Nothing Special   »   [go: up one dir, main page]

JPS5892808A - Measuring method and device for roll shape - Google Patents

Measuring method and device for roll shape

Info

Publication number
JPS5892808A
JPS5892808A JP56191046A JP19104681A JPS5892808A JP S5892808 A JPS5892808 A JP S5892808A JP 56191046 A JP56191046 A JP 56191046A JP 19104681 A JP19104681 A JP 19104681A JP S5892808 A JPS5892808 A JP S5892808A
Authority
JP
Japan
Prior art keywords
roll
distance
sensor
distance sensor
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56191046A
Other languages
Japanese (ja)
Inventor
Kiyotaka Inada
稲田 清崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP56191046A priority Critical patent/JPS5892808A/en
Publication of JPS5892808A publication Critical patent/JPS5892808A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/12Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring roll camber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure a roll shape in the inline state with a high precision, by measuring the distance to the roll by a distance sensor which can be moved in parallel with the roll and measuring the quantity of displacement of the sensor with irradiation of an optical beam and using both measured values. CONSTITUTION:A distance sensor 27 is attached to a slidable truck 22 on a guide rail 21 parallel with a roll 11 of a rolling mill, and a deflection meter 30 consisting of reflective mirrors 34a and 34b is provided on the left face. In case of measurement, a position in the circumferential direction is specified by a rotary encoder 44, and the sensor 27 is moved to measure the distance to the surface of the roll, and the measured value is inputted to an operating device 41. Meanwhile, the sensor 27 is irradiated with the optical beam from a laser beam generator 31, and the quantity of deflection of the sensor 27 to the optical axis of the beam is measured through an interferometer 32 and etc. In the device 41, a prescribed correction is performed on a basis of both measured values to calculate the shape of the roll. Thus, the shape of the roll is measured in the inline state with a high precision even if the rail 21 is distorted because of thermal expansion or the like.

Description

【発明の詳細な説明】 本発明は圧延機のロール形状をミルノ1ウジ/グに組込
んだままの状態で測定し得るロール形状画定方法及びそ
の実施に使用する装置を提案するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention proposes a roll shape defining method that can measure the roll shape of a rolling mill while it is installed in a mill nozzle, and an apparatus used to carry out the method.

圧延機におけるロールの摩耗は不可避であるので、ロー
ルは周期的に取替えらn1使用済のロールは8便用のた
めに研削に供さする0ところがこのロール取替には多大
の労力を要し、また取をえてはみたものの、旧ロールが
未だ使用可能な状態にあったり、逆に取替が遅nて圧延
不良を惹起する等の問題があった。°このためにミルノ
1ウジングにロールを組込んだまま、新油インラインで
ロール形状を測定する方法が種々開発さtている。この
方法としてはロールの軸心と平行になるようにロール表
面に沿って水平横架した架台に複数の距離センサ(差動
トランス式、渦流式、谷蓄式等)を増付けて、この架台
とロール六面との距離を検知してロールのプロフィール
を求めんとする方法か知らnている。而して測定精度と
しては10〜30μm程度が必豪であるにも拘らず、測
定の基準となる架台の寸法#IPIIL上の制約からこ
の精度を確保することは極めて困難である。即ち強振動
、且つ尚温環境下にてロール軸心に対し安定した千装置
を維持させるためild経済性を度外視した仕様にせざ
るを侍ないからである。
Since wear of the rolls in a rolling mill is unavoidable, the rolls are replaced periodically and used rolls are subjected to grinding for the 8th roll. However, replacing the rolls requires a lot of effort. Although the rolls have been repaired, there have been problems in that the old rolls are still usable or that replacement is delayed, resulting in poor rolling. For this reason, various methods have been developed to measure the roll shape in-line with fresh oil while the roll is still installed in the Milno 1 housing. This method involves adding multiple distance sensors (differential transformer type, eddy current type, valley accumulator type, etc.) to a pedestal horizontally mounted along the roll surface parallel to the axis of the roll. I don't know how to detect the distance between the roll and the six faces of the roll to find the roll profile. Although the measurement accuracy must be approximately 10 to 30 μm, it is extremely difficult to ensure this accuracy due to constraints on the dimension #IPIIL of the pedestal serving as the measurement standard. In other words, in order to maintain a stable device with respect to the roll axis in a strong vibration and still temperature environment, it is necessary to make specifications that ignore ILD economics.

本発明は期かる事情に鑑みてなさnたものであって、上
記架台は距離センサΩ支持又は案内の役目をJiI!:
たせしめるのみとし、測定の基準げレーサ尋の光ビーム
に依ることとして、実用性のある高梢1測定を可能とす
るロール形状測定方法及びその実M@に使用する装置を
提供することを目的とする。本発明に係るロール形状測
定方汗b10−ル軸心と平行的にロール表面に対向させ
て設けた案内手段に沿って距離センサを林勤させて距離
センサとロール表面との距#を藺1駕する一方、距制セ
ンサの移動域に沿わせて光ビームを投射し、距離センサ
と光ビームとの偏位量を測足し、両測定綺米に暴きロー
ル形状を特定することを%債とする。
The present invention was made in view of the circumstances, and the above-mentioned mount has the role of supporting or guiding the distance sensor. :
The purpose of the present invention is to provide a roll shape measuring method that enables practical high-level measurement by relying on a light beam of a laser beam as a reference for measurement, and an apparatus used for the actual measurement. do. A method for measuring roll shape according to the present invention: A distance sensor is moved along a guide means provided parallel to the roll axis and facing the roll surface, and the distance # between the distance sensor and the roll surface is measured. While rolling, a light beam is projected along the movement range of the distance control sensor, the amount of deviation between the distance sensor and the light beam is measured, and both measurements are clearly revealed to identify the roll shape. do.

以下本発明方法をその実施に1史用する装置dを下す図
面に基き具体的に説明する0 第1図は本発明装酋の全体を示す模式的平rki−であ
る。ロール11を支承しているミルノ・ウジフグ120
入側(又は出1all)にはロール11の細心と平行な
2本の案内レール21.21が水平に取付けらnている
0この案内レール21,214Ci。
Hereinafter, the method of the present invention will be specifically explained based on the drawings showing the apparatus d used for carrying out the method. FIG. Milno Ujifugu 120 supporting Roll 11
Two guide rails 21, 21 are installed horizontally on the inlet (or outlet) side, parallel to the roll 11.

この案内レール11.21の延設方向、つまりロール軸
長方向への移動自在に台車22が係合さ1ている。この
台車22の左右両側面には、案内し・−ル21,21の
左右端に設けたスプロケット)23゜24[掛は回した
チェイン25の両端が連結さtており、右側のスプロケ
ット24に連動連結したモータ26の正逆回転により台
車22は案内レール21’、21に案内されて右行、左
行するようになっている。台車22上にはそ扛自体又は
台車22とロール表面との間の距離X+1”測定する距
離センサ2)が取付けである。この距離センサ27はロ
ール表面Km触する1ランジヤと、ロール11に対する
接近、W隔方向のプランジャ移動′1を検出する差動ト
ランスとを組合せた接触式のもの、又゛はレーザを利用
した光学式看しくは靜電容量式などの非接触式のもの1
と、そn自体公知のものを用いnはよい。
A carriage 22 is engaged with the guide rail 11.21 so as to be movable in the direction in which the guide rail 11.21 extends, that is, in the longitudinal direction of the roll axis. On both left and right sides of this trolley 22, sprockets (23, 24) provided at the left and right ends of the guide wheels 21, 21 are connected to both ends of a chain 25 which is rotated, and to the sprocket 24 on the right side. The carriage 22 is guided by the guide rails 21' and 21 to move to the right or to the left by the forward and reverse rotation of the interlocking motor 26. A distance sensor 2) is mounted on the cart 22 to measure the distance X+1'' between the cart itself or the cart 22 and the roll surface. , a contact type in combination with a differential transformer that detects the plunger movement in the W direction, or a non-contact type such as an optical type using a laser or a static capacitance type.
and n may be a well-known one.

距離センサ2’7(9車22でもよい)の左側面には第
2図に拡大し5て示すように2枚の反射−34a、34
bからなる反射鏡アッセンブリ34が取付けられている
。この反射鏡アッセンブリ34は閣位計30を構成する
ものである。核偏位計3017i案内レール2ユ、21
又は台車22.距離センサ27の移動軌跡の真直歴を、
レーザビームを基準とする偏位tx2として7111j
定する装置であり、レーザビーム発生器31、ウラスト
ン・プリズム干渉計32、反射鏡33、反射−、アッセ
ンブリ34、ディテクタ35及び信号処理器36からな
っており、例えば偵河ヒューレットバツカード製レーサ
ー精密測定システム5526Aが用いらnる。
On the left side of the distance sensor 2'7 (9 wheels 22 may be used), there are two reflective sheets 34a, 34 as shown in the enlarged view in FIG.
A reflector assembly 34 consisting of b is attached. This reflecting mirror assembly 34 constitutes the cabinet 30. Nuclear deviation meter 3017i guide rail 2 units, 21
Or trolley 22. The straight history of the movement trajectory of the distance sensor 27 is
7111j as the deviation tx2 with respect to the laser beam
This device consists of a laser beam generator 31, a Wollaston prism interferometer 32, a reflector 33, a reflector assembly 34, a detector 35, and a signal processor 36. A measurement system 5526A is used.

案内レール21.21の左方に、案内レール21゜21
或はミルハウジング12とは別に堅しリこ設けた架台(
図示せず)には反射鏡33かロール軸心11a及びこn
に直交し、ミルハウジング12の人td!I (又は出
側)K延びる水平Hと45°をなすように鉛直に城付け
ら扛ており、この水平脚の方向にレーダビーム発生器3
1、ウラストン・プリズム干渉「r32及びディテクタ
35が配されており、レーザビーム発生器31からはゼ
ーマン効果等を利用して2つの周波数のレーザビームが
兄せらflこのレーザビームはウラストン拳プリズム干
渉計3’ 2 K入ると2つの周波数成分に分離さnて
狭い夾角をもって出ていく。各周波数のビームはビーム
ペンダとなる反射鏡33を経て反射鏡34 a。
To the left of the guide rail 21.21, the guide rail 21°21
Alternatively, a rigid frame provided separately from the mill housing 12 (
(not shown) includes a reflecting mirror 33, a roll axis 11a, and a
Orthogonal to the mill housing 12 people td! I (or exit side) K is mounted vertically at an angle of 45° with the extending horizontal leg, and the radar beam generator 3 is mounted in the direction of this horizontal leg.
1. Wollaston prism interference "r32 and detector 35 are arranged, and the laser beam generator 31 generates a laser beam of two frequencies using the Zeeman effect etc. This laser beam is generated by the Wollaston fist prism interferometer. 3' 2 K, the beam is separated into two frequency components and exits with a narrow included angle.The beam of each frequency passes through the reflecting mirror 33 which serves as a beam pender, and then passes through the reflecting mirror 34a.

34bの夫々に至り、ここで反射さnて往路を逆KMみ
、画周波数成分はウラストン・プリズム干渉計32内で
再び結合され、その後、ハーフミラ等を利用してディテ
クタ35へ与えらnる。
34b, where it is reflected and reversely KMed on the outward path, and the image frequency components are combined again in the Wollaston prism interferometer 32, and then provided to the detector 35 using a half mirror or the like.

第2図はこの1−位計の原理を説明するための図面であ
って、説明の便宜上ウラストン・プリズム干渉計32及
び反射鏡34 a、  34 bの木を、−11?に上
に配して平面視で示している。
FIG. 2 is a drawing for explaining the principle of this 1-place meter, and for convenience of explanation, the trees of the Wollaston prism interferometer 32 and the reflecting mirrors 34a and 34b are shown as -11? It is shown in a plan view with it placed on top.

2つの周波数成分子Is flのレーザビーム発生器計
32eこて周波数’1sf2の夫々に分離さn来町σ−
にて反射鏡アッセンブリ34へ向がう。反射レアラセン
ブリ34の2つの反射蜆34 a、  34 bil。
The laser beam generator total of two frequency component elements Isfl is separated into each of the 32e iron frequency '1sf2n kimachi σ-
At this point, head toward the reflector assembly 34. The two reflective rods 34 a, 34 bil of the reflective real assembly 34.

θの補角を夾角として連設置、であり、基準状態てを1
干渉計32の光軸が両反射棒34a、34bの−1の中
心に一致し、禮光軸に噺直な半開と反射鯨34a、34
b天々の軛面とθ/2の角度をなすように配置しである
。こt′LKより尚波数fI+ f2のレーザビームは
反射IQ34a、34bの曲面で直角に反射さ1、光の
往路と復路とが一致することになる。
The supplementary angle of θ is set as the included angle, and the reference state is 1.
The optical axis of the interferometer 32 coincides with the -1 center of both reflecting bars 34a, 34b, and the half-open and reflecting whales 34a, 34 are aligned with the optical axis.
b It is arranged so as to form an angle of θ/2 with the yoke plane of the sky. From this t'LK, the laser beam with the wave number fI+f2 is reflected at right angles by the curved surfaces of the reflection IQs 34a and 34b1, and the forward and backward paths of the light coincide.

而【2てこの様な基準状態(x2=oに相当)から、餉
2図に2点鎖線にて示すようにロール11へ接近する方
向にΔXたけ水平偏″位した(即ちx2=ΔXI   
となった) ものとするとロール11側の反射鏡34a
と干渉計32どの間の距離はΔdだけ長くなり、逆にロ
ール11から遠い方の反射峡341)と干渉計32との
間の距mけΔdだけ短かくなり、こゎによる庵波数’I
t ’tのレーザビー2の光路長差け4Δdとなる。デ
ィテクタ35i’lこの光路長差Δdに基因する干渉縞
を光学的に捉えて光′に変換するものであり、信号処理
器36はディテクタ出方と、光学系の構造にて予め定ま
るΔdとΔXとの侠舞式に1てΔd及びΔχを算出し、
こrtt−頂鼻匍J惧装置a41に続込ませる。なお反
射税アッセンフリ34の偏位方向が逆である場合にも同
様にx2’=ΔXが算出できる。
[2] From the reference state (corresponding to x2 = o) like this, the lever horizontally deviates by ΔX in the direction approaching the roll 11 as shown by the two-dot chain line in Figure 2 (that is, x2 = ΔXI
) Then, the reflecting mirror 34a on the roll 11 side
The distance between the interferometer and the interferometer 32 becomes longer by Δd, and conversely, the distance between the reflection gorge 341) which is farther from the roll 11 and the interferometer 32 becomes shorter by the distance m by Δd.
The optical path length difference of the laser beam 2 at t't is 4Δd. The detector 35i'l optically captures the interference fringes caused by the optical path length difference Δd and converts them into light. Calculate Δd and Δχ in a chivalrous manner,
This is connected to the top nose stopper device A41. Note that even when the deflection direction of the reflective tax assembly 34 is reversed, x2'=ΔX can be calculated in the same way.

なお上述の実施例ではレーザビーム発住器31をロール
11の入(1iu (又は出側)に対向する61曾に設
けたが省スペース上、上方に配してレーザビームを下向
けに発し、こtをビームペンダでロール軸心11aと平
行するように曲けてもよい。またビームペンダを用いる
ことなくレーザビームをロール軸心と平行に直進させる
べく案内し′−ル21゜21の側方にレーザビーム発生
器31.干#1tj32゜テイテ°クタ35等を配置し
てもよい。いすnにしテモレーザピームが測定基準とな
るのでこnらの光学系の位置ずれか生じることがないよ
うに堅固な架台に取付けておく。
In the above-described embodiment, the laser beam generator 31 was provided at the 61 side facing the input (or output side) of the roll 11, but in order to save space, it was placed above to emit the laser beam downward. It is also possible to bend the laser beam with a beam pender so that it is parallel to the roll axis 11a.Also, without using a beam pender, it is possible to guide the laser beam so that it travels straight parallel to the roll axis 11a. A laser beam generator 31. A detector 35, etc. may be placed.Since the laser beam will be the measurement standard, it must be solid so that the position of these optical systems will not shift. Attach it to the stand.

マイクロコンピュータ等を用いてなる演鉢制輛−装置4
1ij前記信号処理器36゛より距シxl(D測定値に
相当する信号を読込む。また距離センサ27のコントロ
ール回路27aより距W% !+の測定値に相当する信
号を読込む。前記モータ26ij演算制御II鉄m41
に与えらnた正転、逆転、停止の指令によって所定の信
号を受けるドライブ回路42によって駆動さnる。また
モータ26には回転エンコーダ43が連動連結さnてお
り、台車22又は距離センサ27のロール軸長方向位置
を表す信号、即ち軸長方向のロール形状測定位置を特定
する信号を発し、演算制御装置41iiこnを読込む。
Performance bowl system 4 using a microcomputer, etc.
1ij A signal corresponding to the measured value of distance xl (D is read from the signal processor 36'. A signal corresponding to the measured value of distance W%!+ is read from the control circuit 27a of the distance sensor 27. 26ij calculation control II iron m41
It is driven by a drive circuit 42 which receives predetermined signals in response to commands for forward rotation, reverse rotation, and stop. Further, a rotary encoder 43 is interlocked and connected to the motor 26, and emits a signal representing the position of the trolley 22 or the distance sensor 27 in the roll axis longitudinal direction, that is, a signal specifying the roll shape measurement position in the axis longitudinal direction, and performs arithmetic control. Read the device 41ii.

史にロール11にも回転エンコーダ44が連動連結さn
ており、この出力信号は周方向のロール形状測定位置を
特定するためのデータとして演算制御装[41へ入力さ
nる。
A rotary encoder 44 is also interlocked with the roll 11.
This output signal is input to the arithmetic and control unit [41] as data for specifying the roll shape measurement position in the circumferential direction.

なお軸長方向のロール形状測是位黄を特定する方法とし
ては上述の如き回転エンコーダ43による外、台車22
の駆動手段としてパルスモータを用い、これに与え名工
、逆転のためのパルスミt計数することとしてもよく、
更KFiレーザビーム発生器31をレーザ光源として利
用する光学距離′肘に依ることとしてもよい。
In addition, as a method for specifying the roll shape measurement position yellow in the shaft length direction, in addition to using the rotary encoder 43 as described above,
It is also possible to use a pulse motor as a driving means and count the pulses for reversal by applying it to the motor.
Furthermore, it may also depend on the optical distance when using the KFi laser beam generator 31 as a laser light source.

次に演算制御装置41による制御をこの装置の製作と共
に説明する。演算制御装置41に対し、図示しない操作
手段によりリセット指令を与えると、演算制御装置It
41はドライブ回路42へ所定信号を発してモータ26
1に逆転させ、回転エンコーダ43出力により、距離セ
ンサ2)での測定がロール左端に対して行われる位置(
初期位置)に台車22が達したことを検知するとモータ
26を停止させるっ而してロールの母線形状を測定すべ
き指示を演算制御装#L41に与えると、演算制御装置
41けモータ26を正転させるべき信号をドライブ回路
42へ発する0こnに伴い、演算制御装置41は距離セ
ンサ27、信号処理器36の出力を回転エンコーダ43
からの入力に同期させて続込み、レーザビームを基準と
する、正確には周波数fly ’tのし、−、ザビーム
の夾角の2等分仮想線を基準とするロール表面ま゛での
距離X1+X2(但しx2は正又は負をとり得る) を
算出し、これを雁喝センサ2フによる軸長方向測定位置
と関連づけてツーリンク、プロッタ等の記録装置45に
記諒さゼる0このような測定記録は台車22が案内レー
ル石組1j端近くまで移動して、距離センサ27がロー
ル右端のIMII定を行っている状態を回転エンコーダ
43からの入力によって演算i:+御装置41か検出す
るまで#統さnる。またロールの周方向の他の位置での
形状、つ1り相異る母線の形状を測定する場合はロール
11を回転させて同操作を反復すtばよい。
Next, control by the arithmetic and control device 41 will be explained together with the fabrication of this device. When a reset command is given to the arithmetic and control device 41 by an operation means (not shown), the arithmetic and control device It
41 issues a predetermined signal to the drive circuit 42 to drive the motor 26.
1, and the output of the rotary encoder 43 determines the position (
When it is detected that the trolley 22 has reached the initial position), the motor 26 is stopped and an instruction to measure the generatrix shape of the roll is given to the arithmetic and control unit #L41. Along with the output of the signal to be rotated to the drive circuit 42, the arithmetic and control unit 41 transmits the outputs of the distance sensor 27 and the signal processor 36 to the rotary encoder 43.
Continuing in synchronization with the input from the laser beam, the distance to the roll surface based on the imaginary line that bisects the included angle of the laser beam, more precisely the frequency fly 't, and the included angle of the laser beam as the reference. (However, x2 can be positive or negative), and record this in the recording device 45 such as a two-link or a plotter in association with the position measured in the axial length direction by the wild goose sensor 2. The measurement record continues until the trolley 22 moves close to the end of the guide rail masonry 1j and the distance sensor 27 determines the IMII of the right end of the roll until the input from the rotary encoder 43 detects the calculation i:+control device 41. #Control. Moreover, when measuring the shape at another position in the circumferential direction of the roll, or the shape of a different generating line, it is sufficient to rotate the roll 11 and repeat the same operation.

次にロールの軸断面プロフィールを測定する場合は演算
制御装置41に所要信号を与えて台車22、距離センサ
27を測定を必要とする位置まで移動させる。このよう
にした上でロール11を緩やかに回転させると距離セン
サ27けその軸長方向位前における同方向の形状を測定
することになる。
Next, when measuring the axial cross-sectional profile of the roll, a necessary signal is given to the arithmetic and control unit 41 to move the cart 22 and the distance sensor 27 to the position where measurement is required. When the roll 11 is rotated slowly in this manner, the shape of the distance sensor 27 in the axial direction in front of and in the same direction is measured.

演算制御装に41は回転エンコーダ44からの入力信号
に同期して距離センサ2”’ 7の出力を読込み、前同
様に!、+Xlを演算して、演算結果を周方向の―」定
位置と関連づけて記録装置45に記録させる。
The arithmetic control unit 41 reads the output of the distance sensor 2"' 7 in synchronization with the input signal from the rotary encoder 44, calculates !, + The information is recorded in the recording device 45 in association with each other.

本発明は以上のように測定基準としてレーザビーム等の
光ビームを使用し、従来の水平横架架台に相当する案内
レール21.21及びこ扛に案内さrしる距離センサ等
の光ビームに対する偏位を補正するから、工作精度、設
置精度、或は経時変化1、熱変形等により測定精度が影
響を受けない。このためにインラインでの正確なロール
形状測定が実用化さnることになる。つまり本発明装置
ではレーザビーム発生器31.干渉計329反射暁33
゜及びディテクタ35等を定置する部分のみを撮動、熱
膨張等に対して安定に設置すれによく、安価に要件でき
る。また案内レールの点検等の保守作業も簡略化される
As described above, the present invention uses a light beam such as a laser beam as a measurement standard, and uses the guide rail 21, 21 corresponding to a conventional horizontal horizontal frame and the light beam of a distance sensor etc. guided by this rail. Since the deviation is corrected, the measurement accuracy is not affected by machining accuracy, installation accuracy, change over time 1, thermal deformation, etc. For this reason, accurate in-line roll shape measurement has become practical. That is, in the apparatus of the present invention, the laser beam generator 31. Interferometer 329 reflection Akatsuki 33
Only the part where the detector 35 and the like are fixed can be stably installed against imaging, thermal expansion, etc., and can be required at low cost. Maintenance work such as inspection of the guide rails is also simplified.

本発明はこのようにロールをミルハウジングに組込んだ
ままその形状を高精度で測定することを可能とするので
、無駄なロール取替、取替え遅nが回避でき、更にロー
ルをミルハウジングに組込んだままでのロール研削がc
iJ能になるなど、本発明は優nた効果を奏する。
The present invention makes it possible to measure the shape of the roll with high accuracy while it is assembled into the mill housing, so it is possible to avoid wasteful roll replacement and replacement delays, and it is also possible to assemble the roll into the mill housing. Roll grinding in a crowded state is c.
The present invention has excellent effects such as improved iJ performance.

【図面の簡単な説明】[Brief explanation of the drawing]

1囲は本発明の実施例を示しており、褐1凶は本発明装
置の全体を略示する模式的平面図、第2図Fi偏位計の
測足原浬説明図である。 21.21・・・案内v−ル 22・・・台車 26・
・・モータ 2フ・・・距離センサ 31・・レーサビ
ーム発生632−干渉計 33.34a、34b−反*
Jm35・・・ディテクタ 41・・・演舞制御装置4
3.44・・・回転エンコーダ 特許出願人  住友金属工業株式会社
The first box shows an embodiment of the present invention, the first box in brown is a schematic plan view schematically showing the entire device of the present invention, and the second box is an explanatory view of the Fi displacement meter. 21.21...Guidance v-ru 22...Dolly 26.
...Motor 2F...Distance sensor 31...Laser beam generation 632-Interferometer 33.34a, 34b-Anti*
Jm35...Detector 41...Performance control device 4
3.44...Rotary encoder patent applicant Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】 1、ロール軸心と平行的にロール表面に対向させて設け
た案内手段eこ沿って距−センサを移動させて距離セン
サとロール表面との距離を測定する一方、距離センサの
移動域に沿わせて光ビームを投射し、距離センサと元ビ
ームとの偏位置を測定し、両測定結果に基きロール形状
を特定することを特徴とするロール形状測定方法。 2、ロール軸心と平行的にロール表面に対向させて設け
た案内手段と、該案内手段に案内されて移動し、ロール
表面との離隔距離を測定する距離センサと、該距離セ/
すの移動域に沿わせて光ビームを投射し、この光ビーム
と距離センサとの一位量を測定する偏位計とを具備し、
距離センサ及び偏位計の測定出力にてロール形状を測定
する構成と−したことを゛特徴とするロール形状測定装
置。
[Claims] 1. While measuring the distance between the distance sensor and the roll surface by moving the distance sensor along the guide means e provided parallel to the roll axis and facing the roll surface, A roll shape measuring method characterized by projecting a light beam along the moving range of a sensor, measuring the eccentric position of the distance sensor and the original beam, and specifying the roll shape based on the results of both measurements. 2. A guide means provided parallel to the roll axis and facing the roll surface, a distance sensor that moves guided by the guide means and measures the separation distance from the roll surface, and the distance sensor
a deflection meter that projects a light beam along the moving range of the vehicle and measures the distance between the light beam and the distance sensor;
A roll shape measuring device characterized in that the roll shape is measured using measurement outputs of a distance sensor and a deflection meter.
JP56191046A 1981-11-27 1981-11-27 Measuring method and device for roll shape Pending JPS5892808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56191046A JPS5892808A (en) 1981-11-27 1981-11-27 Measuring method and device for roll shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56191046A JPS5892808A (en) 1981-11-27 1981-11-27 Measuring method and device for roll shape

Publications (1)

Publication Number Publication Date
JPS5892808A true JPS5892808A (en) 1983-06-02

Family

ID=16267986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56191046A Pending JPS5892808A (en) 1981-11-27 1981-11-27 Measuring method and device for roll shape

Country Status (1)

Country Link
JP (1) JPS5892808A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606803A (en) * 1983-06-24 1985-01-14 Sumitomo Metal Ind Ltd Device for measuring shape of work roll of rolling mill
JPS608809U (en) * 1983-06-29 1985-01-22 株式会社クボタ Shape measuring device for rotating bodies
JPS6082805A (en) * 1983-10-13 1985-05-11 Sakai Jukogyo Kk Apparatus for detecting shape of road surface
US4597962A (en) * 1983-07-01 1986-07-01 L'oreal Hair-care composition and hair treatment process
JPS61230014A (en) * 1985-04-04 1986-10-14 Mitsubishi Electric Corp Device for measuring mirror face accuracy of flat scan-type non-contact mirror
JPH07318341A (en) * 1994-05-20 1995-12-08 Yotaro Hatamura Rectilinear motion apparatus equipped with deformation-amount detection means and with displacement scale
CN108303064A (en) * 2018-02-07 2018-07-20 北京北铃专用汽车有限公司 Pavement deflection Quick Test Vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962153A (en) * 1972-05-08 1974-06-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962153A (en) * 1972-05-08 1974-06-17

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606803A (en) * 1983-06-24 1985-01-14 Sumitomo Metal Ind Ltd Device for measuring shape of work roll of rolling mill
JPS608809U (en) * 1983-06-29 1985-01-22 株式会社クボタ Shape measuring device for rotating bodies
JPH0316012Y2 (en) * 1983-06-29 1991-04-08
US4597962A (en) * 1983-07-01 1986-07-01 L'oreal Hair-care composition and hair treatment process
JPS6082805A (en) * 1983-10-13 1985-05-11 Sakai Jukogyo Kk Apparatus for detecting shape of road surface
JPS61230014A (en) * 1985-04-04 1986-10-14 Mitsubishi Electric Corp Device for measuring mirror face accuracy of flat scan-type non-contact mirror
JPH07318341A (en) * 1994-05-20 1995-12-08 Yotaro Hatamura Rectilinear motion apparatus equipped with deformation-amount detection means and with displacement scale
CN108303064A (en) * 2018-02-07 2018-07-20 北京北铃专用汽车有限公司 Pavement deflection Quick Test Vehicle
CN108303064B (en) * 2018-02-07 2020-07-17 北京北铃专用汽车有限公司 Pavement deflection rapid detection vehicle

Similar Documents

Publication Publication Date Title
US3986774A (en) Gauging surfaces by remotely tracking multiple images
US20070024861A1 (en) Laser tracking interferometer
US5696589A (en) Optical caliper with compensation for specimen deflection and method
CA2591885A1 (en) Thin film thickness measurement method and apparatus
CN104833486B (en) Multiple reflections formula laser differential confocal Long focal length measurement method and apparatus
CN101762240B (en) Method for measuring axial gaps of differential confocal lens set
JPS5892808A (en) Measuring method and device for roll shape
CN104209667A (en) Automatic detection and tracking method of superfine clearance on magneto-optical imaging of welding seam
US4775236A (en) Laser based roundness and diameter gaging system and method of using same
US4334778A (en) Dual surface interferometer
JPH05283313A (en) Apparatus for measuring stage position
US4678337A (en) Laser based gaging system and method of using same
KR960013682B1 (en) Process and apparatus for measuring sizes of steel spections
US3815996A (en) Device for measuring the displacement of a measuring point along at least two coordinate directions
JP2003315027A (en) Hot dimension/shape measuring apparatus of h-steel
US3357238A (en) Surface profile gauge
US3820902A (en) Measuring method and apparatus which compensate for abbe s error
JP4455961B2 (en) Dach surface characteristic measuring method and dach surface characteristic measuring apparatus
JPS6071903A (en) Device for inspecting optical disc
JPS5892809A (en) Measuring method and device for roll shape
JP2650830B2 (en) Straightness measuring device
JPS61155902A (en) Interference measuring apparatus
JP3192461B2 (en) Optical measuring device
Konkel et al. Improved parallelism measurement using a laser interferometer
JPS59198372A (en) Optical axis tracking apparatus for light wave distance meter