Nothing Special   »   [go: up one dir, main page]

JPS5867857A - Coated sintered hard alloy and preparation thereof - Google Patents

Coated sintered hard alloy and preparation thereof

Info

Publication number
JPS5867857A
JPS5867857A JP16477881A JP16477881A JPS5867857A JP S5867857 A JPS5867857 A JP S5867857A JP 16477881 A JP16477881 A JP 16477881A JP 16477881 A JP16477881 A JP 16477881A JP S5867857 A JPS5867857 A JP S5867857A
Authority
JP
Japan
Prior art keywords
cemented carbide
coated
type solid
solid solution
sintered hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16477881A
Other languages
Japanese (ja)
Other versions
JPH0156135B2 (en
Inventor
Yusuke Iyori
裕介 井寄
Haruhiko Honda
本田 晴彦
Norio Takahashi
紀雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP16477881A priority Critical patent/JPS5867857A/en
Publication of JPS5867857A publication Critical patent/JPS5867857A/en
Publication of JPH0156135B2 publication Critical patent/JPH0156135B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prepare a coated sintered hard alloy excellent in heat shock resistance and tenacity, by a method wherein parts comprising a sintered hard alloy having a hard phase consisting of WC and B-1 type solid solution bonded by a ferrous metal therein is heated in an N2 atmosphere and a TiC film is applied to the heated parts to enhance the bonding strength of the film. CONSTITUTION:Parts comprising a sintered hard alloy containing WC and B-1 type solid solution as hard phases bonded by a ferrous metal is held at 1,200- 1,600 deg.C for 10min-5hr in an atmosphere of which N2 partial pressure is 1- 700 torr to enrich the surface thereof with the B-1 type solid solution. In the next stop, TiC is coated on the surface thereof. By this method, adhesion strength between a sintered hard matrix material and the TiC film is improved and a coated sintered hard alloy excellent in heat shock resistance and mechanical tenacity can be obtained.

Description

【発明の詳細な説明】 本発明は被覆超硬合金部品に関するものである。[Detailed description of the invention] The present invention relates to coated cemented carbide parts.

超硬合金にTiO硬質皮膜を被覆した被覆超硬合金は耐
摩耗性、耐溶珊性、耐化学反応性にすぐれ広く実用に供
されている。I7かし基体と皮膜の接着強度はまだ十分
とはいえず仕上は用に用いられないとか、カッター用に
は供せられないなど実用面からは制限も多い。この接着
強度は基体−皮膜物質の物理的・化学的な接合のみなら
ず、切削時には熱膨張の相違も影響を及ばず。また、特
に表面被覆法として化学蒸着法を用いた場合は皮膜直下
の基体にイータ相と称する脱炭相が生じ、界面強度を低
下させることになる。このため今日まで種々の界面強度
改善案が研究されている。たとえは、基体は従来の超硬
合金とはやや組成の異なったもの、すなわちOo金金属
含有量を低減して化学的な接着強度を増加したり、ある
いはNbO含有量を増加させて基体とTiOの熱膨張率
を近づけるなどの試みがなされている。またイータ相の
発生に関しては例えは浸炭処理と称し被覆処理の前にO
H4+HIの混合ガス等により基体表面より0を拡散さ
せイータ相の発生を防止する方法が用いられる。
Coated cemented carbide, which is made by coating cemented carbide with a TiO hard film, has excellent wear resistance, melt resistance, and chemical reaction resistance, and is widely used in practical use. There are many limitations from a practical standpoint, such as the adhesive strength between the I7 base and the coating being not yet sufficient, making the finish unusable, and not being suitable for use with cutters. This adhesive strength is not only affected by physical and chemical bonding between the substrate and the coating material, but also by differences in thermal expansion during cutting. In addition, particularly when chemical vapor deposition is used as a surface coating method, a decarburized phase called an eta phase is generated on the substrate immediately below the coating, reducing the interfacial strength. For this reason, various plans for improving the interface strength have been studied to date. For example, the substrate may have a slightly different composition than conventional cemented carbide, i.e., the Oo gold metal content may be reduced to increase the chemical bond strength, or the NbO content may be increased to increase the chemical bond strength between the substrate and TiO. Attempts are being made to bring the coefficient of thermal expansion closer to that of Regarding the generation of eta phase, for example, it is called carburizing treatment, and O
A method is used in which the generation of eta phase is prevented by diffusing 0 from the surface of the substrate using a mixed gas of H4+HI or the like.

しかしこれらの方法は十分な効果を得ていないのが実状
である。その理由は基体中の00は靭性上の観点からあ
る量以下に低減できないこと、あるいは浸炭処理の場合
処理時間が2〜4時間と長いことに加え基体の含有0量
により0の浸炭量を調整する必要があるが、実際上はむ
ずかしい略のためである。
However, the reality is that these methods are not sufficiently effective. The reason for this is that 00 in the base cannot be reduced below a certain amount from the viewpoint of toughness, or in the case of carburizing, the treatment time is as long as 2 to 4 hours, and the amount of 0 carburized is adjusted depending on the amount of 0 contained in the base. Although it is necessary to do so, it is difficult to do so in practice.

本発明は上記従来技術の欠点を改良し、超硬母材と皮膜
の接着強度を改善し1熱衝撃性、機械的靭性に優れる新
規な被覆超硬合金を提供することを目的とする。
The object of the present invention is to improve the above-mentioned drawbacks of the prior art, improve the adhesive strength between the cemented carbide base material and the coating, and provide a novel coated cemented carbide that has excellent thermal shock resistance and mechanical toughness.

本発明の特徴は超硬基体表面にOOがほとんど存在せず
かつB−1固溶炭化物相が富化された基体を用いその表
面に直接阻0を被覆する点にある。B−1型固溶体は周
期律表の4&、5aおよび6a族の金属の炭化物および
輩化物のうちの1種または2種以上からなるNa0t型
結晶構造化合物である。このような基体を得る方法はす
でに特開昭55−154561号公報で公知のごとく、
焼結雰囲気中のN1分圧を調整することによって可能で
ある。すなわち該超硬部材のB−1型固溶体の平衡1i
−分圧よりも焼結雰囲気のN2分圧を大きくすることに
よりE−IIJlはとんど00は存在しなくなり、かつ
B−1型固溶体かほぼ完全に表面をおおってしまう。
The feature of the present invention is that a cemented carbide substrate having almost no OO present on its surface and enriched with a B-1 solid solution carbide phase is used, and the surface of the substrate is directly coated with OO. The B-1 type solid solution is a Na0t type crystal structure compound consisting of one or more carbides and superoxides of metals in groups 4&, 5a, and 6a of the periodic table. A method for obtaining such a substrate is already known in Japanese Patent Application Laid-Open No. 154561/1983.
This is possible by adjusting the N1 partial pressure in the sintering atmosphere. That is, the equilibrium 1i of the B-1 type solid solution of the carbide member
-By increasing the N2 partial pressure of the sintering atmosphere more than the partial pressure, 00 in E-IIJl almost completely disappears, and the surface is almost completely covered by the B-1 type solid solution.

本発明の特徴はこのB−1型固溶体が表面に富化された
基体にTiOを被覆することにありAlaOsまたはZ
rO@を直接被覆することを特徴とする特開昭55−1
541561号公報記載の発明と′相違するすぐれた点
である。
The feature of the present invention is that TiO is coated on a substrate whose surface is enriched with this B-1 type solid solution.
JP-A-55-1 characterized by direct coating of rO@
This is an excellent point that is different from the invention described in Publication No. 541561.

まず従来のTiO被覆超硬合金とくらべて本発明がすぐ
れる理由は、第1に化学的被覆処理を行なった場合に脆
化相であるイータ相が生じないことにある。被覆処理の
初期段階では基体から被膜表面へ0が拡散するため、従
来のTiO被覆超硬合金ではイータ相の発生はさけられ
ない。ところが本発明では基体表面にB−1型固溶体が
富化されており、B−1型固溶体は0の結合比率の巾が
大きいためB−1相中のOが皮膜へ拡散しても脱炭相で
あるイータ相は発生しない。第2にB−1型固溶体とT
iO皮膜の熱膨張率の差は基体とTiO皮膜の熱膨張率
よりも小さいため切削中の皮膜のはく離が少ない。
First, the reason why the present invention is superior to conventional TiO-coated cemented carbide is that the eta phase, which is a brittle phase, is not generated when chemical coating treatment is performed. At the initial stage of the coating process, 0 diffuses from the substrate to the coating surface, so the generation of eta phase is unavoidable in conventional TiO-coated cemented carbide. However, in the present invention, the B-1 type solid solution is enriched on the substrate surface, and since the B-1 type solid solution has a large range of 0 bond ratio, even if O in the B-1 phase diffuses into the film, decarburization does not occur. The eta phase does not occur. Second, B-1 type solid solution and T
Since the difference in thermal expansion coefficient of the iO film is smaller than that between the substrate and the TiO film, there is little peeling of the film during cutting.

第3に基体−皮膜界面にOoが存在しないために界面強
度が上昇すると共に基体から皮膜へのOoの拡散がない
ために皮膜の耐摩耗性が著しく向上する。
Thirdly, since Oo does not exist at the substrate-coating interface, the interfacial strength increases, and since there is no diffusion of Oo from the substrate to the coating, the abrasion resistance of the coating significantly improves.

次に表面に1−1型固溶体を富化した基体に直接AI−
Hogを被覆する場合と比較するとμgos被覆ではB
−1型固溶体中のWとAAmosが化学反応をおこし非
常に脆いWの酸化物が界面に生じることかたしかめられ
界面強度が劣化する。一方TiO被覆ではTiOがB−
xlJTi固溶体の構成要素であるため脆化反応相は生
じない。この点が先に引用した特開昭55−154F1
61号公報記載の発明からは容易に推考できないもので
ある。
Next, AI-
Compared to Hog coating, μgos coating has B
It is confirmed that W in the -1 type solid solution and AAmos cause a chemical reaction, and a very brittle W oxide is generated at the interface, resulting in deterioration of the interface strength. On the other hand, in TiO coating, TiO is B-
Since it is a component of the xlJTi solid solution, no embrittlement reaction phase occurs. This point was cited earlier in JP-A-55-154F1.
This cannot be easily deduced from the invention described in Publication No. 61.

ここで基体表面近傍のB−1型固溶体の量が少くとも4
0容量%とした理由は40%未満では化学的被覆処理を
行うとイータ相が発生するおそれがあり、かつ基体と皮
膜の熱膨張差が十分に縮まらず切削時のはく離強度が向
上しない。また基体表面近傍の0ojiiを超硬合金内
部におけるOo含有量の20%以下とした理由は20%
を越えると皮膜との接着強度が劣化し、かつ皮膜の耐摩
耗性が減する。次に表面近傍を「少なくとも1μ」と規
定した理由はそれ以下ではイータ相、切削時のはく離等
が生じるためである。
Here, the amount of B-1 type solid solution near the substrate surface is at least 4
The reason why it is set to 0% by volume is that if it is less than 40%, there is a risk that eta phase will occur when chemical coating treatment is performed, and the difference in thermal expansion between the substrate and the film will not be sufficiently reduced, and the peel strength during cutting will not improve. Also, the reason why the Oojii near the base surface was set to be less than 20% of the Oo content inside the cemented carbide was 20%.
If it exceeds this, the adhesive strength with the film will deteriorate and the abrasion resistance of the film will decrease. Next, the reason why the area near the surface is defined as "at least 1 μm" is that if it is less than that, eta phase, peeling, etc. will occur during cutting.

尚、基体表面に1−1型固溶体を富化するにあたり、 
N1分圧を1〜700Torrとした理由はl ’ro
rr未満ではその効果が十分でな(700Torrを越
えた場合は表面の粗度が悪くなり、TiO被覆超硬部材
としては適さない。また、温度を1200c〜160o
 Cに限定した理由は1600 cを越える温度下では
基体の炭化物が粗成長し実用に供しないこと、および1
2001゜未満の温度ではM■ガスの効果が十分でない
ことによる。
In addition, in enriching the 1-1 type solid solution on the substrate surface,
The reason why N1 partial pressure was set from 1 to 700 Torr is l'ro
If it is less than 700 Torr, the effect will not be sufficient (if it exceeds 700 Torr, the surface roughness will deteriorate and it will not be suitable as a TiO-coated carbide member.
The reason for limiting it to C is that at temperatures exceeding 1600 C, the carbide of the substrate will grow coarsely, making it unusable for practical use.
This is because the effect of M2 gas is not sufficient at temperatures below 2001°.

実施例1 )2WO−10Tio −10TaO−80oなる組成
に粉末を配合し真空中14000で1時間焼結を行ない
、その後Hlガスを5 Torr導入しそのまま冷却し
、超硬合金基体(4)を作製した。同時に比較材として
311ガスを導入しない基体(B)を作製した。次にこ
の基体上にTiO4、Ha 、0)14ガスを用いて化
学蒸着処理を行ないTieヲ6μmの厚名に被覆した。
Example 1) Powder was blended into a composition of 2WO-10Tio-10TaO-80o, sintered in vacuum at 14,000°C for 1 hour, and then Hl gas was introduced at 5 Torr and cooled as it was to produce a cemented carbide base (4). did. At the same time, a substrate (B) in which 311 gas was not introduced was prepared as a comparison material. Next, a chemical vapor deposition process was performed on this substrate using TiO4, Ha, and 0)14 gases to coat the substrate with a Tie film having a thickness of 6 μm.

これら2種を以下の切削条件、即ち 被削材 f90M3 切削速度  250117win 送       リ       04111/r@T
切り込み  L5m11 水溶性切削油使用 にて切削テストを行なった。
These two types are cut under the following cutting conditions: Work material: f90M3 Cutting speed: 250117win Feed: 04111/r@T
Depth of cut: L5m11 A cutting test was conducted using water-soluble cutting oil.

比較品のBチップは被m膜がはく離して15分間しか切
削できなかったのに対し、本発明のムチツブは30分間
の切削でもはく離は発生せず良好な車輛形態を示した。
While the comparative product B chip could only be cut for 15 minutes due to peeling of the coating, the whip of the present invention did not peel off even after cutting for 30 minutes and showed a good vehicle shape.

実施例2 79WO−3TiO−3TiN−4TaO−2NbO−
90oなる組成に粉末を配合し真空中140o rで1
時間焼結を行ない、ひき続きHaガスを100T o 
r r導入し炉中冷却した超硬合金基体(0)を作製し
た。同時に比較材としてN、ガスを導入し゛ない基体C
D)を作製した。次にこの基体上にTi0Aa 、H嘗
、OH*ガスを用いて化学蒸着処理メ を行ないTooを6μmの厚さに被覆した。次にこれら
2種の断面を観察したところ(0)にはまったくイータ
相が認められなかったが(D)には基体の表面直下に2
〜3μmの厚さにわたってイータ相が観察されたO またこれら2種を以下の断続切削条件、即ち切削速度 
 200 m/mn 送      リ       α4露諷/rsv切り
込み  L5簡 被削材 80M3 1owの溝付き にて切削を行なった。
Example 2 79WO-3TiO-3TiN-4TaO-2NbO-
Mix the powder to a composition of 90o and heat at 140o r in vacuum.
Sintering is carried out for a period of time, followed by 100T o of Ha gas.
A cemented carbide substrate (0) was prepared by introducing rr and cooling in a furnace. At the same time, as a comparison material, N and base C were not introduced with gas.
D) was produced. Next, a chemical vapor deposition process was performed on this substrate using Ti0Aa, H, and OH* gas to coat Too to a thickness of 6 μm. Next, when we observed the cross sections of these two types, no eta phase was observed in (0), but in (D), there was no eta phase observed just below the surface of the substrate.
Eta phase was observed over a thickness of ~3 μm
Cutting was performed using a 200 m/mn feed rate α4 open/rsv depth of cut L5 simple work material 80M3 1ow with a groove.

比較品の(9)チップは15回の衝撃で欠損したが、本
発明の(0)は500回の衝撃でも欠損にいたらなかっ
た◎ このように表面のOoを減少させ、かつ表面にB−1型
固溶体を富化した超硬合金基体上にT101&覆するこ
とにより、イータ相の発生を防止し、熱衝撃、機械的衝
撃に冨む被覆超硬合金を得ることができる。
Comparative chip (9) broke after 15 impacts, but chip (0) of the present invention did not break even after 500 impacts. In this way, Oo on the surface was reduced, and B- By coating T101 on a cemented carbide substrate enriched with type 1 solid solution, it is possible to prevent the generation of eta phase and obtain a coated cemented carbide that is resistant to thermal shock and mechanical shock.

41・許庁艮官殿 +、y、 ull cn  ’f“fj゛  被覆超硬
合金およびその製造法補11:をする台 名 村  +50111 1しr傘属株式会社代   
ノシ   と   、11f    野      典
   夫代    川1    人 holi ′!t cr>  >、Y ″″明細書の「
%許請求の範囲」の−および「発明の詳細な説明」の掴 補“1″。″パ1で1紙、Dよお。
41・To the Agency's Applicant +、y、ul cn'f"fj゛Coated cemented carbide and its manufacturing method Supplement 11:Tainame Village +50111 1shir affiliated corporation representative
Noshi and, 11th floor Norifuyo Kawa 1 person holi'! t cr>>, Y″″
% Claims” and “Detailed Description of the Invention” supplement “1”. ``P1 and 1 paper, D.

補正の内容 ■ 明細書の「特許請求の範囲」の欄の記載を次の通り
訂正する。
Contents of the amendment■ The statement in the "Claims" column of the specification is corrected as follows.

「LWOとB−1型固溶体とを硬質相とし、これを鉄族
金属で結合した超硬合金にTiOを被覆した被覆超硬合
金において、被積層と接する超硬合金の表面から少くと
も1μの深さの部分におけるOo含有量が前記超硬合金
の内部における00含有量の一40%以下であり、かつ
B−4型固溶体が40容量%以上80容量%未満含まれ
ていることを特徴とする被覆超硬合金。
"A coated cemented carbide in which a hard phase of LWO and a B-1 type solid solution is bonded with an iron group metal and coated with TiO, at least 1 μm from the surface of the cemented carbide in contact with the layer to be laminated. The Oo content in the depth part is 140% or less of the 00 content in the interior of the cemented carbide, and the B-4 type solid solution is contained at 40% by volume or more and less than 80% by volume. coated cemented carbide.

&  WOとB−4型固溶体を硬質相とし、これを鉄族
金属で結合した超硬合金部品の表面に’I’10の被覆
°膜を施すにあたり、予め前期超硬合金部品をN雪の分
圧が1〜700 Torrの雰囲気中1200 C〜1
600 Cで10分〜5時間保持することを特徴とする
被覆超硬合金の製造法。」 ■ 明細書の「発明の詳細な説明」の楡の記載を次の通
り訂正する。
& When applying the 'I'10 coating film on the surface of the cemented carbide parts, which are made by combining WO and B-4 type solid solution with iron group metals, the former cemented carbide parts were soaked in N snow in advance. 1200 C to 1 in an atmosphere with a partial pressure of 1 to 700 Torr
A method for producing a coated cemented carbide, characterized by holding at 600 C for 10 minutes to 5 hours. ” ■ The description in “Detailed Description of the Invention” in the specification is corrected as follows.

(1)明細書第5頁第17行の「向上しない。」の後に
「また、80%未満とした理由はB−1型固溶体が本質
的にもろく80%以上では欠損しやすくなるためである
。」を挿入する。
(1) After "No improvement" on page 5, line 17 of the specification, "Also, the reason why the percentage is less than 80% is that B-1 type solid solution is essentially brittle and tends to break if it exceeds 80%." .” is inserted.

(4)  同省第6頁第18行の「作製した。」の後に
下記文を挿入する。
(4) Insert the following sentence after "Produced." on page 6, line 18 of the Ministry of Health.

記 「次に(4)の表面を螢光X@分析した結果、B−1型
固溶体は72容量%、WO単独相は27容量%、00は
1容置%であることを確認した。また、基体(B)の表
面はB−4型固溶体は38容量%、Wa単独相は42容
量%、00は20容it%であることを確認した。」 (5)  同書第7頁第17行の「作製した。」の後に
下記文を挿入する。
Next, as a result of fluorescent X@ analysis of the surface of (4), it was confirmed that the B-1 type solid solution was 72% by volume, the WO single phase was 27% by volume, and 00 was 1% by volume. , it was confirmed that on the surface of the substrate (B), the B-4 type solid solution was 38% by volume, the Wa single phase was 42% by volume, and 00 was 20% by volume.'' (5) Ibid., page 7, line 17. Insert the following sentence after "produced."

記 「表面の組成分析結果を下表に示す。Record "The results of surface composition analysis are shown in the table below.

第  1  表 」 以  上Table 1 ” that's all

Claims (1)

【特許請求の範囲】 L WOとB−1型固浴体とを硬質相とし、これを鉄族
金属で結合した超硬合金にTiOを被覆した被験超硬合
金において、被aI膜と接する超硬合金の表面から少く
とも1μの深さの部分におけるOo含有量が前記超硬合
金の内部における00含有臘の20%以下であり、かつ
B−1型固溶体が40容量%以上含まれていることを特
徴とする被覆超硬合金。 Z  WOとB−1型固浴体を硬質相とし、これを鉄族
金属で結合した超硬合金部品の表面にTiOの被覆膜を
施すにあたり、予め前期超硬合金部品をN寓の分圧が1
〜700 Torr(7)雰囲気中12oOC〜16o
oCで10分〜5時間保持することを特徴とする被覆超
硬合金の製造法。
[Claims] In a test cemented carbide in which a hard phase is LWO and a B-1 type solid bath and is bonded with an iron group metal and coated with TiO, the superhard alloy in contact with the aI film is The Oo content at a depth of at least 1μ from the surface of the hard metal is 20% or less of the 00 content inside the cemented carbide, and the B-1 type solid solution is contained at 40% by volume or more. A coated cemented carbide characterized by: Z When applying a coating film of TiO to the surface of a cemented carbide part made by using WO and B-1 type solid bath as a hard phase and bonding them with an iron group metal, the former cemented carbide part was preliminarily coated with N. pressure is 1
~700 Torr (7) atmosphere 12oOC~16o
A method for producing a coated cemented carbide, characterized by holding the coated cemented carbide at oC for 10 minutes to 5 hours.
JP16477881A 1981-10-15 1981-10-15 Coated sintered hard alloy and preparation thereof Granted JPS5867857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16477881A JPS5867857A (en) 1981-10-15 1981-10-15 Coated sintered hard alloy and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16477881A JPS5867857A (en) 1981-10-15 1981-10-15 Coated sintered hard alloy and preparation thereof

Publications (2)

Publication Number Publication Date
JPS5867857A true JPS5867857A (en) 1983-04-22
JPH0156135B2 JPH0156135B2 (en) 1989-11-29

Family

ID=15799757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16477881A Granted JPS5867857A (en) 1981-10-15 1981-10-15 Coated sintered hard alloy and preparation thereof

Country Status (1)

Country Link
JP (1) JPS5867857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169356A (en) * 1987-01-05 1988-07-13 Toshiba Tungaloy Co Ltd Surface-tempered sintered alloy and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169356A (en) * 1987-01-05 1988-07-13 Toshiba Tungaloy Co Ltd Surface-tempered sintered alloy and its production

Also Published As

Publication number Publication date
JPH0156135B2 (en) 1989-11-29

Similar Documents

Publication Publication Date Title
US4497874A (en) Coated carbide cutting tool insert
JPH07103468B2 (en) Coated cemented carbide and method for producing the same
US5035957A (en) Coated metal product and precursor for forming same
US7544410B2 (en) Hard metal or cermet body and method for producing the same
JP2000225506A (en) Cutting insert and manufacture thereof
JPS6119367B2 (en)
JPS5867857A (en) Coated sintered hard alloy and preparation thereof
JPS5867859A (en) Coated sintered hard alloy and preparation thereof
EP0083842A1 (en) Surface-coated hard metal body and method of producing the same
JP2539922B2 (en) Diamond coated cemented carbide
JPS5867803A (en) Coated sintered hard alloy and preparation thereof
JPH0693412A (en) Heat resistant ti-based alloy
JPH0122344B2 (en)
JP2767972B2 (en) Method for producing TiAl-based intermetallic compound layer
JPH05171442A (en) Coated sintered hard alloy and its manufacture
JPS5867860A (en) Coated sintered hard alloy and preparation thereof
JPS62105628A (en) High-tenacity coated cemented carbide and manufacture thereof
JPS58110668A (en) Coated sintered hard alloy and its production
JP2814452B2 (en) Surface-finished sintered alloy, method for producing the same, and coated surface-finished sintered alloy obtained by coating the alloy with a hard film
JPS6111724B2 (en)
JPH0225721B2 (en)
JPS60174876A (en) Manufacture of coated cutting tool
JPS5856033B2 (en) Coated cemented carbide parts
JPS5873763A (en) Coated sinteredhard alloy and its production thereof
JPH0645880B2 (en) Method for producing surface-coated cemented carbide