JPS5876134A - Spherical reactor having plural cylindrical reaction chambers and use thereof - Google Patents
Spherical reactor having plural cylindrical reaction chambers and use thereofInfo
- Publication number
- JPS5876134A JPS5876134A JP56174547A JP17454781A JPS5876134A JP S5876134 A JPS5876134 A JP S5876134A JP 56174547 A JP56174547 A JP 56174547A JP 17454781 A JP17454781 A JP 17454781A JP S5876134 A JPS5876134 A JP S5876134A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- gas
- reactor
- pressure
- reaction chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/04—Pressure vessels, e.g. autoclaves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/0005—Catalytic processes under superatmospheric pressure
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/04—Preparation of ammonia by synthesis in the gas phase
- C01C1/0405—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
- C01C1/0417—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the synthesis reactor, e.g. arrangement of catalyst beds and heat exchangers in the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00115—Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
- B01J2208/00132—Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
- B01J2208/00194—Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
- B01J2208/00247—Reflux columns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00265—Part of all of the reactants being heated or cooled outside the reactor while recycling
- B01J2208/00274—Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00265—Part of all of the reactants being heated or cooled outside the reactor while recycling
- B01J2208/00283—Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/19—Details relating to the geometry of the reactor
- B01J2219/194—Details relating to the geometry of the reactor round
- B01J2219/1941—Details relating to the geometry of the reactor round circular or disk-shaped
- B01J2219/1942—Details relating to the geometry of the reactor round circular or disk-shaped spherical
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は高圧下に粒状固定床触媒を使用してガス状°
原料に化学反応を行わしめ、ガス状の生成物を得るだめ
の反応器の改良に関するものであって、その主目的は耐
圧外殻の肉厚を小とし反応器の重量を軽減するとともに
反応器の高さを低くすることによシ付帯配管の長さの短
縮と反゛応器据付のための架台および基礎をも小型化し
建設費を小と子ることにある。DETAILED DESCRIPTION OF THE INVENTION This invention uses a granular fixed bed catalyst under high pressure to
This relates to the improvement of reactors that perform chemical reactions on raw materials to obtain gaseous products.The main purpose of this project is to reduce the thickness of the pressure-resistant outer shell, reduce the weight of the reactor, and reduce the weight of the reactor. By lowering the height of the reactor, the length of the incidental piping can be shortened, and the frame and foundation for installing the reactor can also be made smaller, thereby reducing construction costs.
高圧下のガスを粒状固定床触媒層(以下単に触媒という
)にその触媒の作動温度下で接触させて化学反応を行わ
しめガス状の生成物を得るコトハ、アンモニアの製造、
メタノールの製造等を代表例として既に多くの操業例が
見られる。Production of ammonia by bringing gas under high pressure into contact with a granular fixed bed catalyst bed (hereinafter simply referred to as catalyst) at the operating temperature of the catalyst to carry out a chemical reaction to produce a gaseous product;
There are already many operational examples, with methanol production being a typical example.
また、このような化学反応を行わしめるだめの反応器に
は既に非常に多くの例が開示されている。これらの開示
例には発熱反応の結果として温度の上昇した触媒および
ガスを冷却するために同一反応器内にsbかつ触媒の充
填されている7個あるいはそれ以上に区分された。Further, a large number of examples of reactors for carrying out such chemical reactions have already been disclosed. In these disclosed examples, the same reactor was divided into seven or more units filled with sb and catalyst in order to cool the catalyst and gas whose temperature rose as a result of the exothermic reaction.
反応室内の所望の個所、あるいは異なる反応室の中間に
おいて低温の原料ガスを直接供給する開口、低温の原料
ガスまたは原料ガス以外の他の冷却剤との間接熱交換用
伝熱面等を配設しであるものが多い。An opening for directly supplying low-temperature raw material gas at a desired location within the reaction chamber or between different reaction chambers, and a heat transfer surface for indirect heat exchange with low-temperature raw material gas or other coolant other than raw material gas are provided. There are many things that are true.
また、これら従来の反応器において、その内部に設置さ
れ、触媒を充填して使用する反応室の形状は触媒層内に
ガスを均一に流通させることの必要と製作の容易さの主
観点から円柱形または円筒形状のものが使用されている
。また、これらの反応室におけるガスの流通方向として
はガスを円柱または円筒の軸方向に流す軸流と半径方向
に流すラジアルフローが知られている。従って、従来の
反応器においては円柱または円筒形状の反応室を収容す
るための耐圧外殻としても両端に蓋を有する円筒形のも
の示使用され、この円筒形以外の耐圧外殻の開示例は見
られない。In addition, in these conventional reactors, the shape of the reaction chamber installed inside the reactor and used to fill the catalyst is cylindrical, mainly from the viewpoint of the need for uniform gas distribution within the catalyst layer and ease of manufacturing. or cylindrical shapes are used. Further, as the direction of gas flow in these reaction chambers, axial flow in which gas flows in the axial direction of a column or cylinder, and radial flow in which gas flows in the radial direction are known. Therefore, in conventional reactors, a cylindrical shell with lids at both ends is used as a pressure-resistant shell to accommodate a cylindrical or cylindrical reaction chamber, and examples of pressure-resistant shells other than this cylindrical shape are disclosed. can not see.
この発明は球形あるいはほぼ球形の耐圧外殻を有する反
応器に関するものである。内容積が同一であシかつ内部
のガス圧力が同一の場合、円筒形の耐圧容器に比し球形
のものの方が表面積も小であるとともに耐圧外殻に使用
する鋼材の肉厚も薄いものでよく(同一内径、同一圧力
の場合には約十でよい)、結果的に耐圧外殻自体の重量
が軽くなることは周知となっている。The present invention relates to a reactor having a spherical or nearly spherical pressure-resistant shell. When the internal volume is the same and the internal gas pressure is the same, a spherical pressure vessel has a smaller surface area than a cylindrical pressure vessel, and the steel used for the pressure shell is thinner. It is well known that the weight of the pressure-resistant outer shell itself is reduced (about 10 is sufficient in the case of the same inner diameter and the same pressure).
このような事実を利用して例え2ば液化石油ガスなどの
貯槽として球形のものが多用されている。Taking advantage of this fact, spherical tanks are often used as storage tanks for, for example, liquefied petroleum gas.
しかし耐圧反応器の外殻として球形のものを使用する場
合につきこの球形耐圧外殻の内部空間の利用の態様につ
いては何も知られていない。However, when a spherical shell is used as the outer shell of a pressure-resistant reactor, nothing is known about the manner in which the internal space of the spherical pressure-resistant shell is utilized.
この発明の発明者らは球形耐圧外殻の内部空間を反応器
として利用する場合につき検゛討の結果この発明に到っ
たものである。以下この発明の内容につき詳述する。The inventors of this invention arrived at this invention as a result of their studies regarding the use of the internal space of a spherical pressure-resistant shell as a reactor. The content of this invention will be explained in detail below.
この発明における球形耐圧外殻の内部空間を反応器とし
て使用するための基本的特徴は、この内部空間に少なく
とも2個の円柱形9円筒形。The basic feature for using the internal space of the spherical pressure-resistant shell as a reactor in this invention is that at least two cylindrical cylinders are provided in this internal space.
円錐台形または/およびこれらの外面の一部または全部
と球内面の一部によシ形成される環状型の反応室を設け
ることにある。この基本的特徴によって球形耐圧外殻の
内部空間を反応器用に有効利用することができ、かつ反
応器重量を従来の円筒形反応器の場合に比し軽減するこ
とができる。まず第1図によってこの発明の基本的内容
を説明する。The object of the present invention is to provide a reaction chamber having a truncated conical shape or/and an annular shape formed by a part or all of the outer surface of the truncated cone and a part of the spherical inner surface. This basic feature allows the interior space of the spherical pressure-resistant shell to be used effectively for the reactor, and the weight of the reactor can be reduced compared to conventional cylindrical reactors. First, the basic contents of this invention will be explained with reference to FIG.
第1図は球形外殻Aと円筒形外殻Bに同一水平断面積を
有する3個の反応室を設けた際の両外殻の表面積を比較
するための模式的断面図である。Cは球形反応器Aの内
面に接する触媒充填用の円柱形反応室であって両外殻に
共通になるよう図示されている。DはCの外側において
球形反応器Aの内面に接し、水平断面積がCに等しくな
るように設けた円筒形反応室である。FIG. 1 is a schematic sectional view for comparing the surface areas of the spherical outer shell A and the cylindrical outer shell B when three reaction chambers having the same horizontal cross-sectional area are provided. C is a cylindrical reaction chamber for charging a catalyst that is in contact with the inner surface of the spherical reactor A, and is illustrated so as to be common to both outer shells. D is a cylindrical reaction chamber that is in contact with the inner surface of the spherical reactor A on the outside of C, and is provided so that its horizontal cross-sectional area is equal to C.
Dlは内容積と水平断面積においてDと等しい円柱形反
応室を円筒形反応器B内の反応室C上に積み上げた状態
を図示したものである。DおよびDlの内容積はCよシ
小である。EはDの外側において球形反応器Aの内面に
接し一水平断面積がCおよびDに等しくなるよう設けた
円筒形反応室である。Elは内容積と水平断面積におい
てEと等しい円柱形反応室を円筒形反応器B内の反応室
D1の上に積み上げた状態を図示しである。Dl is a diagram showing a state in which a cylindrical reaction chamber whose internal volume and horizontal cross-sectional area are equal to D is stacked on a reaction chamber C in a cylindrical reactor B. The internal volumes of D and Dl are smaller than C. E is a cylindrical reaction chamber provided outside D so as to be in contact with the inner surface of the spherical reactor A so that its horizontal cross-sectional area is equal to C and D. El shows a state in which a cylindrical reaction chamber whose internal volume and horizontal cross-sectional area are equal to E is stacked on top of the reaction chamber D1 in the cylindrical reactor B.
EおよびElの体積はDおよびDlよシ小である。The volumes of E and El are smaller than D and Dl.
上記によシ球形反応器Aと円筒形反応器Bは同一容積の
触媒を充填することができ、また、球形反応器において
原料ガスを軸方向にO−+D→Eあるいはg−+D→C
の如く通過させれば、C2D、Eの各反応器におけるガ
ス通過の際の線速度は円筒形反応器B内をガスが軸方向
に通過した場合の線速度に等しい。すなわち触媒量にお
いてもガスの通過の際の圧力損失においても著しい性能
を有する。円筒形反応器Bの上およ□び下端に周知の蓋
を取シ付け(第1図では半球形)周知の方法によシ両反
応器の表面積を算出すれば球形反応器Aの表面積は円筒
形反応器Bの表面積よシ著しく小である。両反応器内に
同一圧力の高圧ガスが存在している場合の両反応器の耐
圧外殻の重量は反応室間に後述する冷却装置を設置する
ことを考慮しても球形反応器の外殻の方を円筒形反応器
の外殻よシ/θ〜2θチ程度あるいはそれ以上小とする
ことができる。この耐圧外殻の重量減少は耐圧外殻に必
要な肉厚の減少によシ得られるものであるが大型の反応
器においては反応器の大きさがその外殻に使用する鋼材
の製作可能な上限肉厚によって制限される場合があシ、
肉厚の減少はこのような制限を回避できることを意味す
る。The above-mentioned spherical reactor A and cylindrical reactor B can be filled with the same volume of catalyst, and in the spherical reactor, the raw material gas is axially oriented O-+D→E or g-+D→C.
If the gas passes through the reactors C2D and E, the linear velocity when the gas passes through the cylindrical reactor B is equal to the linear velocity when the gas passes through the cylindrical reactor B in the axial direction. That is, it has remarkable performance both in terms of catalyst amount and pressure loss during gas passage. Attach well-known lids to the top and bottom ends of cylindrical reactor B (hemispherical in Figure 1), and calculate the surface areas of both reactors using a well-known method.The surface area of spherical reactor A is then The surface area of cylindrical reactor B is significantly smaller. When high-pressure gas at the same pressure exists in both reactors, the weight of the pressure-resistant outer shell of both reactors is the same as that of the outer shell of the spherical reactor, even when considering the installation of a cooling device described below between the reaction chambers. can be made smaller than the outer shell of a cylindrical reactor by about 1/θ to 2θ or more. This weight reduction of the pressure-resistant shell is achieved by reducing the wall thickness required for the pressure-resistant shell, but in large reactors, the size of the reactor makes it difficult to manufacture the steel material used for the shell. May be limited by upper wall thickness,
A reduction in wall thickness means that such limitations can be avoided.
以上がこの発明の詳細な説明である。この発明において
は従来の円筒形反応器において使用されることのない円
錐台形あるいは環状円錐台形の反応室などをも使用でき
るがこれについては後述する。また、この反応器におい
て実施できる化学反応には発熱反応と吸熱反応の一種が
あシ、吸熱反応の場合は後述とし、以下に主として発熱
反応の例を用いて説明するが、この発明におけるこの両
反応には基本的な差がなく、以下の説明は発熱反応にお
ける冷却を吸熱反応における加熱と読み替える如く、原
料ガスの予熱以外の温度関係を逆転させることによシ吸
熱反応にも適用できる。通常反応器の内部には前記の如
き反応室以外に反応の結果、温度の上昇した触媒あるい
はガスを所望の温度まで冷却し、また、反応器に供給さ
れる原料ガスを触媒の作動温度まで予熱するための設備
が必要である。The above is a detailed explanation of this invention. In the present invention, a truncated conical or annular truncated conical reaction chamber, which is not used in conventional cylindrical reactors, can also be used, but this will be described later. In addition, there are two types of chemical reactions that can be carried out in this reactor: an exothermic reaction and an endothermic reaction. There is no fundamental difference in the reactions, and the following explanation can also be applied to endothermic reactions by reversing the temperature relationships other than the preheating of the raw material gas, such as replacing cooling in exothermic reactions with heating in endothermic reactions. Usually, inside the reactor, there is a chamber other than the above-mentioned reaction chamber to cool the catalyst or gas whose temperature has increased as a result of the reaction to the desired temperature, and to preheat the raw material gas supplied to the reactor to the operating temperature of the catalyst. equipment is required to do so.
これら反応器内部における触媒および高温となったガス
の冷却には第1の方法として低温の原料ガスを触媒層内
の所望個所あるいは区画された触媒層(すなわち反応室
)の上流側にあるものと引続く下流側にあるものとの中
間にあるガス通路に直接供給する方法がある。同様目的
の第一の方法としては、触媒層内あるいは区画された反
応室の上流側にあるものと列壁く下流側にあるものとの
中間の空間に間接熱交換のだめの伝熱面を設置し、高温
にある触媒あるいはガスと低温の原料ガスを熱交換させ
る方法がある。The first method for cooling the catalyst and high-temperature gas inside these reactors is to supply the low-temperature raw material gas to a desired location within the catalyst layer or upstream of the partitioned catalyst layer (i.e., reaction chamber). There is a method of supplying the gas directly to the intermediate gas path with the subsequent downstream one. The first method for achieving the same purpose is to install a heat transfer surface for indirect heat exchange in the space between the upstream side of the catalyst bed or the partitioned reaction chamber and the downstream side of the row wall. However, there is a method of exchanging heat between a catalyst or gas at a high temperature and a raw material gas at a low temperature.
この第一の方法は、原料ガスの予熱に使用することもで
きる。更に同じ目的のだめの第3の方法として、第2の
方法における熱交換器の低温側の流体である原料ガスの
代シに別の冷却用流体−例えば他のガス体あるいは加圧
下の所望温度で沸騰温度に達している液体もしくは液体
とその蒸気の混相流体を使用する方法がある。原料ガス
の予熱方法には上記第2の方法と反応室の内の最下流に
あるものから流出する高温ガスと反応器内に導入される
原料ガスとを間接熱交換させる方法がある。反応器の耐
圧外殻が触媒の作動温度まで上昇しても耐圧外殻の強度
保持と腐蝕・脆化の防止の点で支障のない場合は、原料
ガス予熱法として反応器外にある熱交換器を使用して原
料ガスを加熱し、触媒の作動温度に達した原料ガスを反
応器内に導入することもできる。しかし耐圧外殻の温度
を触媒の作動温度以下に保持する必要のある場合には上
記原料ガス予熱用間接熱交換器が反応器内に設置される
必要がある。This first method can also be used to preheat the raw material gas. Furthermore, as a third method for the same purpose, instead of the raw material gas, which is the fluid on the cold side of the heat exchanger in the second method, another cooling fluid, such as another gaseous body or a desired temperature under pressure, is substituted. There is a method that uses a liquid that has reached boiling temperature or a multiphase fluid of liquid and its vapor. Methods for preheating the raw material gas include the second method described above and a method of indirectly exchanging heat between the high temperature gas flowing out from the most downstream of the reaction chambers and the raw material gas introduced into the reactor. If there is no problem in maintaining the strength of the pressure-resistant shell and preventing corrosion and embrittlement even if the pressure-resistant shell of the reactor rises to the operating temperature of the catalyst, heat exchange outside the reactor can be used as a raw material gas preheating method. It is also possible to heat the raw material gas using a reactor and introduce the raw material gas into the reactor after reaching the operating temperature of the catalyst. However, if it is necessary to maintain the temperature of the pressure-resistant shell below the operating temperature of the catalyst, it is necessary to install the indirect heat exchanger for preheating the raw material gas in the reactor.
この発明による球形耐圧外殻の内部は上記の如き反応室
および触媒、ガスの冷却、原料ガスの予熱などの機能設
備の収容空間として使用されるが、これら諸機能設備の
それぞれに必要な容積は反応室において生起する反応の
種類、使用する触媒の種類、その反応に際し発生する熱
量2反応温度2反応圧力などによシ著しく異なる。従っ
てこの発明によシ得られる利点は前記反応器重量および
肉゛厚の減少以外にも多くある。The interior of the spherical pressure-resistant outer shell according to the present invention is used as a space for accommodating functional equipment such as the reaction chamber and catalyst, gas cooling, and raw material gas preheating as described above, but the volume required for each of these functional equipment is It varies significantly depending on the type of reaction that occurs in the reaction chamber, the type of catalyst used, the amount of heat generated during the reaction, the reaction temperature, the reaction pressure, etc. Therefore, there are many advantages to the present invention other than the reduction in reactor weight and wall thickness.
まず多数ある実施態様に共通なものから説明を行う。First, things common to many embodiments will be explained.
一般的に反応圧力がj kg/d (ケージ圧以下同様
)以下の反応においては、同一触媒量を使用する円筒形
反応器の重量とこの発明による球形反応器の重量との間
には、耐圧外殻に必要な鋼材使用量の差が少なく、この
発明の有利性が顕著に表われない。反応圧力/θkg/
d以上特に3グkg/d以上においてこの発明の有利性
が犬となる。また、反応室に関していえば、球形反応器
を使用する場合であっても反応室内のガスの通過方向に
垂直な断面内においてガスの均等な流れを保持し、触媒
の有効利用率を高めるために円柱形あるいは円筒形の反
応室が好ましいことは円筒形反応器の場合とほぼ同様で
ある。しかし球形反応器内に円柱形あるいは円筒形の反
応室を唯一個のみ設けた場合は反応室以外の内部空間が
大となシ、この内部空間に触媒とガスを冷却するための
設備あるいは原料ガスを予熱するための設備などを収容
してもなお余剰空間が発生し、球形反応器使用による有
利性が出ない。従って、球形反応器の内部空間を有効に
利用するためには少なくとも2個の円柱形あるいは円筒
形反応室の設置が必要である。また、球形反応器におい
ては円筒形反応器め場合と異なり円柱形2円筒形反応室
以外に円錐台形反応室および円柱形1円筒形または円錐
台形の外面の一部あるいは全部と耐圧外殻内面の一部と
の間に形成される環状空間の反応室としての使用が反応
器内の空間を有効に使用する方法として容易に実施でき
、かつ有利となる。この事実は球形反応器がいわゆる“
ずんぐbm”であることから明らかである。従ってこの
発明による少なくとも一個の反応室には上記した如き円
柱形2円筒形以外のものが含まれる。これら円柱形2円
筒形以外の反応室の利点については具体例の項で述べる
。これら形状の2個以上の反応室は各反応室の中心軸が
共通、すなわち同軸であって外径の小なるものが内径の
犬なるものの内部に存在するよう設置することが内部空
間の有効利用上重要である。In general, in reactions where the reaction pressure is less than j kg/d (same as cage pressure or less), there is a pressure resistance difference between the weight of a cylindrical reactor using the same amount of catalyst and the weight of the spherical reactor according to the present invention. The difference in the amount of steel material required for the outer shell is small, and the advantages of the present invention are not noticeable. Reaction pressure/θkg/
The advantage of this invention is particularly when the weight is 3 kg/d or more. Regarding the reaction chamber, even when using a spherical reactor, in order to maintain an even flow of gas within the cross section perpendicular to the direction of gas passage in the reaction chamber and increase the effective utilization rate of the catalyst, The preference for a cylindrical or cylindrical reaction chamber is similar to that for a cylindrical reactor. However, if only one cylindrical or cylindrical reaction chamber is provided in a spherical reactor, the internal space other than the reaction chamber will be large, and in this internal space there will be equipment for cooling the catalyst and gas, or equipment for cooling the raw material gas. Even if equipment for preheating the reactor is accommodated, there will still be surplus space, and the advantage of using a spherical reactor will not be realized. Therefore, in order to effectively utilize the internal space of the spherical reactor, it is necessary to install at least two cylindrical or cylindrical reaction chambers. In addition, in a spherical reactor, unlike a cylindrical reactor, there is a truncated conical reaction chamber in addition to the cylindrical 2 cylindrical reaction chambers, and a cylindrical 1 part or all of the cylindrical or truncated conical outer surface and the inner surface of the pressure-resistant outer shell. Using the annular space formed between the two parts as a reaction chamber is an easy and advantageous method of effectively using the space within the reactor. This fact shows that spherical reactors are so-called “
Therefore, at least one reaction chamber according to the present invention includes a shape other than the above-mentioned cylindrical shape.Advantages of reaction chambers other than the cylindrical shape and two cylindrical shapes. will be explained in the section on specific examples.Two or more reaction chambers with these shapes have a common center axis, that is, they are coaxial, and the one with the smaller outer diameter is inside the one with the inner diameter. Installation is important for effective use of internal space.
上記の如き構造を有する球形反応器の構造上の利点の第
1は同一の触媒充填容積を有する円筒形反応器に比し外
殻の肉厚と重量が小となることである。その理由一つい
ては既に記述した通シである。球形反応器の構造上の利
点の第2は球形耐圧外殻の球面を呈する表面上の所望の
位置にガス、冷却剤あるいは触媒を出入させるだめの接
続口を比較的容易に設けることができる点である。すな
わち、従来の細長い円筒形反応器の場合では両端の鏡板
から離れた個所にガス、冷却剤を出入させるための空間
を設けることは可能ではあるが耐圧外殻の長さを相当増
大しなければならない。特に反応室用に内筒が必要の場
合には外殻と内筒との間に操業中の温度差に起因して大
なる伸縮差を生じ円筒状耐圧外殻の側壁と内筒側壁との
両者を貫通してガスや冷却剤を出入させるための管を設
置することは構造が複雑となシ、実用的でない。これに
対しこの発明による場合には反応器内にある隔壁と耐圧
外殻の球面部内面との間にある環状空間を利用しガス、
冷却剤などを出入させるだめの管を耐圧外殻の内面に沿
った曲管あるいはコイルとして設置することが可能であ
シ、構造が簡単でかつ反応器゛の熱膨張による熱応力も
大とならない。この点大型反応器では上記環状空間が作
業者がこの空間中で作業するのに十分な大きさとなるの
で製作上も有利である。The first structural advantage of the spherical reactor having the above structure is that the outer shell has a smaller wall thickness and weight than a cylindrical reactor having the same catalyst filling volume. One of the reasons for this is the general policy already described. The second structural advantage of the spherical reactor is that it is relatively easy to provide connections for gas, coolant, or catalyst at desired positions on the spherical surface of the spherical pressure-resistant shell. It is. In other words, in the case of a conventional elongated cylindrical reactor, it is possible to provide a space for gas and coolant to enter and exit at a location away from the end plates at both ends, but this requires a considerable increase in the length of the pressure-resistant shell. No. In particular, when an inner cylinder is required for a reaction chamber, a large expansion/contraction difference occurs between the outer shell and the inner cylinder due to the temperature difference during operation, and the side wall of the cylindrical pressure-resistant outer shell and the inner cylinder side wall. It would be impractical to install a pipe that penetrates the two to let gas or coolant in and out, as the structure would be complicated. On the other hand, in the case of the present invention, the annular space between the partition wall in the reactor and the inner surface of the spherical part of the pressure-resistant shell is used to
It is possible to install the tube for introducing and discharging the coolant etc. as a curved tube or coil along the inner surface of the pressure-resistant shell, and the structure is simple and the thermal stress due to thermal expansion of the reactor is not large. . In this respect, a large-sized reactor is advantageous in manufacturing because the annular space is large enough for an operator to work in this space.
前記第1図を使用した原理説明では説明を簡単にするた
め球形反応器内の各反応室の側面が相接する場合を図示
した。このように反応室がその表面の一部または大部分
において相互に接する如き反応室の設置は球形反応器内
の空間の多くを反応室として利用できる故望ましいこと
である。しかし反応器の形状に関係なく反応室で生起す
る反応に発熱量が大、触媒の耐熱性が小で温度の過上昇
によシ性能が低下する、あるいはガスと触媒の温度の上
昇が化学平衡上反応の進行を不利にするなどの性質があ
る場合には反応器内に前記の妬き冷却設備を設けるため
の空間が必要となる。従来の円筒形反応器においてこれ
らの冷却設備、すなわち低温原料ガスの反応室あるいは
反応室間のガス通路への供給管あるいはその開口部また
は低温の原料ガスあるいは他の冷却剤などと高温ガスを
間接熱交換させるための管状伝熱面を設置するための空
間を設ける場合には同一触媒量に対し円筒形反応器の直
径または長さを増す必要がある。゛これに対し2個以上
の反応室を有する球形反応器においては反応室と球形反
応器の外殻との間に環状の空間が残存し、この残存空間
を反応ガスの通路として直接に、あるいは内部に反応ガ
ス、原料ガス、冷却剤を熱交換させつつ流通させるだめ
の管の設置場所として利用し、球形反応器の内容積を増
加させることなく内部空間の利用率を高めることができ
る。In the explanation of the principle using FIG. 1, a case where the side surfaces of each reaction chamber in a spherical reactor are in contact with each other is illustrated for ease of explanation. It is desirable to install the reaction chambers in such a way that the reaction chambers are in contact with each other on some or most of their surfaces, since much of the space within the spherical reactor can be used as the reaction chamber. However, regardless of the shape of the reactor, the reaction that occurs in the reaction chamber has a large calorific value, the heat resistance of the catalyst is low, and the performance deteriorates due to an excessive rise in temperature, or the temperature of the gas and catalyst rises to a chemical equilibrium. If there is a property that makes the progress of the reaction unfavorable, a space is required in the reactor to provide the above-mentioned cooling equipment. In conventional cylindrical reactors, these cooling facilities are used, i.e., supply pipes or openings thereof to the reaction chambers of the low-temperature raw gas or gas passages between the reaction chambers, or the hot gas is connected indirectly to the low-temperature raw gas or other coolant. If a space is provided for installing a tubular heat transfer surface for heat exchange, it is necessary to increase the diameter or length of the cylindrical reactor for the same amount of catalyst. ``On the other hand, in a spherical reactor having two or more reaction chambers, an annular space remains between the reaction chamber and the outer shell of the spherical reactor, and this remaining space can be used directly or as a passage for the reaction gas. It can be used as a place to install a reservoir tube through which reactant gas, raw material gas, and coolant circulate while exchanging heat, thereby increasing the utilization rate of the internal space without increasing the internal volume of the spherical reactor.
上記の説明で明らかな如く、この発明の利点を得るため
の球形反応器はその全表面が球形である必要がなく、球
形に近いものであればこの発明の利点を実現することが
できる。球状外殻の一部が外部に突出している場合にお
いてもこの突出部が円筒状であシ、この円筒の直径が球
の直径に比し比較的小であればこの発明の利点は損われ
ない。例えば球面部の内部空間とが連通ずる7個あるい
はそれ以上の円筒形突出部がある場合につきこの発明者
らが検討した結果では円筒形突出部と球面との接合部を
境界として球面を呈する部分の表面積が円筒形突出部の
存在しない場合の核球の全表面積土以上を占める如き球
状反応器においても突出部のない球状反応器とほぼ同様
の利点を実現することができる。この場合突出部分の突
出長が相当大であっても球面で囲まれる内部空間と同一
容積を円筒内に収容する場合に比し前記利点をほぼ同様
に実現することができる。また、これらの突出部は7個
に限る必要がなく多数の小突出部を球形反応器表面の所
望の個所に設けることも可能である。As is clear from the above description, the entire surface of the spherical reactor does not need to be spherical in order to obtain the advantages of the present invention; any surface that is close to spherical can realize the advantages of the present invention. Even if a part of the spherical shell protrudes outward, the advantages of the present invention are not impaired as long as this protrusion is cylindrical and the diameter of the cylinder is relatively small compared to the diameter of the sphere. . For example, in the case where there are seven or more cylindrical protrusions that communicate with the internal space of the spherical part, the inventors have investigated the case and found that the part exhibiting a spherical surface with the boundary between the cylindrical protrusions and the spherical surface as a boundary. Even in a spherical reactor in which the surface area of the nuclear sphere occupies more than the total surface area of the core sphere in the absence of a cylindrical protrusion, almost the same advantages as in a spherical reactor without a protrusion can be realized. In this case, even if the protruding length of the protruding portion is considerably large, the above-mentioned advantages can be achieved in substantially the same way as compared to the case where the same volume as the internal space surrounded by the spherical surface is accommodated in the cylinder. Further, the number of these protrusions is not limited to seven, and it is also possible to provide a large number of small protrusions at desired locations on the surface of the spherical reactor.
また同様に、この発明の利点を実現でき、かつ球形反応
器の全表面が球形を呈しない場合の他の例として長さが
直径の土塊下の円筒の両端にこの円筒と同一直径の半球
状鏡板有する長球状のものがある。この長球状反応器は
後述の例の如く発生反応熱が大でガスを高速で反応室中
に流しかつこの反応室には間接冷却のだめの伝熱面積を
多く配置する必要のある場合に好ましい形状となる。こ
の長球状反応器においても前記同様少なくとも7個の円
筒上突出部の存在はこの発明の利点の実現に支障がない
。以下の説明においては上記した球状と長球状の両者に
つき円筒状突出部のある場合とない場合のいずれの反応
器をも単に球形反応器と呼ぶ。この場合の各反応室の共
通軸が第1図の如く垂直であることが組立ておよび保守
点検上好ましい場合が多いが原料ガスおよび生成ガス共
にガス状である故、この共通軸は水平でも傾斜していて
も機能上何らの支障もない。Similarly, another example of a case in which the advantages of the present invention can be realized and the entire surface of the spherical reactor does not exhibit a spherical shape is that a cylinder with a length and a diameter under the clod has a hemispherical shape at each end with the same diameter as the cylinder. Some have a long spheroidal shape with mirror plates. This elongated spheroidal reactor is a preferred shape when the reaction heat generated is large and the reaction chamber needs to flow at high speed into the reaction chamber, and the reaction chamber must have a large heat transfer area for indirect cooling. becomes. Also in this elongated spherical reactor, the presence of at least seven cylindrical protrusions as described above does not hinder realization of the advantages of the present invention. In the following description, both the above-mentioned spherical and elongated spheroidal reactors with and without cylindrical protrusions are simply referred to as spherical reactors. In this case, it is often preferable for the common axis of each reaction chamber to be vertical as shown in Figure 1 for assembly and maintenance inspection purposes, but since both the raw material gas and the produced gas are gaseous, this common axis may be tilted even if it is horizontal. There is no problem in functionality even if it is.
次にこの発明による球形反応器の使用方法について説明
する。本発明反応器の内部にガスの流れ方向に対して垂
直な断面の形状がいずれの断面においても同一であシ、
かつガスの流れ方向に同一の長さを有する2個以上の反
応室を設置することが可能である。このような2個以上
の反応室に同一の触媒を充填すれば原料ガスをこれら2
個以上の反応室に並列に通過反応させる事も可能である
。しかしこのようなガスの並列通過法には各反応室に対
するガス流量が均等とならず偏流となる恐れがある。断
面形状や長さの異なる各反応室に並列にガスを流せば偏
流の恐れは強くなる。この偏流を防止するためには各反
応室に対し均等なガス流量を保持するための何らかの設
備を追加する必要がある。また球形反応器内にガスの流
れ方向に垂直な断面の形状がいずれの断面においても同
一であシ、かつガス流れ方向に同一の長さを有する反応
室を一個以上設置することは必ずしも球形反応器の内部
空間を最も有効に利用する方法といえない。これらの理
由によシこの発明の球形反応器内の少なくとも2個の反
応室にガスを直列に通過させることがこの発明反応器の
望ましい利用方法であシ、この直列に通過させる方法に
よれば各反応室の断面形状と長さにほぼ関係なく球形反
応器の内部に多量の触媒を充填し、触媒を有効に利用す
ると共に球形反応器内部空間の有効利用率を高めること
ができる。2個以上の反応室に原料ガスを直列に流すこ
とによシ得られる第1の利点は原料ガスの流れに対し上
流側(特に最上流)にある触媒の温度の過上昇を防止し
易くなる点にある。すなわち触媒を有効に利用するため
には触媒の作動温度まで予熱された原料ガスをまず最上
流にある触媒と接触させる必要があシ、この際の原料ガ
スには反応生成物が全く含まれていないか、あるいはわ
ずかしか含まれていない。従って最上流にある触媒層で
は激しい反応が生起し、ガス温度と触媒温度が共に急上
昇する。このような触媒温度の過上昇は多くの触媒に性
能低下あるいは望ましくない副生物の増加の如き悪影響
を及ぼすことが周知となっている。このような問題はガ
スの流れ方向に垂直な断面積が小であシ、かつ長さも小
なる反応室を上流側に使用し、この反応室のガス流速を
高く保持することによシ反応速度と反応熱の多量発生を
制限し、この反応室を出たガス′を前記した冷却手段の
いずれかによシ冷却すれば簡便に防止することができる
。引続きガス中の反応生成物濃度が高まるに伴って断面
積の犬なる反応室に低流速でガスを通過させるようにす
れば従来の円筒形反応器と全く同様に反応生成物を得る
ことができ、同時に触媒の寿命延長あるいは副生物の生
成量減少の効果を得ることができる。従来の円筒形反応
器において上記効果を得るためには必然的結果として反
応器内容積の増加を伴う。Next, a method of using the spherical reactor according to the present invention will be explained. The shape of the cross section perpendicular to the gas flow direction inside the reactor of the present invention is the same in any cross section,
Moreover, it is possible to install two or more reaction chambers having the same length in the gas flow direction. If two or more reaction chambers are filled with the same catalyst, the raw material gas can be
It is also possible to pass the reaction through more than one reaction chamber in parallel. However, in such a method of passing gas in parallel, the gas flow rate to each reaction chamber may not be equal, resulting in uneven flow. If gas is allowed to flow in parallel through reaction chambers with different cross-sectional shapes and lengths, the risk of uneven flow increases. In order to prevent this uneven flow, it is necessary to add some kind of equipment to maintain an equal gas flow rate to each reaction chamber. In addition, the shape of the cross section perpendicular to the gas flow direction in a spherical reactor is the same in all cross sections, and it is not necessarily possible to install one or more reaction chambers having the same length in the gas flow direction. This cannot be said to be the most effective way to utilize the internal space of the vessel. For these reasons, it is a desirable method of utilizing the reactor of this invention to pass the gas in series through at least two reaction chambers in the spherical reactor of this invention, and according to this method of passing gas in series, A large amount of catalyst can be packed inside the spherical reactor almost regardless of the cross-sectional shape and length of each reaction chamber, so that the catalyst can be used effectively and the effective utilization rate of the internal space of the spherical reactor can be increased. The first advantage obtained by flowing raw material gas in series through two or more reaction chambers is that it becomes easier to prevent the temperature of the catalyst on the upstream side (especially the most upstream) of the raw material gas from rising too much. At the point. In other words, in order to make effective use of the catalyst, it is necessary to first bring the raw material gas, which has been preheated to the operating temperature of the catalyst, into contact with the most upstream catalyst; at this time, the raw material gas does not contain any reaction products. None or only a few. Therefore, a violent reaction occurs in the most upstream catalyst layer, and both the gas temperature and the catalyst temperature rise sharply. It is well known that such excessive rise in catalyst temperature has adverse effects on many catalysts, such as reduced performance or increased production of undesirable by-products. This problem can be solved by using a reaction chamber with a small cross-sectional area perpendicular to the gas flow direction and a small length on the upstream side, and by keeping the gas flow rate in this reaction chamber high. This can be easily prevented by limiting the generation of a large amount of reaction heat and by cooling the gas ' leaving the reaction chamber by one of the cooling means described above. Subsequently, as the concentration of reaction products in the gas increases, by passing the gas at a low flow rate through a reaction chamber with a dog cross-sectional area, it is possible to obtain reaction products in exactly the same way as in a conventional cylindrical reactor. At the same time, the effect of extending the life of the catalyst or reducing the amount of by-products produced can be obtained. In order to obtain the above effects in a conventional cylindrical reactor, the internal volume of the reactor must be increased as a necessary result.
この発明においてガスを各反応室に直列に通過させるこ
とによシ得られる第2の利点は前記した構造上の第2の
利点を利用し、一旦触媒層を通過した高温ガスの配管を
用いて耐圧外殻外に取シ出し、耐圧外殻表面の他の位置
から再び耐圧外殻内にガスを導入することが比較的容易
にできる点にある。この利点は原料ガスが微量の触媒に
対する毒性物質を含有している場合に、球形反応器内に
他の反応室から完全に区画された反応室を設け、この反
応室を反応器における最上流反応室とし、この反応室内
の触媒が触媒毒を吸収し性能劣化を起すが、他の下流の
反応室の触媒は毒性物質から保護され、下流側の触媒を
交換することなく、最上流の触媒のみを新品と交換し、
全触媒の平均寿命を延長させることに利用できる。また
、この第2の利点は異なった触媒を使用する2種または
それ以上の化学反応を同一の反応器内で直列的に実施す
ることを可能にするが、これについては具体例について
後記する。In this invention, the second advantage obtained by allowing the gas to pass through each reaction chamber in series is to take advantage of the second structural advantage described above and to use piping for the high-temperature gas that has passed through the catalyst layer. The advantage is that it is relatively easy to take the gas out of the pressure-resistant shell and reintroduce it into the pressure-resistant shell from another position on the surface of the pressure-resistant shell. The advantage of this is that when the raw material gas contains trace amounts of substances toxic to the catalyst, a reaction chamber is provided in the spherical reactor that is completely separated from other reaction chambers, and this reaction chamber is used for the most upstream reaction in the reactor. The catalyst in this reaction chamber absorbs catalyst poisons, causing performance deterioration, but the catalysts in other downstream reaction chambers are protected from toxic substances, and only the most upstream catalyst is removed without replacing the downstream catalysts. replace it with a new one,
It can be used to extend the average life of all catalysts. This second advantage also allows two or more chemical reactions using different catalysts to be carried out in series in the same reactor, as will be described below with specific examples.
′この発明による球形反応器内の各反応室におけるガス
の流通方向として反応室の軸方向と半径方向のいずれを
も使用することができる。軸方向の流れでは上から下へ
、右から左へ、あるいはこの逆方向、半径方向について
は内側から外側あるいはその逆方向を使用することがで
きる。また−個以上ある反応室の一部では軸方向の流れ
とし、他の反応室では半径・方向の流れ七するなど所望
に応じ上記の各種流れ方向を反応室側に混用することも
可能である。'The gas flow direction in each reaction chamber in the spherical reactor according to the present invention can be either the axial direction or the radial direction of the reaction chamber. For axial flow, top to bottom, right to left, or vice versa, and for radial flow, inside to outside or vice versa can be used. In addition, it is also possible to use a mixture of the above-mentioned flow directions on the reaction chamber side as desired, such as axial flow in some of the reaction chambers and radial/direction flow in other reaction chambers. .
前記の如くこの発明による球形反応器の内部空間は反応
室、ガス通路、高温ガスと低温原料ガス混合のための空
間9間接熱交換のための伝熱面設置空間などに利用する
。これらの各設計上の要件は原料ガスに生起せしめられ
る反応の種類、温度、圧力などの反応条件、触媒′の種
類。As described above, the internal space of the spherical reactor according to the present invention is used as a reaction chamber, a gas passage, a space for mixing high-temperature gas and low-temperature raw material gas, and a space for installing a heat transfer surface for indirect heat exchange. These design requirements include the type of reaction that will occur in the raw material gas, reaction conditions such as temperature and pressure, and the type of catalyst.
原料ガスの供給量など反応熱の除去方法など多くの要因
によシ変化する。従ってこれら要因。It varies depending on many factors such as the amount of raw material gas supplied and the method for removing reaction heat. Hence these factors.
要件などの組み合わせの如何によシ無数の実施態様が存
在する。以下にこれら実施態様の数例につき図面を用い
て具体的に説明するが、この発明は例示した実施態様に
ょシ制限されるものではない。There are countless implementations depending on the combination of requirements. Several examples of these embodiments will be specifically explained below using the drawings, but the present invention is not limited to the illustrated embodiments.
第2図は円筒形または円柱形であって触媒を充填した3
個の反応室3/ 、32.33を垂直な同軸配置とし5
反応器上部に円筒状の突出部を設けこの中に原料ガス予
熱用のシェルアンドチー−プ形熱交換器を配置し発熱反
応を行わしめるようにした例である。充分予熱されてい
ない原料ガスは管/よシ耐圧外殻3の最下部から反応器
中に入シ、耐圧外殻30球面部の内面に接する空間//
を通シ、次に耐圧外殻3の円筒突出部の内面に接する空
間を経由して熱交換器グの上部空間7.2に到達する。Figure 2 shows a cylindrical or cylindrical shape filled with catalyst.
5 reaction chambers 3/, 32.33 are arranged vertically and coaxially.
This is an example in which a cylindrical protrusion is provided at the top of the reactor, and a shell-and-cheap heat exchanger for preheating the raw material gas is disposed within the protrusion to carry out an exothermic reaction. The raw material gas that has not been sufficiently preheated enters the reactor from the bottom of the pressure-resistant outer shell 3 through the tube, and enters the space in contact with the inner surface of the spherical part of the pressure-resistant outer shell 30.
It then passes through the space in contact with the inner surface of the cylindrical projection of the pressure-resistant shell 3 to reach the upper space 7.2 of the heat exchanger.
この原料ガス経路によシ耐圧外殻の温度上昇を防止する
ことができる。原料ガスは次に熱交換器グの多数のチー
ープ内を通過し、ここで反応室33を出る高温の反応生
成ガスと間接熱交換を行って所望温度まで予熱され空間
/3に到達する。原料ガスは更に管/グ内の空間を通過
して反応室3/に入シ、この反応室で化学反応が部分的
に生起せしめられ、ガスの温度は反応熱によって上昇す
る。この反応室3/は球の中心を垂直に通る軸を有する
円筒形である。反応室3/で部分的に反応の生起した高
温ガスは空間/Sに出て、次にこの空間および反応室3
/と3コとの間に円筒状に設けられた空間を通過する間
にこれら雨空間に設けられた内部に冷却剤の流通する冷
却管A3と接触し所望温度まで冷却されて空間/7に到
達する。次にガスは空間/7から反応室3コに入シ、こ
こで反応が更冗進行し、温度も再び上昇して空間/9に
出る。反応室32は球の中心を通る垂直軸を有する円筒
形反応室であって、反応室3/と同軸であシ、内径は3
/よシ小であるが水平断面積および反応室高は3/よシ
犬とすることができる。ガスは空間/9および反応室3
.2と33の間に設けられた円筒状空間−〇を通過する
間に内部に冷却剤の流通する冷却管S3と接触し、所望
温度まで冷却され空間2/を経由反応室33に入る。゛
反応室33は球の中心を通る垂直軸を有し、この軸の位
置にガスの通路としての管状空間コ3を設けた円柱状反
応室である。反応室33内でガスは化学反応を終了し、
再び高温となって空間jJ 、23を経由ガス通路開口
2グから熱交換器グのシェル側に入り、ここで前記の通
シ原料ガスを予熱し、自身の温度は低下してガス通路開
口2jを経由ガス出口管コから反応器外に去る。This raw material gas path can prevent the temperature of the pressure-resistant shell from rising. The raw material gas then passes through a large number of chambers in the heat exchanger group, where it performs indirect heat exchange with the high temperature reaction product gas exiting the reaction chamber 33, is preheated to a desired temperature, and reaches space /3. The raw material gas further passes through the space within the tube/g and enters the reaction chamber 3/, where a chemical reaction is partially caused, and the temperature of the gas increases due to the heat of reaction. This reaction chamber 3/ is cylindrical with an axis passing perpendicularly through the center of the sphere. The high-temperature gas that has partially undergone a reaction in the reaction chamber 3/ exits into the space /S, and then flows through this space and the reaction chamber 3.
While passing through the cylindrical space between / and 3, it comes into contact with the cooling pipe A3 provided in these rain spaces, through which coolant flows, and is cooled to a desired temperature, returning to space /7. reach. Next, the gas enters the three reaction chambers from space /7, where the reaction continues and the temperature rises again before exiting from space /9. The reaction chamber 32 is a cylindrical reaction chamber with a vertical axis passing through the center of the sphere, is coaxial with the reaction chamber 3/, and has an inner diameter of 3.
Although it is small, the horizontal cross-sectional area and reaction chamber height can be set to 3/3. Gas is in space/9 and reaction chamber 3
.. While passing through the cylindrical space -0 provided between 2 and 33, it comes into contact with a cooling pipe S3 through which a coolant flows, is cooled to a desired temperature, and enters the reaction chamber 33 via space 2/. ``The reaction chamber 33 is a cylindrical reaction chamber having a vertical axis passing through the center of the sphere, and a tubular space 3 serving as a gas passage provided at the position of this axis. The gas completes the chemical reaction within the reaction chamber 33,
It becomes high temperature again and enters the shell side of the heat exchanger G through the gas passage opening 2g through the space jJ, 23, where it preheats the above-mentioned passed raw material gas, and its own temperature decreases and enters the gas passage opening 2j. The gas leaves the reactor through the outlet pipe.
一方、冷却剤は所望の沸騰温度になるよう圧力を調整さ
れ、かつほぼ沸騰温度にある液として冷却剤分配管J/
、%るいは乙/に供給され、管5.2あるいは乙2によ
って反応器内部に導入され、続いてそれぞれ冷却管s3
あるいは乙3に入シ、これらを通過中に前記の如く反応
室3.2あるいは3/を出たガスと熱交換してガスを冷
却し、自身は液の一部が蒸発したガス相もしくはガス相
と液の混相物となってそれぞれ管3’1あるいはるりを
経由して気液分離器7θ内に流入する。気液分離器7θ
において冷却剤はその蒸気と液に分離され、蒸気は所望
の用途に利用され液は重力あるいはポンプによシ冷却剤
の分配管S/および乙/に返送される(この部分は図示
していない)。On the other hand, the pressure of the refrigerant is adjusted to the desired boiling temperature, and the refrigerant is treated as a liquid at approximately the boiling temperature in the refrigerant distribution pipe J/
, % or Otsu/ is introduced into the reactor interior through pipe 5.2 or Otsu2, and then through cooling pipe s3, respectively.
Alternatively, the gas enters Otsu 3, and while passing through these, heat exchanges with the gas exiting the reaction chamber 3.2 or 3/ as described above to cool the gas, and the gas itself becomes a gas phase or a gas in which a part of the liquid has evaporated. A mixture of phase and liquid is formed and flows into the gas-liquid separator 7θ via the pipe 3'1 or the pipe, respectively. Gas-liquid separator 7θ
At the refrigerant is separated into its vapor and liquid, the vapor is used for the desired purpose and the liquid is returned by gravity or pump to the refrigerant distribution pipes S/ and O/ (this part is not shown). ).
この実施態様例において冷却管S3および63はいずれ
もコイル状の伝熱面として図示しであるが、両者共7本
の管よシなるコイルでもよいが一本あるいはそれ以上の
管よシなるコイルでもよく、またこの際の管列の数も7
個あるいはそれ以上でもよく、要は所望の交換すべき熱
量に応じ必要とする伝熱面積を具備すればよい。Although cooling tubes S3 and 63 are both shown as coiled heat transfer surfaces in this example embodiment, they could both be coils of seven tubes or two. However, the number of tube rows in this case is also 7.
The number of heat transfer areas may be two or more, and the key is to provide the necessary heat transfer area according to the desired amount of heat to be exchanged.
また冷却管はコイル状のもののほか、後記する如く同心
円上に配置された多数のほぼ垂直な管群でもよい。Further, the cooling tubes may be coil-shaped or may be a group of many substantially vertical tubes arranged concentrically as described later.
第3図は発熱反応を行う円錐台状反応室を一個設け、ガ
スの冷却は反応室中に低温の原料ガスを添加混合して行
う例である。この図は反応室の配置と形状を示す目的で
簡略化されている。FIG. 3 shows an example in which one truncated conical reaction chamber is provided in which an exothermic reaction takes place, and the gas is cooled by adding and mixing low-temperature raw material gas into the reaction chamber. This figure is simplified for the purpose of showing the arrangement and shape of the reaction chamber.
第3図において3/は反応室であって1球形の耐圧外殻
・3の中心を通る垂直な中心軸を有し、この中心軸の周
辺部においてのみ触媒層を有する中空円錐台形反応室で
ある。また3ノは球形耐圧外殻3の中心を通る垂直軸を
有する円錐台形の反応室である。この実施態様例では触
媒の作動温度まで予熱された原料ガスは上部の原料ガス
人口/から反応器内に入シ放射状に設けられた一個ある
いはそれ以上のガス通路//を経て環状の空間に到シ、
この空間から反応室3/に入る。この反応室において触
媒と接触することによシ部分的に反応が進行しガスの温
度は上昇する。この反応室内には管7/によシ反応器外
に連通し、この反応室内の所望の水平断面に均等に低温
の原料ガスを分散供給するだめの分散器にθよシなるガ
ス冷却設備が具備されている。この設備による低温原料
ガスの所望量の供給混合によってガスと触媒の温度の過
上昇は防止され、反応は更に進行し、ガスは再び昇温し
、反応室3/がら空間/3に出る。空間/3においてガ
スは再び反応器外に通ずる管7コおよびこれに連通ずる
分散器ざθよシなるガス冷却設備から低温の原料ガスの
供給を受けて混合後のガス温度は所望温度士で低下する
。次にガスは中空円錐台状の空間/グを通シ空間/jを
経由して反応室3.2に入シ更に反応が進行する。反応
室32中において反応の進行の結果、温度の上昇したガ
スは反応室3/の場合と同様管73゜7グのそれぞれが
これらに連通ずる一個の分散器gθから供給される低温
原料ガスと2回にわたシ混合し冷却作用を受け、反応を
終了して空間/6を経由し反応ガス出口−から反応器外
に去る。反応器外に出た高温ガスからは例えば廃熱ボイ
ラーなどによシ熱を回収することができるが、この部分
は図示していない。この実施態様例では冷却のための低
温原料ガスの追加供給が反応室内あるいは反応室と反応
室の中間において行われる故、下流にある反応室32中
ガス量が増加する傾向となる。しかし円錐台状の反応室
を使用しガスを円錐台の頂点から底面の方向に流動させ
ることにより、ガスが流動するに伴ってガスの通過断面
積を増加させ、反応室内におけるガスの流動速度の上昇
を防止し、ガス流動に伴う圧力損失を比較的小とし、か
つ空間速度の上昇に伴う反応率の低下を防止することが
できる。In Fig. 3, 3/ is a reaction chamber, which has a vertical central axis passing through the center of the spherical pressure-resistant outer shell 3, and is a hollow truncated conical reaction chamber with a catalyst layer only at the periphery of this central axis. be. 3 is a truncated conical reaction chamber having a vertical axis passing through the center of the spherical pressure-resistant outer shell 3. In this embodiment, the feed gas preheated to the operating temperature of the catalyst enters the reactor from the upper feed gas port and reaches the annular space via one or more radially arranged gas passages. C,
Enter reaction chamber 3/ from this space. By contacting the catalyst in this reaction chamber, the reaction partially proceeds and the temperature of the gas increases. This reaction chamber is connected to the outside of the reactor through a pipe 7, and there is a gas cooling equipment with a diameter of θ in the disperser for uniformly distributing low-temperature raw material gas to a desired horizontal section within this reaction chamber. Equipped. By supplying and mixing the desired amount of low-temperature raw material gas with this equipment, an excessive rise in the temperature of the gas and catalyst is prevented, the reaction proceeds further, the gas is heated again, and exits from the reaction chamber 3/space/3. In space /3, the gas is again supplied with low-temperature raw material gas from the gas cooling equipment such as the pipe 7 leading outside the reactor and the distributor connected thereto, and the gas temperature after mixing is maintained at the desired temperature. descend. Next, the gas enters the reaction chamber 3.2 via the hollow truncated conical space /g and the space /j, where the reaction proceeds further. As a result of the progress of the reaction in the reaction chamber 32, the gas whose temperature has increased is the same as in the case of the reaction chamber 3/3. After being mixed twice and subjected to a cooling effect, the reaction is completed and the reaction gas exits from the reactor via the space 6 and the reaction gas outlet. Heat can be recovered from the high-temperature gas discharged from the reactor by, for example, a waste heat boiler, but this part is not shown. In this embodiment, since the additional supply of low-temperature raw material gas for cooling is performed within the reaction chamber or between the reaction chambers, the amount of gas in the downstream reaction chamber 32 tends to increase. However, by using a truncated cone-shaped reaction chamber and causing the gas to flow from the top to the bottom of the truncated cone, the cross-sectional area of the gas increases as the gas flows, and the gas flow rate within the reaction chamber increases. This makes it possible to prevent the pressure loss due to the gas flow from increasing, and to make the pressure loss due to the gas flow relatively small, and to prevent the reaction rate from decreasing due to the increase in the space velocity.
同様に下流の反応基稈ガスの通過断面積を大としガスの
流動速度を低下させ、圧力損失低下の効果を得ることが
できる。また下流の反応室32中の充填量を増加させる
ことにょ多空間速度の適正値を保つことができる。Similarly, by increasing the cross-sectional area of passage of downstream reaction base gas, the gas flow velocity can be reduced, and the effect of reducing pressure loss can be obtained. Furthermore, by increasing the filling amount in the downstream reaction chamber 32, the space velocity can be maintained at an appropriate value.
第9図は発熱反応を行う一つの円柱状反応室3/とそれ
と同一中心軸を有し該円柱と耐圧外殻の球面によってで
きる一つの環状の空間を利用した反応室3.2を設け、
ガスの冷却は第3図の場合と同様に低温の原料ガスを重
力は混合して行うが原料ガスの予熱と反応途中ガスの冷
却は球形外殻の上部に設けたシェルアンドチー−プ形熱
交換器グにて両ガスを間接熱交換することによシ行う。FIG. 9 shows one cylindrical reaction chamber 3/ for carrying out an exothermic reaction, and a reaction chamber 3.2 having the same central axis as the cylindrical reaction chamber 3/ and utilizing an annular space formed by the cylinder and the spherical surface of the pressure-resistant outer shell.
The gas is cooled by mixing low-temperature raw material gases using gravity, as in the case shown in Figure 3, but the preheating of the raw material gases and the cooling of the gas during the reaction are performed using a shell-and-cheap type heat source installed at the top of the spherical shell. This is done by indirectly exchanging heat between both gases in an exchanger.
この図は反応室の配置と形状を示す目的で簡略化されて
いる。第9図において3/は球形の耐圧外殻3の中心を
通る垂直な中心軸を有する円柱状の反応室であシ、32
は耐圧外殻3の中心を通る垂直な中心軸を有し、球面と
反応室3/の外側面の一部によって作られる環状の反応
室である。この実施態様例では十分予熱されていない原
料ガスは管/′よシ入〃熱交換の上部の空間//を経て
熱交換器グの多数チ−ブ内を通過し、ここで反応室3/
を出る高温の反応生成ガスと間接熱交換を行って所望温
度まで予熱され、空間/2に入シこの空間から反応室3
/に入る。この反応室において触媒と接触することによ
シ部分的に反応が進行し、ガスの温度は上昇する。この
反応室内には管7/によシ反応器外に連通し、この反応
室内の所望の水平断面に均等に低温の原料ガスを分散供
給するだめの分散器ざθよシなるガス冷却設備が具備さ
れている。この設備によシ低温原料ガスの所望量の供給
混合によってガスと触媒の温度の過上昇は防止され、反
応は更に進行し、ガスは再び昇温するが、同様に管7.
2.73のそれぞれがこれに連通ずる2個の分散器ざθ
から供給される低温原料ガスと2回にわたシ混合し冷却
作用を受けて反応室3/をでて空間/3./’Iを経て
ガス通路開口/jから熱交換器グのシェル側に入シここ
で前記のとおり原料ガスを予熱し、自身の温度は所望温
度まで下って空間/A、/7゜7gを経て反応室3コに
入る。反応室3.2で反応を完了したガスは空間/9を
経由して出口2よシ反応器外に去る。第9図においては
反応室3/と反応室3−のガス゛通路断面は等しくなっ
ているが、この構造においても必要に応じ第3図の場合
と同様反応室の形を円錐台状にしたシ、また多段円柱状
にしてガス通路断面積を変え圧力損失の低減および反応
条件の適正化を計ることができる。This figure is simplified for the purpose of showing the arrangement and shape of the reaction chamber. In FIG. 9, 3/ is a cylindrical reaction chamber having a vertical central axis passing through the center of the spherical pressure-resistant outer shell 3;
is an annular reaction chamber having a vertical central axis passing through the center of the pressure-resistant outer shell 3 and formed by a spherical surface and a part of the outer surface of the reaction chamber 3/. In this embodiment, the feed gas which has not been sufficiently preheated enters the tube/' and passes through the upper space of the heat exchanger// into the multiple tubes of the heat exchanger group, where it passes through the reaction chamber 3/'.
It is preheated to a desired temperature by indirect heat exchange with the high temperature reaction product gas exiting from the reaction chamber 3.
/to go into. In this reaction chamber, the reaction partially proceeds due to contact with the catalyst, and the temperature of the gas increases. Inside this reaction chamber, there is a gas cooling equipment that is connected to the outside of the reactor through pipe 7 and has a disperser gap θ for uniformly distributing low-temperature raw material gas to a desired horizontal section within this reaction chamber. Equipped. By feeding and mixing the desired amount of low-temperature raw material gas in this equipment, an excessive rise in the temperature of the gas and the catalyst is prevented, and the reaction proceeds further, and the gas temperature rises again, but in the same way as in the pipe 7.
2.73, each of which communicates with the two distributors θ
It is mixed twice with the low-temperature raw material gas supplied from the reactor chamber 3/, which is cooled, and exits the reaction chamber 3/, into the space/3. It enters the shell side of the heat exchanger from the gas passage opening /j through /'I. Here, the raw material gas is preheated as described above, and its own temperature drops to the desired temperature, and the space /A, /7°7g is After that, it enters three reaction chambers. The gas that has completed the reaction in the reaction chamber 3.2 leaves the reactor via the space /9 through the outlet 2. In FIG. 9, the cross sections of the gas passages in reaction chamber 3/ and reaction chamber 3- are the same, but in this structure, the shape of the reaction chamber may be made into a truncated cone as in the case of FIG. Furthermore, by making the gas passage into a multi-stage columnar shape and changing the cross-sectional area of the gas passage, pressure loss can be reduced and reaction conditions can be optimized.
第S図は円筒形反応室3/とその内側にある円筒形反応
室32をガスが両反応室の半径方向に流れ発熱反応が生
起する場合の実施゛g様例である。円筒形反応室3.!
の内部には冷却剤を流通させるための7個あるいはそれ
以上の同心円上に垂直に配列した多継の冷却管S3を具
備している。予熱されていない原料ガスは下部のガス入
口/から反応器内に入シ、球形耐圧外殻の内面に沿った
空間//を通シ、次に反応室3.2の中心部空間に設け
られたシェルアンドチーープ形熱交換器グの上部室3−
の中心部空間に設けられた/エルアンドチーーブ形熱交
換器グの上部室7.2を経てこの熱交換の多数のチーー
プ内を通過し、その際反応終了後の高温ガスと熱交換し
て所望温度まで予熱された後この熱交換器の下部室/3
に流入する。次にこの予熱された原料ガスは放射状に設
けられた連結管内の空間/グを通って周辺部の均圧空間
/jに入シ、ここから反応室3/の内部をほぼ水平に半
径方向、すなわちこの円筒形反応室の外周部から耐圧外
殻の球形部の中心を通る円筒軸方向に向けて流れる。こ
の反応室3/内部において原料ガスが触媒と接触するこ
とによシ発熱反応が生起しガスの温度は上昇する。この
反応室3/内には第3図の場合と同様に管7/によシ反
応器外から導入され、分散器gOによって、この円筒形
反応室内の該円筒と同軸な円筒状断面上に均等に低温原
料ガスを分散添加し、反応中のガスの温度の過上昇を防
止するだめの冷却設備を具備することができる。反応室
3/がらガスはこの反応室とその内側にある円筒状反応
室32との中間に設けられた円筒状均圧空間/6に一旦
流入した後、次に反応室3/に比し垂直方向の長さの長
い円筒状反応室32内にほぼ水平かつ半径方向、すなわ
ち中心軸方向に流入する。反応は再び進行するが、反応
室3コ内には前記の如く同心円配列の多数の冷却管s3
が設備されてあシ、これら冷却管j3内を流通する冷却
剤によシ、この反応室内で発生する反応熱は除熱され温
度の過上昇が防止される。この実施態様例でこの反応室
32に上記の如き冷却設備を使用した理由は、この冷却
設備によると冷却管j3内に例えば適当な圧力下に所望
の沸騰温度を示す冷却液を沸騰させつつ流通させること
にょシ非常に大なる冷却力を付与することが可能であシ
、更にこれら多数の冷却管の反応室3コ内における配置
密度を加減することにょシ、この反店家3ノ内のガスの
流通方向(すなわち半径方向)に沿った触媒層およびガ
ス流の温度分布を予め設定された所望の温度分布に一致
させることが可能となるためである。触媒層内のガスの
流れ方向に沿った温度分布の適正な設定は、発熱反応に
多く見られるガスの温度上昇に伴う化学平衡的な理由に
よる反応の到達限界の低下現象によシ生成物の濃度およ
び収量が小となるのを防止するため、あるいは最小の触
媒量で一定の生成物量を得るためなどに重要である。反
応室32内を半径方向に通過し、反応を終了したなお高
温のガスは熱交換器グと反応室3.2との”間の円筒状
空間/7に流出した後熱交換器グのシェル側に下部から
流入し、前記の如く原料ガスを間接的に予熱した後ガス
出口−から反応器外に去る。FIG. S shows an example of an embodiment in which gas flows in the radial direction of the cylindrical reaction chamber 3 and the cylindrical reaction chamber 32 located inside the cylindrical reaction chamber 3, and an exothermic reaction occurs. Cylindrical reaction chamber 3. !
The inside thereof is provided with seven or more multi-jointed cooling pipes S3 arranged vertically on concentric circles for circulating coolant. The unpreheated raw material gas enters the reactor from the lower gas inlet//, passes through the space// along the inner surface of the spherical pressure-resistant shell, and then enters the central space of the reaction chamber 3.2. Upper chamber 3 of shell and cheap heat exchanger
The heat exchanger passes through the upper chamber 7.2 of the L&Cheve type heat exchanger installed in the central space of the heat exchanger, and passes through a large number of chambers for this heat exchanger. After being preheated to the desired temperature, the lower chamber/3 of this heat exchanger
flows into. Next, this preheated raw material gas enters the peripheral pressure equalization space /j through the space /g in the radially provided connecting pipe, and from there it travels inside the reaction chamber 3/in a radial direction almost horizontally. That is, it flows from the outer circumferential portion of this cylindrical reaction chamber toward the cylindrical axis direction passing through the center of the spherical portion of the pressure-resistant outer shell. When the raw material gas comes into contact with the catalyst inside this reaction chamber 3, an exothermic reaction occurs and the temperature of the gas rises. Into this reaction chamber 3/, the pipe 7/ is introduced from outside the reactor as in the case of FIG. A cooling facility may be provided to uniformly disperse and add the low-temperature raw material gas and to prevent the temperature of the gas from rising excessively during the reaction. After the gas from the reaction chamber 3 once flows into the cylindrical pressure equalizing space /6 provided between this reaction chamber and the cylindrical reaction chamber 32 located inside it, the gas is then perpendicular to the reaction chamber 3/. The liquid flows into the cylindrical reaction chamber 32, which has a long direction, almost horizontally and radially, that is, in the direction of the central axis. The reaction proceeds again, but inside the three reaction chambers there are many cooling pipes s3 arranged concentrically as described above.
The reaction heat generated in this reaction chamber is removed by the coolant flowing through these cooling pipes j3, and an excessive rise in temperature is prevented. The reason why the above-mentioned cooling equipment is used in the reaction chamber 32 in this embodiment is that the cooling equipment allows the cooling liquid exhibiting a desired boiling temperature to flow through the cooling pipe j3 while being boiled under an appropriate pressure. It is possible to impart a very large cooling power to the cooling pipes, and it is also possible to adjust the arrangement density of these many cooling pipes in the three reaction chambers. This is because it becomes possible to match the temperature distribution of the catalyst layer and the gas flow along the flow direction (that is, the radial direction) to a desired preset temperature distribution. Appropriate setting of the temperature distribution along the flow direction of the gas in the catalyst layer is important because the reaction limit decreases due to chemical equilibrium reasons as the gas temperature rises, which is often seen in exothermic reactions. This is important in order to prevent the concentration and yield from becoming small, or to obtain a constant amount of product with the minimum amount of catalyst. After passing through the reaction chamber 32 in the radial direction, the still hot gas that has completed the reaction flows out into the cylindrical space /7 between the heat exchanger 3.2 and the reaction chamber 3.2, and then flows into the shell of the heat exchanger The raw material gas flows into the side from the bottom, indirectly preheats the raw material gas as described above, and then exits from the reactor through the gas outlet.
一方、冷却剤は所望の圧力下の沸騰高温度で液体として
反応器外から管j/によシ反応器に導入され、管j/に
連通ずる7個あるいはそれ以上の環状の冷却剤分配管j
ノによって多数の冷却管S3に分配され、これら冷却管
内を沸騰しつつ上向流として7個あるいはそれ以上の環
状の冷却剤集合管S4tに集合し、管jjを経由反応器
外にある気液分離器7θ内に流入する。On the other hand, the coolant is introduced into the reactor as a liquid at a high boiling temperature under the desired pressure from outside the reactor through pipe j/, and is then introduced into the reactor through seven or more annular coolant distribution pipes communicating with pipe j/. j
The gas and liquid are distributed to a large number of cooling pipes S3 by the cooling pipes S3, and while boiling in these cooling pipes, the gas flows upward and collects in seven or more annular collecting pipes S4t, passing through pipes jj to the gas and liquid outside the reactor. It flows into the separator 7θ.
気液分離器7θにおいて冷却剤の液と蒸気が分離され、
蒸気は管SAによシ所望の用途に供され、液は冷却され
ることなく重力あるいはポンプを使用して管j/に返送
されるがこの部分については図示していない。またこの
反応器においては上部にターンバックルワ/を使用し、
反応室の重量を吊す構造になっているが、この構造は熱
応力や強度上の観点から反応室を下から支持する場合に
比し有利である。The liquid and vapor of the coolant are separated in the gas-liquid separator 7θ,
The steam is delivered to the desired use through pipe SA, and the liquid is returned to pipe j/ without being cooled, either by gravity or by means of a pump, but this part is not shown. In addition, this reactor uses a turnbuckle at the top,
Although the structure is such that the weight of the reaction chamber is suspended, this structure is more advantageous than supporting the reaction chamber from below in terms of thermal stress and strength.
第6図は反応器外にある熱交換器を使用する例である。FIG. 6 is an example of using a heat exchanger located outside the reactor.
この例において反応器は球の中心を通る直線を軸とする
一個の円筒形反応室3/および3.2と7個の円柱形反
応室33を有するが、3/、32および33の3個の反
応室はともに球の中心を通シ上記軸に垂直な平面で区分
される一個の半球中に隔離されたそれぞれ独立の反応室
3/aと3/b;32aと3.2b 、33aと33b
に2等分されていて、3/aと31bとの間にはガスの
通路となる環状空間/3が、3、!aと32bとの間に
はガスの通路となる環状の空間/7が、33aとJJb
との間には円板状空間−〇がそれぞれ介在している。予
熱された原料ガスは一重管の入口/から反応器内に導入
され、まず空間//に流入する。この空間//から原料
ガス流ははホ2等分され、一方の流れaは反応室37B
と球形耐圧外殻の内面との間にある間隙を矢印の如く通
過し環状空間/2aを経由反応室J/a内に流入する。In this example, the reactor has one cylindrical reaction chamber 3/ and 3.2 and seven cylindrical reaction chambers 33 whose axis is a straight line passing through the center of the sphere, three of which are 3/, 32 and 33. The reaction chambers 3/a and 3/b are independent reaction chambers 3/a and 3/b; 32a and 3.2b, 33a and 33b
It is divided into two equal parts, and between 3/a and 31b there is an annular space /3 that serves as a gas passage, 3,! There is an annular space /7 between a and 32b that serves as a gas passage, and between 33a and JJb
There is a disc-shaped space -〇 between them. The preheated raw material gas is introduced into the reactor from the single-pipe inlet//, and first flows into the space//. From this space //, the raw material gas flow is divided into two equal parts, one of which is the reaction chamber 37B.
and the inner surface of the spherical pressure-resistant outer shell as shown by the arrow, and flows into the reaction chamber J/a via the annular space /2a.
他の流れbは反応室31bと球形耐圧外殻の内面との間
にある間隙を矢印の如く通過し、環状空間7.2bを経
由反応室31bに流入する。反応室3/aおよび31b
に流入した原料ガスは両反応室内で化学反応を生起し、
この化学反応が発熱反応である場合には温度上昇を、こ
の化学反応が吸熱反応である場合には温度低下を伴って
ともに空間/3に流入合流する。この合流したガスは空
間/lIを通って反応器外にある間接熱交換器ざに流入
し管に/aから流入しg/bから流出する所望温度の流
体と熱交換し温度の調整を受ける。すなわち空間/3に
て合流した後のガス温度が隣接下流の触媒層の適正温度
よシ過高であれば冷却し、過低であれば加熱して所望の
温度に調整する。温度調整されたガス流は再びほぼ一等
分され、一方の流れaは管/3aを通り環状の空間/A
aを経由して反応室3.!aに流入し、他の流れbは管
/jbを通シ環状の空間/6bを経由して反応室32b
にそれぞれ流入する。反応室3.2aおよび3.2bに
おいては再び化学反応が生起し、ガスの温度はこの化学
反応が発熱反応であれば上昇し、吸熱反応であれば下降
する。反応室3.2aおよびJ2’bを通過したガスは
それぞれ環状空間/7に流入して、ここで再び合流し、
空間/gを経由して熱交換りに流入する。この熱交換器
りにおいてガスは前記と同様温度調整を受け、更にほぼ
一等分され、それぞれが管/9aまたは/9bを経由し
て反応室33aまだは33bにそれぞれ流入する。反応
室33aおよび33bに流入したガスはそれぞれ再び反
応を生起して温度変化を生じ、これら両度店家で化学反
応を終了して空間−〇において再び合流し生成ガス出口
−〇から反応器外に去る。この生成ガス出口は紙面に垂
直に耐圧外殻3を貫通して設けられている。生成ガス出
口−〇から反応器外に出たガスはなお高温であシ、この
ガスから熱を回収することができるが図示していない。The other flow b passes through the gap between the reaction chamber 31b and the inner surface of the spherical pressure-resistant shell as indicated by the arrow, and flows into the reaction chamber 31b via the annular space 7.2b. Reaction chambers 3/a and 31b
The raw material gas flowing into the chamber causes a chemical reaction in both reaction chambers,
When this chemical reaction is an exothermic reaction, the temperature increases, and when this chemical reaction is an endothermic reaction, the temperature decreases, and both flow into the space /3 and merge. This combined gas flows through the space /lI into an indirect heat exchanger located outside the reactor, exchanges heat with the fluid at the desired temperature flowing into the tube from /a and flows out from g/b, and undergoes temperature adjustment. . That is, if the gas temperature after merging in space /3 is higher than the proper temperature of the adjacent downstream catalyst layer, it is cooled, and if it is too low, it is heated and adjusted to the desired temperature. The temperature-adjusted gas flow is divided into approximately equal parts again, with one flow a passing through the tube /3a and entering the annular space /A.
a to the reaction chamber 3. ! a, and the other flow b passes through the pipe/jb and the annular space/6b to the reaction chamber 32b.
respectively. A chemical reaction occurs again in the reaction chambers 3.2a and 3.2b, and the temperature of the gas increases if this chemical reaction is exothermic or decreases if it is endothermic. The gases that have passed through the reaction chambers 3.2a and J2'b each flow into the annular space /7, where they join together again,
Flows into the heat exchange via space/g. In this heat exchanger, the gas is subjected to temperature adjustment in the same manner as described above, and is further divided into approximately equal parts, each of which flows into the reaction chamber 33a or 33b via the pipe /9a or /9b, respectively. The gases that have flowed into the reaction chambers 33a and 33b undergo a reaction again to cause a temperature change, and after completing the chemical reaction in both chambers, they join together again in the space -〇 and exit the reactor from the produced gas outlet -〇. leave. This generated gas outlet is provided to penetrate the pressure-resistant outer shell 3 perpendicularly to the plane of the paper. The gas exiting the reactor from the produced gas outlet - is still at a high temperature, and heat can be recovered from this gas, but this is not shown.
この例では円筒形および円柱形反応室を一個に分割して
並列に使用することによシ圧力損失を軽減している。ま
た同時に発熱反応の場合には耐圧外殻を比較的低い温度
に保つことができる。In this example, pressure loss is reduced by dividing the cylindrical and cylindrical reaction chambers into one and using them in parallel. At the same time, in the case of an exothermic reaction, the pressure-resistant shell can be kept at a relatively low temperature.
この実施態様例では各反応室の前記共通軸が垂直である
場合を図示しであるが、この共通軸は水平であっても傾
斜していてもガス透過性触媒受けの位置を調整すること
によシ何らの支障もなく使用することができる。また前
記した如く化学反応が吸熱反応であっても発熱反応であ
っても発熱反応であってもよい。更に反応室3/、3.
2あるいは33に充填する触媒は同一化学反応を生起さ
せるだめの同一触媒でもよいが、同一化学反応を生起さ
せるための温度特性。In this embodiment, the common axis of each reaction chamber is vertical, but the common axis can be horizontal or inclined to adjust the position of the gas permeable catalyst receiver. It can be used without any problems. Further, as described above, the chemical reaction may be an endothermic reaction, an exothermic reaction, or an exothermic reaction. Furthermore, reaction chamber 3/, 3.
The catalyst filled in 2 or 33 may be the same catalyst that causes the same chemical reaction, but the temperature characteristics are required to cause the same chemical reaction.
最適空間速度などにおいて異なる別種の触媒でもよい。Different types of catalysts differing in optimum space velocity etc. may also be used.
更にこの実施態様例は反応室3/、32および33に異
なる化学反応を生起させるための別種の触媒を充填し、
これら別種の触媒のそれぞれに適当な温度に温度調整し
たガスをそれぞれの触媒層に直列に通過させることによ
り、従来の反応器を用いる場合においては一個あるいは
3個の反応器を使用してコ段あるいは3段の化学反応と
して実施、する必要のある場合をこの例の如き方法で実
質的に/段反応として実施す゛ることか可能となる。こ
の際の異なる化学反応には吸熱反応と発熱反応が混在し
ていてもよい。このような異なる化学反応を生起せしめ
るに際し各反応室の温度の差が大なる場合は相接する反
応室間に介在する隔壁゛に断熱性のあるものを使用する
のが好ましい。また所望によシ例えば追加原料供給口/
θからガス人口/から供給される原料ガスとは別種の原
料ガスを追加供給して −反応室33で他の2反応室と
は異なる化学反応を行わしめることもできるし、逆に空
間/gと熱交換器2との間に反応室3/および32にお
いて生成した生成物のある種のものを分離除去する手段
を介在させることもできる。Furthermore, this embodiment is characterized in that the reaction chambers 3/, 32 and 33 are filled with different types of catalysts for causing different chemical reactions;
By passing a gas adjusted to an appropriate temperature for each of these different types of catalyst in series through each catalyst layer, it is possible to perform multiple stages using one or three reactors instead of using a conventional reactor. Alternatively, in cases where it is necessary to carry out a three-stage chemical reaction, it becomes possible to carry out the process as a substantially one-stage reaction using a method such as this example. The different chemical reactions at this time may include endothermic reactions and exothermic reactions. If there is a large difference in temperature between the reaction chambers when such different chemical reactions occur, it is preferable to use a partition wall interposed between adjacent reaction chambers that has heat insulating properties. Also, if desired, for example, an additional raw material supply port/
It is also possible to additionally supply a raw material gas of a different type from the raw material gas supplied from θ to the gas population /g to cause a chemical reaction different from that in the other two reaction chambers to occur in the -reaction chamber 33, or conversely, a chemical reaction different from that in the other two reaction chambers can be performed. Means for separating and removing some of the products produced in the reaction chambers 3/32 can also be interposed between the heat exchanger 2 and the reaction chambers 3/32.
このような異なる化学反応を行わしめる例として水素と
酸化炭素からメタノールを合成し、引続きメタノールか
ら炭化水素を合成する場合を挙げることができる。すな
わち原料ガス人口/からは水素と酸化炭素に富む高圧ガ
スを供給して反応室3/および32では周知のメタノー
ル合成触媒(例えばクロム、銅亜鉛などを含むもの)を
使用し、圧力/θθ(儲、温度約30θ℃でメタノール
、水素および酸化炭素よシなる混合ガスを製造し、この
混合ガスを分離するとと々く熱交換器りで温度を35θ
℃程度に調整した後ゼオライト触媒を使用する反応室3
3に通すことによジメタツールを炭化水素に変換するこ
とかできる。この際メタノールに変換しなかった水素と
酸化炭素はメタノールおよび炭化水素を分離後原料ガス
人口/に再循環し、炭化水素に変換したかったメタノー
ルは炭化水素から分離後蒸気または液として追加原料供
給口nに返送し反応室33に再導入することができる。An example of such different chemical reactions is the synthesis of methanol from hydrogen and carbon oxide, and the subsequent synthesis of hydrocarbons from methanol. That is, a high-pressure gas rich in hydrogen and carbon oxide is supplied from the raw material gas source /, and a well-known methanol synthesis catalyst (for example, containing chromium, copper-zinc, etc.) is used in the reaction chambers 3 and 32, and the pressure /θθ( A mixed gas of methanol, hydrogen, and carbon oxide is produced at a temperature of about 30θ℃, and as soon as this mixed gas is separated, the temperature is reduced to 35θ℃ using a heat exchanger.
Reaction chamber 3 in which zeolite catalyst is used after adjusting to about ℃
Dimethatol can be converted to hydrocarbons by passing it through 3. At this time, the hydrogen and carbon oxides that were not converted to methanol are recycled to the raw material gas after separating the methanol and hydrocarbons, and the methanol that was to be converted to hydrocarbons is separated from the hydrocarbons and then supplied as an additional raw material as steam or liquid. It can be returned to the port n and reintroduced into the reaction chamber 33.
この発明による反応器とその使用法の利点は既に述べた
如く多数あるが、要約すれば利点の第1は反応器に関す
るものであって、前記した如く同一触媒量を収容するた
めの反応器の耐圧外殻の肉厚が小となシ、反応器の重量
も小となることである。この利点によシ反応器製作用鋼
材が節減でき、反応器自身が安価に製作できるとともに
、この反応器を据付るための基礎、架台、配管などをも
小とすることができ、総合的な建設費を少なくすること
ができるみ特に大型の高圧反応器においてはこの利点が
大となる。The advantages of the reactor according to the invention and its method of use are numerous, as already mentioned, but to summarize, the first advantage relates to the reactor, and as mentioned above, the advantages of the reactor and its method of use are numerous. The thickness of the pressure-resistant outer shell is small, and the weight of the reactor is also small. This advantage makes it possible to save on steel materials for reactor manufacturing, and the reactor itself can be manufactured at low cost, and the foundation, frame, piping, etc. for installing this reactor can also be made smaller, making it possible to reduce the overall cost. This advantage is especially great in large-scale high-pressure reactors, since construction costs can be reduced.
利点の第2は反応方法に関し、反応器内にガスの通過方
向に対して垂直な断面積と触媒充填量において異なる一
個以上の円柱形あるいは円筒形あるいは円錐台形などの
既述の反応室を有する故、これら異なる形状の反応室を
化学反応の性質、触媒の特性に応じ任意に設計使用する
ことができる点にある。すなわち、同一の化学反応を同
一の空間速度で実施する場合(特に大型の反応器におい
ては)、円筒形の反応器は非常に細長いものとなシ、ガ
スを円筒の軸方向に流通させれば触媒層内におけるガス
の偏流は小となるが、流速が大となって圧力損失が増加
し、逆に圧力損失を小とするためガスを半径方向に流通
させると長い軸に垂直な各断面ごとに偏流が生じ易くな
るが、この発明の如く球形反応器を用いると内部の各反
応室の形状はいずれも直径と高さの比の小さい、いわゆ
るずんぐシ型となる故偏流を起さずかつ圧力損失の少な
い反応器として使用することができる。The second advantage relates to the reaction method, and the reactor has one or more reaction chambers as described above, each having a cylindrical shape, a cylindrical shape, or a truncated conical shape, which differ in cross-sectional area perpendicular to the direction of gas passage and catalyst loading. Therefore, reaction chambers of different shapes can be designed and used as desired depending on the nature of the chemical reaction and the characteristics of the catalyst. In other words, if the same chemical reaction is carried out at the same space velocity (especially in large reactors), a cylindrical reactor must be very elongated, and if the gas is allowed to flow in the axial direction of the cylinder, Although the uneven flow of gas in the catalyst layer is small, the flow velocity increases and the pressure loss increases.Conversely, if the gas flows in the radial direction to reduce the pressure loss, it will flow in each cross section perpendicular to the long axis. However, when a spherical reactor is used as in this invention, the shape of each internal reaction chamber is so-called a square shape with a small ratio of diameter to height, so drifting does not occur. Moreover, it can be used as a reactor with little pressure loss.
またこの利点は触媒の寿命延長にも効果をもたらす。触
媒の寿命延長は原理の異なる2個の理由によって発揮さ
れる。理由の第1は、例えば水素と酸化炭素からのメタ
ノール合成の如く大きな発熱反応の場合である。一般に
この種の反応では各触媒層内に全触媒に対し適当な如き
平均流速でガスを流通させると前記の如く原料ガスと最
初に接触する触媒では生成物濃度が小なるため激しい反
熱反応が生起して触媒温度の過上昇による触媒性能の熱
劣化現象が起る。この現象は触媒にガスを高速で流通さ
せることによシ防止できる。円筒形反応器をこの種の反
応に使用してこの現象を防止するためにはガスを軸流と
すれば反応器の長さを長くする必要を生じて圧力損失が
犬となシ、ガスを半径方向に流す場合は反応器内に無駄
な空間を作る必要を生じいずれも実用的で、ない。これ
に対しこの発明による場合は反応器内に無駄な空間を増
加させることなく、ずんぐシ型の小反応室を設けること
が容易である故上記現象をも防止することができる。触
媒の寿命延長効果の第2は、既に記載した如く原料ガス
に微量の触媒に対する毒性物質が含まれている場合に、
この原料ガスに最初に接触する小触媒層空間(反応室)
を球形反応器内の他の反応室、熱交換器および冷却設備
用空間から充分に隔離された構造に製作し、これらを球
形反応器の外部を通るノζルプ付配管で連結すれば、原
料ガスに最初に接触する触媒が被毒した場合にこの触媒
のある反応室のみを他の反応室からバルブによシ隔離し
て内部の触媒を新品と交換することが可能となシ、他の
大部分の触媒の寿命を延長することができる。This advantage also has the effect of extending the life of the catalyst. The catalyst life extension is achieved for two reasons with different principles. The first reason is in the case of highly exothermic reactions, such as methanol synthesis from hydrogen and carbon oxide. In general, in this type of reaction, if gas is passed through each catalyst layer at an average flow rate suitable for all catalysts, as mentioned above, the catalyst that first comes into contact with the raw material gas will have a small concentration of products, so a violent reaction will occur. This causes thermal deterioration of catalyst performance due to excessive rise in catalyst temperature. This phenomenon can be prevented by flowing gas through the catalyst at high speed. In order to prevent this phenomenon when using a cylindrical reactor for this type of reaction, if the gas is made to flow axially, it becomes necessary to increase the length of the reactor and the pressure loss is reduced. When flowing in the radial direction, it becomes necessary to create wasted space within the reactor, which is not practical. On the other hand, in the case of the present invention, the above-mentioned phenomenon can also be prevented since it is easy to provide a small, square-shaped reaction chamber without increasing wasted space in the reactor. The second effect of extending the life of the catalyst is, as mentioned above, when the raw material gas contains a trace amount of a substance that is toxic to the catalyst.
Small catalyst layer space (reaction chamber) that first comes into contact with this raw material gas
If the structure is sufficiently isolated from the other reaction chambers, heat exchangers, and cooling equipment space in the spherical reactor, and these are connected with a pipe with a nozzle running outside the spherical reactor, the raw material can be If the catalyst that comes into contact with the gas first becomes poisoned, it is possible to isolate only the reaction chamber containing this catalyst from other reaction chambers using a valve and replace the internal catalyst with a new one. The life of most catalysts can be extended.
この発明の利点の第3は、この反応器の利用方法に関し
、前記第6図の実施態様例の説明で述べた如く同一圧力
下に同一あるいは異なる温度で生起する2種あるいはそ
れ以上の異なる化学反応にこの反応器が利用できること
である。The third advantage of this invention relates to the method of using this reactor, as described in the explanation of the embodiment shown in FIG. This reactor can be used for reactions.
この際の2種以上の異なる反応は相互に全く無関係の化
学反応を並行して実施するだめの反応器として使用する
こともできるが、一般的にある原料から一個以上の化学
反応を段階的に直列実施して最終生成物を得る場合に本
反応器を使用することによシ実質的に/段反応とするこ
とが可能であシ、反応器の数を減少させるだめの手段と
して好ましい使用法である。In this case, two or more different reactions can be used as a reactor to carry out chemical reactions that are completely unrelated to each other in parallel, but generally one or more chemical reactions are carried out step by step from a certain raw material. By using this reactor, it is possible to perform a substantially staged reaction when the final product is obtained by conducting the reaction in series, and this is a preferred method of use as a means of reducing the number of reactors. It is.
この発明による反応器はS(例以上の圧力下にガス状原
料からガス状生成物を得るだめの反応器として好適てあ
シ、前記の利点は反応圧力が増加しまた反応器の/基当
シの内容積が犬となるほど増加する。またこの発明によ
る反応器を使用するのに好ましい化学反応としては以下
に述べる如きものがある。水素と窒素を含むガスからア
ンモニアの合成反応:水素と酸化炭素を含むガスからメ
タノール、エタノール、プロパツール類、ブタノール類
などの脂肪族/価アルコール合成反応:水素と酸化炭素
を含むガスから炭化水素類の直接合成反応(いわゆるフ
イシャートロップシー合成):水素と酸化炭素を含むガ
スから脂肪域/価アルコールを合成し引続きこの脂肪域
/価アルコールを炭化水素に転換せしめる炭化水素合成
法:水蒸気と一酸化炭素を含むガスを水素と二酸化炭素
を含むガスに変換せしめる反応:メタン、ナフサの如き
炭化水素と水蒸気を含むガスを水素と酸化炭素を含むガ
スに変換せしめる反応:不飽和炭化水素ガスと水素を含
むガスから飽和炭化水素を合成する反応器などが主なも
のである。The reactor according to the invention is suitable as a reactor for obtaining gaseous products from gaseous raw materials under pressures above S (example), the above-mentioned advantages being that the reaction pressure is increased and the The internal volume of the reactor increases as the volume increases.Furthermore, preferred chemical reactions for using the reactor according to the present invention include the following: Synthesis reaction of ammonia from a gas containing hydrogen and nitrogen: hydrogen and oxidation Synthesis reaction of aliphatic/hydric alcohols such as methanol, ethanol, propatools, butanols, etc. from gas containing carbon: Direct synthesis reaction of hydrocarbons from gas containing hydrogen and carbon oxide (so-called Fischer-Tropsey synthesis): Hydrogen A hydrocarbon synthesis method in which a fatty alcohol/hydric alcohol is synthesized from a gas containing water vapor and carbon oxide, and the fatty alcohol/hydric alcohol is subsequently converted into a hydrocarbon: A gas containing water vapor and carbon monoxide is converted into a gas containing hydrogen and carbon dioxide. Conversion reaction: A reaction that converts a gas containing hydrocarbons and water vapor, such as methane or naphtha, into a gas containing hydrogen and carbon oxide: A reactor that synthesizes saturated hydrocarbons from unsaturated hydrocarbon gas and hydrogen-containing gas. The main thing.
これらの化学反応を実施する場合の温度、圧力空間速度
などの条件は反応の種類、使用する触媒の特性によシそ
れぞれ異なるが、従来の円筒形反応器を使用する場合に
ついて周知となっている条件とほぼ同等の条件を使用す
ることができる。Conditions such as temperature and pressure space velocity when carrying out these chemical reactions vary depending on the type of reaction and the characteristics of the catalyst used, but are well known when using a conventional cylindrical reactor. Conditions approximately equivalent to the conditions can be used.
またこの発明による反応器の内部において触媒およびガ
スを冷却する際に供給する低温原料ガスのための分散器
および各種の熱交換器ガス透過性触媒支持具などには周
知のものを使用することができる。またこの発明におい
て間接熱交換法によって触媒および反応途中のガスを冷
却するための冷却剤としてはいずれも所望の温度におい
て沸騰するよう圧力を調整された水。Furthermore, well-known devices can be used for the disperser for the low-temperature raw material gas supplied when cooling the catalyst and gas inside the reactor according to the present invention, various heat exchangers, gas-permeable catalyst supports, etc. can. Further, in the present invention, water whose pressure is adjusted so that it boils at a desired temperature is used as a coolant for cooling the catalyst and the gas during the reaction by the indirect heat exchange method.
常温において液状の炭化水素の7種あるいは少なくとも
2種の混合物、ダウサームなどの如き熱媒体などを好ま
しい例として挙げることができる。しかしガス状冷却媒
体やその他の液状冷却媒体も場合によシ充分使用可能で
ある。Preferred examples include a mixture of seven or at least two hydrocarbons that are liquid at room temperature, and a heat medium such as Dowtherm. However, gaseous or other liquid cooling media may also be used satisfactorily.
第1図は本発明の原理を示す円筒形反応器と球形反応器
の模式的断面図である。
第2.第3.第グ、第j図および第6図はそれぞれこの
発明の実施態様例である。
A 球形耐圧外殻
B 円筒形耐圧外殻
C,D、E、D’、E’反応室
/ 原料ガス入口
コ 反応生成ガス出口
3 耐圧外殻
グ 原料ガス予熱用熱交換器S
触媒充填口
6 触媒抜出口
ア 反応室の外面の少なくとも一部を構成す
るガス透過性触媒
受
ざ、9 熱交換器
/θ 追加 原料供給口
//〜29 ガスの通路用空間であって数の順がガス
の通過経路の順を
示す。
37〜39 反応室であって継の願力;反応室へのガ
スの通過順を示す。
j/〜S9 冷却剤の通路であって数の順が冷却剤の
経路の順を示す。
67〜69 同上による冷却剤の通路であってS/〜
jワとは異なる通
路を示す。
70 冷却剤の気液分離器
77〜79 ガスおよび触媒冷却用低温原料ガスの注
入管であって数の
多いもの程下流にある。
ざθ 冷却用低温原料ガスの分散器に/
流体入口
ざ2 流体出口
?/ ターンノ(ツクル
第1図
第1図
第3図
第V図
第j図FIG. 1 is a schematic cross-sectional view of a cylindrical reactor and a spherical reactor illustrating the principle of the present invention. Second. Third. Figures G, J, and 6 are examples of embodiments of the present invention, respectively. A Spherical pressure-resistant outer shell B Cylindrical pressure-resistant outer shell C, D, E, D', E' Reaction chamber/ Raw material gas inlet Reaction product gas outlet 3 Pressure-resistant outer shell Heat exchanger S for preheating raw material gas
Catalyst filling port 6 Catalyst extraction port A Gas-permeable catalyst receiving area constituting at least a part of the outer surface of the reaction chamber, 9 Heat exchanger/θ Additional raw material supply port//~29 Space for gas passage, with a number of The order indicates the order of gas passage. 37 to 39 Reaction chambers; the order of gas passage into the reaction chambers is shown. j/~S9 A coolant path, where the order of numbers indicates the order of the coolant path. 67-69 Coolant passage according to the above, S/~
j shows a different passage than wa. 70 Coolant gas-liquid separators 77 to 79 Injection pipes for gas and low-temperature raw material gas for catalyst cooling, and the larger the number, the more downstream. θ For a disperser of low-temperature raw material gas for cooling/
Fluid inlet 2 Fluid outlet? / Turnno (Tukuru Figure 1 Figure 1 Figure 3 Figure V Figure J
Claims (1)
て該原料ガスに化学反応を生起せしめ反応生成ガスを得
るだめの反応器であって、耐圧外殻は (イ)球もしくは長さが直径の十以下である円筒の両端
に該円筒の直径と同一直径の半球形鏡板を有する長球で
あるか (ロ)あるいは該球状または該長球状耐圧外殻は少なく
とも7個の円筒状突出部を有し、この場合の耐圧外殻の
該突出部を除く部分の表面積は核球または該長球の全表
面積の十以上を占めるものでアシ、 かつこれら゛耐圧外殻の内部に円柱形2円筒形。 円錐台形あるいは、これらの外面の一部または全部と球
の内面の一部との間に形成される環状型の触媒充填用反
応室のそれぞれ少なくとも7個よシなる反応室群から選
択された少なくとも2個の反応室が、該反応室の外径の
小なるものは内径の犬なるものの内部に存在する相互配
置関係において具備されていることを特徴とする球形反
応器。 ■ ガス状原料を高圧下に固定床粒状触媒と接触せしめ
て該原料ガスに化学反応を生起せしめ反応生成ガスを得
る方法において術許請求の範囲第1項記載の反応器を使
用しかつ該使用に際し該反応器内の少なくとも一個の反
応室に該ガス を直列に通過せしめることを特徴とする
反応方法。 ■ 耐圧外殻の外部から該耐圧外殻の球面部もしくは該
長球面部と該反応器の内部空間を区画するための隔壁と
を貫通してこの反応器内部の区画された空間と反応器外
とを連通させるための管の該耐圧外殻貫通部と該内部区
画壁貫通部との間が該耐圧外殻の球面部もしくは該長球
面部の内面に近接した空間内に曲管として具備されてい
る特許請求の範囲第1項記載の反応器。 ■■ 各該反応室は、円筒形であってかつ円筒の軸は垂
直配置であシ、 @ 相隣れる該反応室の間には均圧空間が設けられ、 θ 原料ガスは各該反応室を直列にかつ半径方向に流通
せしめられ、 ■ 少なくとも7個の該反応室には該軸に平行であシ、
内部に所望圧力で沸騰しつつある気液混相の冷却剤を上
向きに流通せしめる多数の冷却管が少なくとも2個の同
心円上に配置されている、 特許請求の範囲第1項または第3項記載の反応器。 ■ 耐圧外殻の該円筒状突出部のうち少なくとも7個の
内部空間には低温の原料ガスを該反応の途中にあるかあ
るいは該反応を終了した高温ガスによシ予熱するための
間接熱交換器が設置されている特許請求の範囲第1項、
第3項または第9項記載の反応器。[Scope of Claims] ■ A reactor for producing a reaction product gas by bringing a gaseous raw material into contact with a fixed bed granular catalyst under high pressure to cause a chemical reaction in the raw material gas, the pressure-resistant outer shell being (I) ) It is a sphere or a cylinder whose length is less than 10 times the diameter and has hemispherical end plates at both ends with the same diameter as the diameter of the cylinder (b) Or the spherical or long spheroidal pressure-resistant outer shell is at least 7 times the length of the cylinder cylindrical protrusions, in which case the surface area of the pressure-resistant outer shell excluding the protrusions occupies 10 or more of the total surface area of the nuclear sphere or the prolate sphere; 2 cylinders inside. At least seven reaction chambers selected from a group of at least seven reaction chambers each having a truncated cone shape or an annular shape formed between a part or all of the outer surface of the truncated cone and a part of the inner surface of the sphere. A spherical reactor characterized in that two reaction chambers are provided in a mutually arranged relationship such that the smaller outer diameter of the reaction chambers is inside the inner diameter dog. (2) Using the reactor according to claim 1 in a method of bringing a gaseous raw material into contact with a fixed bed granular catalyst under high pressure to cause a chemical reaction in the raw material gas to obtain a reaction product gas; A reaction method characterized in that the gas is passed in series through at least one reaction chamber in the reactor. ■ Penetrate from the outside of the pressure-resistant shell through the spherical part of the pressure-resistant shell or the elongated spherical part and the partition wall for partitioning the internal space of the reactor to connect the partitioned space inside the reactor to the outside of the reactor. A curved pipe is provided between the pressure-resistant outer shell penetrating part and the inner partition wall penetrating part of the pipe for communicating with the pipe in a space close to the inner surface of the spherical part or the elongated spherical part of the pressure-resistant outer shell. A reactor according to claim 1. ■■ Each of the reaction chambers is cylindrical, and the axis of the cylinder is arranged vertically. @ An equal pressure space is provided between the adjacent reaction chambers, and θ source gas is distributed between each of the reaction chambers. flowing in series and radially; ■ At least seven of the reaction chambers are parallel to the axis;
Claim 1 or 3, wherein a large number of cooling pipes are arranged in at least two concentric circles through which a gas-liquid mixed-phase coolant that is boiling at a desired pressure flows upward. reactor. ■ In the internal spaces of at least seven of the cylindrical protrusions of the pressure-resistant shell, there is indirect heat exchange for preheating the low-temperature raw material gas with the high-temperature gas that is in the middle of the reaction or has completed the reaction. Claim 1, in which the device is installed;
The reactor according to item 3 or 9.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56174547A JPS5876134A (en) | 1981-11-02 | 1981-11-02 | Spherical reactor having plural cylindrical reaction chambers and use thereof |
DE19823240089 DE3240089A1 (en) | 1981-11-02 | 1982-10-29 | SPHERICAL REACTOR WITH A VARIETY OF CYLINDRICAL REACTION CHAMBERS AND METHOD FOR CARRYING OUT REACTIONS IN THIS REACTOR |
GB08231116A GB2110105A (en) | 1981-11-02 | 1982-11-01 | Spherical reactor having a plurality of cylindrical reaction chambers and method for carrying out a reaction using said spherical reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56174547A JPS5876134A (en) | 1981-11-02 | 1981-11-02 | Spherical reactor having plural cylindrical reaction chambers and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5876134A true JPS5876134A (en) | 1983-05-09 |
Family
ID=15980455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56174547A Pending JPS5876134A (en) | 1981-11-02 | 1981-11-02 | Spherical reactor having plural cylindrical reaction chambers and use thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS5876134A (en) |
DE (1) | DE3240089A1 (en) |
GB (1) | GB2110105A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192512A (en) * | 1987-01-21 | 1993-03-09 | Institut Francais Du Petrole | Apparatus for performing chemical reactions under pressure in a multi-stage reaction zone with external intermediary thermal conditioning |
DE19852894B4 (en) * | 1998-11-17 | 2007-02-15 | GEA Luftkühler GmbH | Process for the recovery of phthalic anhydride by catalytic gas phase reaction and apparatus for carrying out the process |
DE10359744A1 (en) | 2003-12-19 | 2005-07-14 | Uhde Gmbh | Method and device for injecting oxygen into a synthesis reactor |
DE102004003070A1 (en) * | 2004-01-21 | 2005-08-18 | Uhde Gmbh | Process and apparatus for injecting oxygen with radial catalyst flow |
CN112920837A (en) * | 2021-02-03 | 2021-06-08 | 崔秋生 | Naphtha and pre-ether C4 mixed aromatization device and use method thereof |
CN112920838A (en) * | 2021-02-03 | 2021-06-08 | 崔秋生 | Naphtha and methanol mixed aromatization device and use method thereof |
-
1981
- 1981-11-02 JP JP56174547A patent/JPS5876134A/en active Pending
-
1982
- 1982-10-29 DE DE19823240089 patent/DE3240089A1/en not_active Withdrawn
- 1982-11-01 GB GB08231116A patent/GB2110105A/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
GB2110105A (en) | 1983-06-15 |
DE3240089A1 (en) | 1983-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4594227A (en) | Reaction method and reactor therefor | |
JPS5839572B2 (en) | Reactor and its use | |
US4714592A (en) | Radial flow catalytic reactor including heat exchange apparatus within the bed | |
JP4424991B2 (en) | Reactor for producing phosgene and method for producing phosgene | |
US3796547A (en) | Heat exchange apparatus for catalytic system | |
US7767601B2 (en) | Shell-type reactor with radial baffles | |
KR101818442B1 (en) | shell-and-multi-triple concentric-tube reactor and heat exchanger | |
RU2719441C1 (en) | Reactor for large-scale synthesis of ethylene glycol | |
CN101254442A (en) | Method used for heat liberation pressurization catalytic reaction | |
CN101970095A (en) | Catalytic reactor | |
JPH0376976B2 (en) | ||
CN107774201A (en) | A kind of reactor for optimizing temperature and its reaction process and application | |
CN108554321A (en) | A kind of catalytic reactor reduced suitable for strongly exothermic volume | |
US9776861B1 (en) | Method of steam methane reforming with a tube and shell reactor having spirally positioned fluid inlets | |
CN113426384A (en) | Multi-section fixed bed reactor and Fischer-Tropsch synthesis reaction system | |
RU2150995C1 (en) | Process and reactor for heterogeneous exothermic synthesis of formaldehyde | |
KR20170110848A (en) | shell-and-multi-double concentric-tube reactor and heat exchanger | |
JPS5876134A (en) | Spherical reactor having plural cylindrical reaction chambers and use thereof | |
US10449504B2 (en) | Tube isothermal catalytic reactor | |
RU2156160C2 (en) | Method and reactor for heterogeneous exothermic synthesis of formaldehyde | |
JPS60225632A (en) | Reactor | |
CN205328607U (en) | Be used for large -scale for methanol steam reforming hydrogen plant methyl alcohol converter | |
CN105776141B (en) | A kind of new fixed bed reactors of catalytic oxidation of hydrogen chloride for preparing chlorine gas | |
CN110237778A (en) | A kind of isothermal reactor and its process of convenient changing catalyst | |
CN215277237U (en) | Multi-section fixed bed reactor and Fischer-Tropsch synthesis reaction system |