N、細胞質Cと赤血球RBCの分布が近
づき、両者の分割が困難になる等の欠点を生ずる。また
r:590nmとした場合、g′、b′2次元平面と、
r、b2次元平面での分布は類似し、上記欠点は解消さ
れるが、しきい値T7に相当するしきい値T7では赤血
球RBCと背景BGの分割が必ずしもできないという欠
点が生ずる。
b: When the wavelength is 420 nm, as shown in FIG. 1 (tb), the distribution of the nucleus N and cytoplasm C of the white blood cell and the red blood cell RBC become close to each other, resulting in disadvantages such as difficulty in dividing the two. Also, when r: 590 nm, g', b' two-dimensional plane,
Although the distributions on the r and b two-dimensional planes are similar and the above-mentioned drawbacks are eliminated, there is a drawback that red blood cells RBC and background BG cannot necessarily be divided at a threshold value T7 corresponding to the threshold value T7.

「発明の目的」 本発明の目的は、上記欠点を解消しかつ細胞質の色調を
強調したr、2画像をもとに、従来の領域分割法よシ精
度よく領域を分割する領域分割法を提供することにある
``Object of the Invention'' The purpose of the present invention is to provide a region segmentation method that eliminates the above-mentioned drawbacks and divides regions more accurately than conventional region segmentation methods based on r,2 images that emphasize the color tone of the cytoplasm. It's about doing.

「発明の概要」 赤血球RBCの背景BGへの混入については、背景と赤
血球が1画像における濃度分布関係よシ離れているgあ
るいは5画像においてT あるいはT  (第1図(b
))を求めることによって解決できる。このしきい値と
、1画像と5画像の差画像から求めたT (第1図(b
))の2つのしきい値b を併用することによシ、白血球の核N、白血球の細胞質
C9背景BGの3者と赤血球RBCとの分割が可能であ
る。
"Summary of the Invention" Regarding the contamination of red blood cells RBC into the background BG, in g or 5 images where the background and red blood cells are far apart from each other in the concentration distribution relationship in one image, T or T (Fig. 1(b)
)). T obtained from this threshold value and the difference image between the 1st image and the 5th image (Fig. 1(b)
)) By using the two threshold values b in combination, it is possible to divide the white blood cell nucleus N, the white blood cell cytoplasm C9, the background BG, and the red blood cell RBC.

一方、このようにして赤血球RBCを除いたr。On the other hand, r from which red blood cells RBC were removed in this way.

2画像の濃度ヒストグラムは、第2図に示すように細胞
質の色調・濃淡によシ、背景BG・細胞質C・核Nに相
当する分布の状態が異なる。例えば、好酸球の場合、2
画像の濃度ヒストグラムでは、細胞質Cが核Nの分布と
大きく異なり、2峰性のヒストグラムになるが、1画像
の濃度ヒストグラムでは、背景BG、細胞質C9核Nが
3峰に分離しており、上記3者を分割するしきい値が容
易に求められる。このように、1画像の濃度ヒストグラ
ムから上記3者を分割するしきい値を求める方が容易か
つ精度良く領域分割が可能な白血球、2画像の濃度ヒス
トグラムから上記しきい値を求める方が容易かつ精度良
く領域分割が可能な白血球が各々存在する。
As shown in FIG. 2, the density histograms of the two images have different distribution states corresponding to background BG, cytoplasm C, and nucleus N depending on the color tone and density of the cytoplasm. For example, in the case of eosinophils, 2
In the density histogram of the image, the distribution of cytoplasm C is greatly different from the distribution of nucleus N, resulting in a bimodal histogram, but in the density histogram of one image, background BG, cytoplasm C, nucleus N are separated into three peaks, and the above A threshold for dividing the three is easily found. In this way, it is easier and more accurate to find the threshold for dividing the above three types from the density histogram of one image, and it is easier and more accurate to find the threshold for white blood cells, which allows for more accurate region segmentation. There are different types of white blood cells that can be divided into regions with high precision.

そこで、ここでは上記2つの事実をもとに以下に示すよ
うな新しい領域分割方法を考案した。
Therefore, based on the above two facts, we devised a new area division method as shown below.

「発明の実施例」 以下、本発明の一実施例を第3図によシ説明する。“Embodiments of the invention” An embodiment of the present invention will be described below with reference to FIG.

1、 2画像における最小値min(g)を求め、その
最小値min(g)とあらかじめ設定しである画像の上
限値ULの固定比率値(例えば17チ)に相当するしき
い値T を求める。 (第3図(a))だだし2画像で
の細力包質濃度が低い白血球の場合、しきい値T 以下
の領域に細胞質Cの一部が混入することがある。(第1
図(b)) 2、 2画像でしきい値T 以下の領域に存在する画素
、)b画像f(7)濃度、ゎグ、珪晶を求め、このヒス
トグラムHの半値巾だけ、ヒストグラムの中心値よシ濃
度の高い値を、背景BGと赤血球RBCを分割するしき
い+mT  として設定する。(第3図(b))この場
合、細胞質Cの濃度の低い部分が背景BGに混入してい
ても、5画像でも両者の濃度はほぼ同じであるのでT 
を変動させる要因とはならない。
Find the minimum value min(g) in 1 and 2 images, and find the threshold value T corresponding to a fixed ratio value (for example, 17 inches) of the minimum value min(g) and the preset upper limit UL of the image. . (FIG. 3(a)) In the case of white blood cells with a low cytoplasm concentration in the dashi 2 image, a portion of the cytoplasm C may be mixed into the area below the threshold value T. (1st
Figure (b)) 2. Pixels existing in the area below the threshold value T in 2 images,) b image f (7) Obtain the density, ゜g, and silica, and calculate the center of the histogram by the half width of this histogram H. A value higher in concentration than the above value is set as the threshold +mT for dividing background BG and red blood cell RBC. (Figure 3(b)) In this case, even if the low-concentration part of cytoplasm C is mixed into the background BG, the concentration of both is almost the same in the 5 images, so T
It is not a factor that changes the

3、 2画像でしきい値T 以上の領域に存在する画素
のr−5画像(1画像と5画像の差画像)での濃度ヒス
トグラムHを求め、このヒスドグb ツムHから白血球の核N・細胞質Cと赤血球RBCを分
割するしきい値T と白血球の核Nb と赤血球RBCを分割するしきい値7 を設定する。(
第3図(C)) 4、 5画像でしきい値T 以下、r−b画 、像でし
きい値T 以上の論理和をとった領域b に存在する画素、すなわち赤血球R,BCを除去した画
像の1画像、2画像での濃度ヒストグラでしきい値を求
める方が領域分割が安定かを判定しだ後、白血球の核N
と細胞質Cを分割するしきい値T、T、細胞質Cと背景
BGを分割するしきい値T  、T  を求める。(第
3図((幻 、  (d’) ここで、r、2画像の選択の方法としては、濃度ヒスト
グラムH(1=r、g)を第4図ta)〜げ)の6つの
タイプに分類し、この6つのタイプ間にta)から(f
)の順で優先度をつける。すなわち1画像での濃度ヒス
トグラム30型、2画像の濃度ヒストグラムが20型の
場合は、r画像を選択する。第2図の細胞質色調が濃橙
色の好酸球がこの例に相当する。また1画像の濃度ヒス
トグラムの型と2画像の濃度ヒストグラムの型が同じ場
合には各々の型ごとに選択条件を設ける。
3. Obtain the density histogram H in the r-5 image (the difference image between the 1st image and the 5th image) of the pixels existing in the area above the threshold value T in the 2nd image, and calculate the white blood cell nucleus N. A threshold value T for dividing cytoplasm C and red blood cell RBC and a threshold value 7 for dividing white blood cell nucleus Nb and red blood cell RBC are set. (
Figure 3 (C)) Remove pixels existing in area b, which is below the threshold T in the 4 and 5 images, and in the r-b image, and above the threshold T in the image, that is, red blood cells R and BC. After determining whether the region segmentation is more stable if the threshold value is determined from the density histograms of the first and second images, the white blood cell nucleus N
The threshold values T and T that divide the cytoplasm C and the background BG are determined. (Figure 3 ((phantom, (d') Here, as a method of selecting r, 2 images, the density histogram H (1 = r, g) is divided into six types as shown in Figure 4 ta) to ge). between these six types, from ta) to (f
). That is, if the density histogram of one image is 30-inch and the density histogram of two images is 20-inch, the r image is selected. The eosinophil whose cytoplasm is dark orange in FIG. 2 corresponds to this example. Further, if the density histogram type of one image and the density histogram type of two images are the same, selection conditions are provided for each type.

例えば30型同志の場合、濃度ヒストゲラム中央の分布
(細胞質C)のピーク位置と、左右の分布(背景BG・
核N)のピーク位置の位置関係、および中央の分布のピ
ーク値とその両端の各LV。
For example, in the case of type 30, the peak position of the concentration distribution in the center of the histogelium (cytoplasm C) and the left and right distribution (background BG,
The positional relationship of the peak positions of nucleus N), and the peak value of the central distribution and each LV at both ends thereof.

UVでの値の和の比という2つの評価変数をもとき に選択を行なう。例えば、第2図の細胞質点調が淡橙色
の好中球の場合、上記2つの評価変数をもとに2画像を
選択する。
Sometimes two evaluation variables are selected: the ratio of the sum of the UV values. For example, in the case of neutrophils whose cytoplasmic dot tone is light orange in FIG. 2, two images are selected based on the above two evaluation variables.

ここで、濃度ヒストグラムのタイプ分類およびTN、T
’ 、TN、Tc、TN、Tc(71)求め方について
は特願昭57−99431号明細書に詳しいので参照の
こと。
Here, type classification of density histogram and TN, T
', TN, Tc, TN, Tc (71) For details on how to obtain them, please refer to the specification of Japanese Patent Application No. 57-99431.

本実施例によれば、細胞質の色調・濃淡に従っである血
球についてはr、b2次元平面で4つの領域への分割が
達成され、また他の血球については、r−5画像のしき
い値T  、T  をg、b2rb       rb 次元平面ヘマッピングした形で4つの領域への分割が達
成される。(第3図te) 、 (e’) )本発明は
、電子計算機のプログラムを用いて実である。第5図は
本発明の方法を実現する装置の一構成例を示す図である
According to this embodiment, division of certain blood cells into four regions on the r, b two-dimensional plane is achieved according to the color tone and density of the cytoplasm, and for other blood cells, the threshold value of the r-5 image is The division into four regions is achieved by mapping T , T to the g,b2rb rb dimensional plane. (Fig. 3te), (e')) The present invention is implemented using an electronic computer program. FIG. 5 is a diagram showing an example of the configuration of an apparatus for implementing the method of the present invention.

図において1は、塗抹染色された血液標本を緑色フィル
タ(主波長525 nm付近)を介して光電変換装置(
撮像管等)により変換した濃度信号を記憶している2画
像の画像メモリであり、2は上記血液標本を青色フィル
タ(主波長420 nm付近)を介して変換した濃度信
号を記憶している5画像の画像メモリ、3は上記血液標
本を赤色フィルタ(主波長590 n、m付近)を介し
て変換した濃度信号を記憶している1画像の画像メモリ
である。
In the figure, 1 shows a photoelectric conversion device (
2 is a two-image image memory that stores a concentration signal converted by an image pickup tube, etc.), and 5 stores a concentration signal converted from the blood sample through a blue filter (main wavelength around 420 nm). The image memory 3 is a one-image image memory that stores a concentration signal obtained by converting the blood sample through a red filter (main wavelengths around 590 nm and 590 m).

画像メモリ1から2画像を読み出し、最小値検出回路4
で2画像の最小濃度min(g)を求め、これを計算機
(例えば、μコンピーータ)20に入力し、上記最小濃
度m i n (g)とあらかじめ定められた2画像の
最大濃度ULを用いて、T =(UL−min(g))
xω++n i n (g)の演算をしてしきい値T:
”を求める。ただし、ωは定数であシ、例えば0.17
である。次にしきい値回路9のしきいちT、を計算機2
0からの信号によシ上記処理で求めたしきい値rr B
G  に設定し、論理回路11の論理は計算機20から
の制御信号二によシT1以下と設定する。切換回路12
は計算機20からの制御信号ホによシ論理回路11の出
力をヒストグラム作成回路13の制御信号として用いる
ように設定し、選択回路6は計算機20からの制御信号
イによシ画像メモリ2の5画像を選択ブるように、また
選択回路7は計算機20からの制御信号口によシ画像メ
モリ1の2画像を選択するように設定する。以下の処理
においても各回路の設定は計算機20の制御信号で行な
われる。そして画像メモリ1,2から2画像、5画像を
同時に読みだすとヒストグラム作成回路13の出力Hと
して背景B()と細胞質Cの一部を含む領域での5画像
の濃度ヒストグラムH”が求まる。この濃度ヒストグラ
ムH”  を計算機20に入力し半値巾の演算す を行なってしきい値T を求める。
Reads two images from image memory 1, and minimum value detection circuit 4
Find the minimum density min (g) of the two images, input this into the computer (for example, μ computer) 20, and use the above minimum density min (g) and the predetermined maximum density UL of the two images. , T = (UL-min(g))
Calculate xω++n i n (g) and find the threshold value T:
”. However, ω must be a constant, for example 0.17
It is. Next, calculate the threshold T of the threshold circuit 9 using the calculator 2.
Threshold value rr obtained by the above processing according to the signal from 0 B
G, and the logic of the logic circuit 11 is set to be less than or equal to the control signal from the computer 20 T1. Switching circuit 12
is set to use the output of the logic circuit 11 as a control signal for the histogram creation circuit 13 in accordance with the control signal from the computer 20, and the selection circuit 6 receives the control signal from the computer 20 in accordance with the image memory 2. The selection circuit 7 is set to select two images in the image memory 1 in response to a control signal from the computer 20 so that an image can be selected. In the following processing as well, the settings of each circuit are performed using control signals from the computer 20. Then, when images 2 and 5 are simultaneously read out from the image memories 1 and 2, a density histogram H'' of the 5 images in a region including the background B() and part of the cytoplasm C is obtained as the output H of the histogram creation circuit 13. This density histogram H" is input into the computer 20, and the half-value width is calculated to obtain the threshold value T.

次に論理回路11の論理をT□以上と設定し、選択回路
6は演算回路5の出力を選択するように設定する。他回
路の設定は変えない。そして画像メモリー 、2.3か
ら2画像、5画像、1画像を同時に読み出すとヒストグ
ラム作成回路13の出力Hとして背景BGを除いた領域
でのr−5画像の濃度ヒストグラムHが求まる。この濃
度ヒb ストグラムHを計算機20に入力し濃度の低いrb 谷の濃度値をしきい値T 、濃度の高い谷の濃度値から
一定値(例えば10)を引いた値を、TNとする。
Next, the logic of the logic circuit 11 is set to T□ or more, and the selection circuit 6 is set to select the output of the arithmetic circuit 5. Do not change the settings of other circuits. Then, when 2 images, 5 images, and 1 image are simultaneously read out from the image memory 2.3, the density histogram H of the r-5 image in the area excluding the background BG is obtained as the output H of the histogram creation circuit 13. This density histogram H is input into the calculator 20, and the density value of the rb valley with low density is set as a threshold value T, and the value obtained by subtracting a fixed value (for example, 10) from the density value of the valley with high density is set as TN.

次にしきい値回路9のしきい値T、をしきい値T 、し
きい値回路10のしきい値T2をしきいrb 値T に設定し、論理回路11の論理をT□以上、12
以上の論理和と設定する。選択回路6は画像メモリ3の
1画像を選択するように、選択回路7は減算回路5の出
力を選択するように、選択回路8は計算機20からの制
御信号ハによ)画像メモリ2の5画像を選択するように
設定する。他回路の設定はかえない。そして画像メモリ
2,3から5画像、1画像を同時に読みだすとヒストグ
ラム作成回路の出力Hとして赤血球RBCを除いた領i
c 域での濃度ヒストグラムHが求まる。この濃度ヒストグ
ラムH“1を計算機20に入力し記憶しておく。
Next, the threshold value T of the threshold circuit 9 is set to the threshold value T, the threshold value T2 of the threshold circuit 10 is set to the threshold rb value T, and the logic of the logic circuit 11 is set to T□ or more, 12
Set as the logical sum of the above. The selection circuit 6 selects one image of the image memory 3, the selection circuit 7 selects the output of the subtraction circuit 5, and the selection circuit 8 selects one image of the image memory 2 according to a control signal C from the computer 20. Set to select images. Settings of other circuits cannot be changed. Then, when 5 images and 1 image are simultaneously read from image memories 2 and 3, the area i excluding red blood cells RBC is output H from the histogram creation circuit.
The density histogram H in the region c is determined. This density histogram H"1 is input into the computer 20 and stored.

次に選択回路6が画像メモリ1の2画像を選択するよう
に設定、他回路の設定は変えない。そして画像メモ’7
1 、213から2画像、5画像、1画像を同時に読み
だすとヒストグラム作成回路13の出力Hとして赤血球
RBCを除いた領域でi茫 の濃度ヒストグラムHが求まる。この濃度ヒHとHのい
ずれで核N、細胞質C1背景BGを分割するしきい値を
求めるかを決定し、谷の濃度値T  、T  あるいは
T  、T  を求める。
Next, the selection circuit 6 is set to select two images in the image memory 1, and the settings of other circuits are not changed. And image memo '7
When 2 images, 5 images, and 1 image are simultaneously read out from 1, 213, a density histogram H of i is obtained as the output H of the histogram creation circuit 13 in a region excluding red blood cells RBC. It is determined which of these concentrations H and H should be used to determine the threshold value for dividing the nucleus N and the cytoplasm C1 background BG, and the valley concentration values T 1 , T or T 2 , T 2 are determined.

以上のしきい値をもとにして例えば核Nの領域を分割す
るには、しきい値算出用濃度ヒストグラi正 ムとしてHが選択された場合には、しきい値回路9のし
きい値T としてしきいちT を設定し、しきい値回路
10のしきい値T2  としてしきい値T を設定し、
論理回路11の論理をT 以rb          
                         
   1上、12以上の論理積と設定する。選択回路7
は画像メモリ3の1画像を選択し、選択回路8は減算回
路5の出力を選択するように設定する。そして画像メモ
リ2,3から5画像、1画像を同時に読み出し論理回路
11の出力を切換回路12を通して計数すれば核Nの領
域が求められる。
To divide the region of the nucleus N, for example, based on the above thresholds, if H is selected as the concentration histogram i for threshold calculation, the threshold value of the threshold circuit 9 must be Set the threshold T as T, set the threshold T as the threshold T2 of the threshold circuit 10,
The logic of the logic circuit 11 is T or more.

It is set as a logical product of 1 above and 12 or above. Selection circuit 7
selects one image in the image memory 3, and the selection circuit 8 is set to select the output of the subtraction circuit 5. Then, by simultaneously reading five images and one image from the image memories 2 and 3 and counting the output of the logic circuit 11 through the switching circuit 12, the area of the nucleus N can be determined.

核Nと細胞質Cを含めた領域、背景BGの領域に関して
も同様である。
The same applies to the region including the nucleus N and cytoplasm C, and the background BG region.

上記実施例では、しきい値回路2系統、ヒストグラム作
成回路、計算機とで領域分割方法を実現したが、例えば
ヒストグラム作成回路を2系統設けることにより部分的
に並列処理が可能である。
In the above embodiment, the area division method is implemented using two systems of threshold circuits, a histogram creation circuit, and a computer, but partially parallel processing is possible by providing two systems of histogram creation circuits, for example.

「発明の効果」 本発明によれば、血液像の構成要素白血球の核N、細胞
質C1背景BG、赤血球RBCを分けるしきい値をrl
g、b3次元の色空間で分布に応じて設定できるので各
構成要素の領域分割を正確に行なうことができる。
"Effects of the Invention" According to the present invention, the threshold value that separates the components of a blood image, the nucleus N of white blood cells, the background BG of cytoplasm C1, and the red blood cells RBC, is determined by rl.
Since the settings can be made according to the distribution in the g and b three-dimensional color space, the area division of each component can be performed accurately.

側方法の原理等を説明するための図、第2図は細ダラム
のタイプを説明するための図、第5図は本発明の一実施
例を実現する装置の構成図である。
FIG. 2 is a diagram for explaining the type of thin duram, and FIG. 5 is a block diagram of an apparatus for realizing an embodiment of the present invention.

1.2.3・・・画像メモリ、4・・・最小検出回路、
5・・・減算回路、6.7.8・・・選択回路、9,1
0・・・しきい値回路、11・・・論理回路、12・・
・切換回路、13・・・ヒストグラム作成回路、20・
・・計算機笑12 ((1) Uす 第2図 第3図 第3図 第4図 第S図 1ピrg)H 手続補正書(方式) 事件の表示 昭和57 年特許願第223820 号発明の名称 領域分割方法 補正をする者 1i件との関係   特 許 出 願 人名  称  
 15101株式会社  日  立 ’A  作 折代
  理   人 補正の対象 明細書の発明の詳細な説明の欄2図面の簡単な説明の欄
および・                7□−二つ
、      図面。
1.2.3... Image memory, 4... Minimum detection circuit,
5... Subtraction circuit, 6.7.8... Selection circuit, 9,1
0... Threshold circuit, 11... Logic circuit, 12...
・Switching circuit, 13... Histogram creation circuit, 20・
... Computer lol 12 ((1) Usu Figure 2 Figure 3 Figure 4 Figure S Figure 1 pirg) H Procedural amendment (method) Indication of the case Patent Application No. 223820 of 1988 Invention Relationship with the person who amends the name area division method Patent application Person name
15101 Hitachi Co., Ltd. Written by 'A' Agent Column for detailed explanation of the invention in the specification subject to personal amendment 2 Column for brief explanation of drawings and 7□-2 Drawings.

補正の内容 1、明細書第6貞第14行目の「d′」をrfJと補正
する。
Contents of correction 1: "d'" on line 14 of page 6 of the specification is corrected to rfJ.

2、同書第8頁第2行目の「e′」をrgJ表補正補正
2. Corrected "e'" in the second line of page 8 of the same book by rgJ table correction.

3、同書第13頁第8行目の1第3図(al〜(el及
び(d′)、(e′)は」を「第3図(a)〜(glは
」と補正する。
3. In the same book, page 13, line 8, 1. Figure 3 (al~(el, (d'), (e') are'') is corrected to ``Figure 3 (a)~(gl is'').

4、図面の第3図を別紙のとおり補正する。4. Amend Figure 3 of the drawings as shown in the attached sheet.

83 〕A d; 83 旧83〕A d; 83 old

Claims (1)

【特許請求の範囲】[Claims] 光電変換手段によシ波長別に入力された赤成分、緑成分
、青成分の血球像(以下、各々1画像、2画像、5画像
と略す。)を用いて、血球を白血球ストグラムから背景
と赤血球とを分ける第1のしきい値を求め、該背景を除
いた1画像と5画像の差画像(以下r−b画像と略す)
の濃度ヒストグラムから白血球の細胞質と赤血球を分け
る第2のしきい値および核と赤血球を分ける第3のしき
い値を求め、赤血球を除く2画像の濃度ヒストグラムお
よび1画像の濃度ヒストグラムのいずれかを選択して、
背景と細胞質を分ける第4のしきい値および細胞質と核
を分ける第5のしきい値を求め、上記第1.第2.第3
.第4および第5のしきい値を用いて上記4つの領域に
分割することを特徴とする領域分割方法。
Using red component, green component, and blue component blood cell images (hereinafter abbreviated as 1 image, 2 image, and 5 images, respectively) inputted by photoelectric conversion means for each wavelength, blood cells are separated from the background and red blood cells from a white blood cell stogram. A difference image between the first image and the fifth image (hereinafter abbreviated as r-b image) excluding the background is obtained.
From the density histogram, find the second threshold that separates the cytoplasm of white blood cells and red blood cells, and the third threshold that separates nucleus and red blood cells, and calculate either the density histogram of two images excluding red blood cells or the density histogram of one image. Select and
A fourth threshold value that separates the background from the cytoplasm and a fifth threshold value that separates the cytoplasm from the nucleus are determined, and a fourth threshold value that separates the cytoplasm from the nucleus is determined. Second. Third
.. A region dividing method characterized in that the region is divided into the four regions using fourth and fifth thresholds.
JP57223820A 1982-12-22 1982-12-22 Region dividing method Granted JPS59114667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57223820A JPS59114667A (en) 1982-12-22 1982-12-22 Region dividing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57223820A JPS59114667A (en) 1982-12-22 1982-12-22 Region dividing method

Publications (2)

Publication Number Publication Date
JPS59114667A true JPS59114667A (en) 1984-07-02
JPH0443311B2 JPH0443311B2 (en) 1992-07-16

Family

ID=16804230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57223820A Granted JPS59114667A (en) 1982-12-22 1982-12-22 Region dividing method

Country Status (1)

Country Link
JP (1) JPS59114667A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791493A (en) * 1984-07-31 1988-12-13 Canon Kabushiki Kaisha Image reading apparatus with illumination timing control
JPH0250271A (en) * 1988-05-17 1990-02-20 Sanko Junyaku Kk Method and device for automatically deciding picture
JPH0275082A (en) * 1988-09-12 1990-03-14 Fujitsu Ltd Color reading identifying device
JP2006505782A (en) * 2002-11-12 2006-02-16 キネティック リミテッド Image analysis
WO2010053912A1 (en) * 2008-11-04 2010-05-14 Beckman Coulter, Inc. System and method for displaying three-dimensional object scattergrams

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313491A (en) * 1976-07-23 1978-02-07 Hitachi Ltd Pattern sampling system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313491A (en) * 1976-07-23 1978-02-07 Hitachi Ltd Pattern sampling system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791493A (en) * 1984-07-31 1988-12-13 Canon Kabushiki Kaisha Image reading apparatus with illumination timing control
JPH0250271A (en) * 1988-05-17 1990-02-20 Sanko Junyaku Kk Method and device for automatically deciding picture
JPH0275082A (en) * 1988-09-12 1990-03-14 Fujitsu Ltd Color reading identifying device
JP2006505782A (en) * 2002-11-12 2006-02-16 キネティック リミテッド Image analysis
WO2010053912A1 (en) * 2008-11-04 2010-05-14 Beckman Coulter, Inc. System and method for displaying three-dimensional object scattergrams

Also Published As

Publication number Publication date
JPH0443311B2 (en) 1992-07-16

Similar Documents

Publication Publication Date Title
TW544515B (en) Region segmentation of color image
Toet Image fusion by a ratio of low-pass pyramid
US6952286B2 (en) Doubleprint photofinishing service with the second print having subject content-based modifications
US5463470A (en) Methods of collecting photometric image data and determining light exposure by extracting feature image data from an original image
TWI272380B (en) Segmentation technique of a color image according to colors
CN102484721A (en) Four-channel color filter array pattern
US20040057613A1 (en) Pseudo three dimensional image generating apparatus
CN108053438A (en) Depth of field acquisition methods, device and equipment
JPS59114667A (en) Region dividing method
JPH04346333A (en) Data extracting method for human face and exposure deciding method
Tucker An image analysis system for cervical cytology automation using nuclear DNA content.
JPH09101579A (en) Face area extraction method and copying condition determination method
JPH04346332A (en) Exposure deciding method
JPS6352367B2 (en)
TAKAMATSU et al. Quantitative fluorescence image analysis
JPH10302067A (en) Pattern recognition device
Moore et al. Quantitative metallography with a digital computer: Application to a Nb-Sn superconducting wire
JP2642262B2 (en) Exposure determination method
US7181064B1 (en) Histogram-based color consistency measure for scene reconstruction
JPH01119765A (en) Dividing method of region
JPS5887651A (en) Area splitting method
CN100499732C (en) Image processing method, image processing apparatus
Miller Post-Processing Algorithms for Photomicrography
JP2011053926A (en) Image display method, program, image display device, and imaging apparatus
Kuang et al. Fast Multi-Focus Image Fusion Using Inner Channel Prior