JPS585699B2 - How to remove nitrogen oxides - Google Patents
How to remove nitrogen oxidesInfo
- Publication number
- JPS585699B2 JPS585699B2 JP51041576A JP4157676A JPS585699B2 JP S585699 B2 JPS585699 B2 JP S585699B2 JP 51041576 A JP51041576 A JP 51041576A JP 4157676 A JP4157676 A JP 4157676A JP S585699 B2 JPS585699 B2 JP S585699B2
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen oxides
- alkali
- activated carbon
- nox
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
【発明の詳細な説明】
窒素酸化物NOxによる大気汚染の問題は、窒素酸化物
自体の環境濃度レベルでの毒性や、それが光化学スモッ
グの原因物質となっている背景などから深刻な問題とさ
れている。[Detailed Description of the Invention] The problem of air pollution caused by nitrogen oxides (NOx) is considered to be a serious problem due to the toxicity of nitrogen oxides themselves at the environmental concentration level and the fact that they are the cause of photochemical smog. ing.
現在の汚染レベルが環境基準のレベルよりもずっと高い
ことから、その発生源対策力咄動車排ガス規制、固定発
生源に対するNOx排出基準などを通して実施されつつ
ある。Since the current level of pollution is much higher than the environmental standards, measures are being taken to address the sources, such as exhaust gas regulations for power-driven vehicles and NOx emission standards for stationary sources.
しかしこれらの対策が功を奏して大気全般として例えば
環境基準レベルが達成されるにしても、それまでの過渡
的な期間あるいは発生源近くにおける局所的な高濃度汚
染の問題は深刻な間題である。However, even if these measures are successful and, for example, the environmental standard level is achieved for the atmosphere as a whole, the problem of localized high concentration pollution during the transient period or near the source remains a serious problem. be.
本発明は、主としてこの大気中の窒素酸化物の浄化に関
して取扱いの簡単な乾式法によシ、大気中の窒素酸化物
を高性能で処理し、また寿命的にも安定した方法を提供
するものである。The present invention mainly aims to purify nitrogen oxides in the atmosphere by using a dry method that is easy to handle, and provides a method that can treat nitrogen oxides in the atmosphere with high performance and is stable in terms of life. It is.
従来よりよく知られている大気中の窒素酸化物の除去方
法としては、ほとんどが大型の固定発生源の技術であり
、乾式法として適用する場合には、アンモニア等の還元
剤を用いる選択還元法等が有力であるが、これは低濃度
の環境濃度レベルでの窒素酸化物の処理には用いられな
い。Conventionally well-known methods for removing nitrogen oxides from the atmosphere are mostly large-scale stationary source technologies, and when applied as a dry method, selective reduction methods using reducing agents such as ammonia are used. etc. are promising, but these cannot be used to treat nitrogen oxides at low environmental concentration levels.
この様なレベルの窒素酸化物の処理には、吸着法、吸収
法などが有力であると考えられる。Adsorption methods, absorption methods, etc. are considered to be effective for treating nitrogen oxides at such levels.
吸着法の場合、有力な技術としては、活性炭が最も有効
である。In the case of adsorption methods, activated carbon is the most effective technology.
活性炭の場合、窒素酸化物のうち二酸化窒素(NO2)
のみと反応し、若干とれるが二酸化窒素を還元する性質
があり、水蒸気(相対湿度)が増大する程除去能力は良
くなるが、寿命が短い。In the case of activated carbon, nitrogen dioxide (NO2) among nitrogen oxides
It has the property of reducing nitrogen dioxide, although it can be removed to some extent, and its removal ability improves as the water vapor (relative humidity) increases, but its lifespan is short.
その除去容量は2〜3m9N02/1ml活性炭程度の
能力がある。Its removal capacity is approximately 2 to 3 m9N02/1ml activated carbon.
その他の環境濃度レベルでの窒素酸化物の処理法に湿式
吸収法がある。Another method for treating nitrogen oxides at environmental concentration levels is the wet absorption method.
N02がアルカリ溶液によって吸収されるので、主とし
て、アルカリ溶液を多孔質の担体例えば和紙とか不織布
などにグリセリン等の保湿剤と一緒に含湿させ担持させ
たものを用いて、NO2を吸収させる技術である。Since N02 is absorbed by an alkaline solution, this technology mainly uses a porous carrier, such as Japanese paper or non-woven fabric, to absorb the alkaline solution and carry it along with a moisturizing agent such as glycerin. be.
この技術はNO2よりもむしろ他の大気汚染物質、主に
SO2を除去する目的で開発された技術であるだめ、N
02の吸収効率(除去率)は低く、担持させているアル
カリの量も少ないだめ、反応の寿命も短い。This technology was developed to remove other air pollutants, mainly SO2, rather than NO2.
The absorption efficiency (removal rate) of 02 is low, and since the amount of alkali supported is small, the reaction life is also short.
まだ、本来湿式法であるだめ、操作の際空間速度を上げ
て操作することが、液滴の飛散に対する配慮からできな
いので、1000〜2000(h−1)程度の空間速度
の操作となるだめ、除去剤の部分の容積が膨大なものと
なることは避けられない。However, since it is originally a wet method, it is not possible to increase the space velocity during operation due to considerations for droplet scattering, so the operation must be performed at a space velocity of about 1000 to 2000 (h-1). It is inevitable that the volume of the removing agent portion will be enormous.
これに対して本発明の方法は、大気中の窒素酸化物の中
で特にNO2の除去に優れた方法であるが、取扱いが簡
便で、しかも反応性が高く、活性炭吸着法などと比較し
てはるかに寿命が長い。On the other hand, the method of the present invention is particularly excellent in removing NO2 among nitrogen oxides in the atmosphere, but it is easy to handle, has high reactivity, and is superior to activated carbon adsorption methods. It has a much longer lifespan.
しかも窒素酸化物の汚染の現状をみると、発生源ではそ
のNOxのほとんどが二酸化窒素(No)であるのに対
して、このNOは大気中で次第に酸化されてNO2へと
変化するが、最近の公害監視センター等から公表された
大気汚染のデータでは、ほとんど大気中ではNOとNO
2との割合が1/1付近になっている。Moreover, looking at the current state of nitrogen oxide pollution, most of the NOx at the source is nitrogen dioxide (No), while this NO is gradually oxidized in the atmosphere and changes to NO2, but recently According to air pollution data released by the Pollution Monitoring Center of Japan, most of the air contains NO and NO.
The ratio with 2 is around 1/1.
これは低濃度になるにつれて、NOの酸化速度が遅くな
る為であるが、ちょうど1/1付近がそのバランスがと
れた状態になっているのかも知れない。This is because the oxidation rate of NO slows down as the concentration decreases, but it may be that the rate of NO oxidation is balanced at around 1/1.
本発明はこの様なNO/NO2が1/1付近という組成
のNOxの処理に極めて優れた効果を示すので実用的な
技術であると評価される。The present invention is evaluated as a practical technique because it exhibits extremely excellent effects in treating NOx with a composition of NO/NO2 of around 1/1.
本発明はアルカリと硬化材と粉末活性炭とを水とともに
混練して適当な粒度に成型して硬化させ、その粒子に窒
素酸化物含有気体を接触させて気体中の窒素酸化物を吸
収除去することを特徴とするものである。The present invention involves kneading an alkali, a curing agent, and powdered activated carbon with water, molding the particles to an appropriate particle size, and curing the particles, and then bringing nitrogen oxide-containing gas into contact with the particles to absorb and remove nitrogen oxides from the gas. It is characterized by:
ここに用いる硬化材は、アルミナセメント、ボルトラン
ドセメントなどの水硬性セメント材、焼石こう(硫酸カ
ルシウム)、ベントナイト、ケイソウ土または水酸化カ
ルシウムである。The hardening materials used here are hydraulic cement materials such as alumina cement and Bortland cement, calcined gypsum (calcium sulfate), bentonite, diatomaceous earth, or calcium hydroxide.
以下本発明をその実施例により説明する。The present invention will be explained below with reference to Examples.
アルカリ水溶液と窒素酸化物との反応はよく知られてお
り、アルカリとして炭酸カリウムK2CO3を用いた場
合は次のようになる。The reaction between an aqueous alkaline solution and nitrogen oxides is well known, and when potassium carbonate K2CO3 is used as the alkali, the reaction is as follows.
(1)NOに対しては反応しない。(1) Does not react to NO.
(2)NO2との反応
2NO2+K2CO3→KNOs+KNO2+CO2(
3)N203との反応
N20s+K2COs→2KNO2+C02アルカリと
しては、NaOH,KOH,Na2C03tCa(OH
)2,Mg(OH)2などのアルカリ金属もしくはアル
カリ土類金属の水酸化物又は炭酸塩、その他NH40H
,NH4co3なども同様の反応をすることが知られて
いる。(2) Reaction with NO2 2NO2+K2CO3→KNOs+KNO2+CO2(
3) Reaction with N203 N20s + K2COs → 2KNO2 + C02 As alkalis, NaOH, KOH, Na2C03tCa (OH
)2, hydroxides or carbonates of alkali metals or alkaline earth metals such as Mg(OH)2, and other NH40H
, NH4co3, etc. are known to undergo similar reactions.
これらは当然液相反応であり、水分の存在下でイオン反
応を中心とした化学吸収反応である。These are naturally liquid phase reactions, and chemical absorption reactions centered on ionic reactions in the presence of moisture.
これを湿式で吸収させる場合には、先に示しだ様に、水
滴の飛散を防止する観点から空間速度(SV)を上げて
操作できないだめ、操作性が悪い。In the case of wet absorption, as shown above, the space velocity (SV) cannot be increased in order to prevent water droplets from scattering, resulting in poor operability.
一方アルカリと硬化材とで造粒成型したものは、NO/
NO2中1/1程度のガスを送って種々試験したが、後
述の表に示す様にこれらはほとんどNOxを除去しない
。On the other hand, those made by granulation molding with alkali and hardening agent have NO/
Various tests were carried out by sending a gas of about 1/1 concentration in NO2, but as shown in the table below, these methods hardly remove NOx.
これはおそらく反応剤表面でのN02吸収速度、N20
3吸収速度が遅いためであると考えられる。This is probably due to the N02 absorption rate on the reactant surface, N20
3. This is thought to be due to the slow absorption rate.
この様な系での乾式吸収の反応速度は、N02の吸収速
度が遅いため、N203の吸収速度をさらに早める検討
が必要であろうと考えられる。Since the reaction rate of dry absorption in such a system is slow for N02, it is thought that it is necessary to consider further increasing the absorption rate for N203.
そこで、本発明者らはアルカリと硬化材とから成る乾式
吸収組成物に種々の触媒作用の期待される物質を添加し
て試験したところ活性炭を粉末としてこれに添加したも
のが極めて優れたNOx除去効果を有することを見出し
だ。Therefore, the present inventors added various substances expected to have a catalytic effect to a dry absorption composition consisting of an alkali and a hardening agent, and tested it. It is a headline that has an effect.
次表は各種組成物についてのNOx除去率を比較したも
のである。The following table compares the NOx removal rates for various compositions.
試料は各種の原料の混合物に20〜30重量%の水を加
え、混練しだ後100℃で1時間程度乾燥して硬化させ
、次いで粉砕し、4〜8メッシュの粒度に分級したもの
を用いた。The sample used was prepared by adding 20 to 30% by weight of water to a mixture of various raw materials, kneading it, drying it at 100°C for about an hour to harden it, then crushing it and classifying it into a particle size of 4 to 8 mesh. there was.
なお活性炭は80メッシュのものを用いた。Note that activated carbon of 80 mesh was used.
NOxの除去率は、NO/NO2が1/1付近の組成を
もつNOxを100ppm含む空気を、温度30℃、相
対湿度50%のもとで、空間速度25,ooo(h−1
)で前記試料粒子の充填層を通過させ、出口ガス濃度を
測定して求めたものであり、初期から30分間の平均値
を示す。The removal rate of NOx is determined by using air containing 100 ppm of NOx with a composition of NO/NO2 of around 1/1 at a temperature of 30°C and a relative humidity of 50% at a space velocity of 25,000 (h-1).
), the sample particles were passed through a packed bed, and the outlet gas concentration was measured, and the average value is shown for 30 minutes from the initial stage.
なお表には示していないが、K2CO3tNa2s20
3tNaOHtNa2SO3,CO(NH2)2,Ca
(HPO4)3,KOHなどの1種と、アルミナセメン
ト、ベントナイト、焼石とうなどの硬化材とからなる系
についても同様に試料を作成して試験したところ、いず
れもNOx除去率は低く、最も優れたもので5%程度の
除去率しか得られなかった。Although not shown in the table, K2CO3tNa2s20
3tNaOHtNa2SO3,CO(NH2)2,Ca
(HPO4)3, KOH, and other hardening materials such as alumina cement, bentonite, and baked stone were similarly prepared and tested, and the NOx removal rate was low in all cases, indicating that they were the best. However, the removal rate was only about 5%.
アルカリと硬化材に粉末活性炭を組合せたものはNOx
除去率が優れており、活性炭の代わりに活性アルミナや
ゼオライトを用いたものに比較して、N02の除去率が
優れている。Combining powdered activated carbon with alkali and hardening agent reduces NOx
The removal rate is excellent, and the removal rate of N02 is excellent compared to those using activated alumina or zeolite instead of activated carbon.
特にアルカリにK2CO3、硬化材に水酸化カルシウム
Ca(OH)sを用いたものが活性炭との組合せにおい
て有効であった。In particular, a method using K2CO3 as the alkali and calcium hydroxide Ca(OH)s as the hardening agent was effective in combination with activated carbon.
これはNOxとの反応生成物であるCa(NO2)2,
Ca(NO3)2などの溶解度が小さいために反応が有
効に進むことによるものと考えられる。This is a reaction product with NOx, Ca(NO2)2,
This is thought to be due to the fact that the reaction proceeds effectively due to the low solubility of Ca(NO3)2 and the like.
表に示すように、アルカリにK2C03,硬化材にCa
(OR)2と硫酸カルシウムCaSO4・1/2H20
を用いたものにおいては、K2CO3/Ca(OH)2
/CaSO4・1/2H20/活性炭−3/3/2/2
の組成物が最良であった。As shown in the table, K2C03 is used as the alkali, and Ca is used as the hardening agent.
(OR)2 and calcium sulfate CaSO4・1/2H20
In those using K2CO3/Ca(OH)2
/CaSO4・1/2H20/Activated carbon-3/3/2/2
The composition was the best.
この組成物はその容積1ml当たりの除去容量48■N
O2を示した。This composition has a removal capacity of 48 ■N per ml of its volume.
It showed O2.
この値は同量の活性炭単独の場合の約20倍であり、大
気中の窒素酸化物の除去方法として極めて優れているこ
とが明らかである。This value is about 20 times that of the same amount of activated carbon alone, and it is clear that this is an extremely excellent method for removing nitrogen oxides from the atmosphere.
又同じ組成の粒子の充填層に、NO2一1.4ppm,
NO−0.2ppmを含む空気を通して温度30℃、相
対温度60%のもとで試験した結果、SV=25,00
0(h−1〕tでは、NO2除去率100%、NO除去
率10%、SV=50,000(h−1)でNO2除去
率95%、No除去率5%、SV=100,000(h
−1)でNO2除去率90%、NO除去率キ0であった
。Also, in a packed bed of particles with the same composition, NO2 - 1.4 ppm,
As a result of testing at a temperature of 30°C and a relative temperature of 60% through air containing NO-0.2ppm, SV = 25,00.
At 0 (h-1)t, NO2 removal rate is 100%, NO removal rate is 10%, SV = 50,000 (h-1), NO2 removal rate is 95%, No removal rate is 5%, SV = 100,000 ( h
-1), the NO2 removal rate was 90% and the NO removal rate was 0.
この様に本発明で用いる組成物は大気中の低濃度レベル
でのNOx、特にNO2の除去に関して、極めて優れた
性能を示す。Thus, the composition used in the present invention exhibits extremely good performance in removing NOx, especially NO2, at low concentration levels in the atmosphere.
この理由は次のように考えられる。The reason for this is thought to be as follows.
即ち、窒素酸化物のアルカリへの吸収反応は、反応その
ものとしては先に反応式で示した様に、N02との反応
とN203との反応が起こり得るが、NO2との反応は
反応速度が遅く、N203との反応は速度が速いことが
知られている,N203という窒素酸化物の状態は、中
間生成物としては存在するが大気中で安定な化合物とし
ては存在しない。In other words, in the absorption reaction of nitrogen oxides into alkali, as shown in the reaction formula above, reactions with N02 and N203 can occur, but the reaction rate with NO2 is slow. The nitrogen oxide state N203, which is known to have a high reaction rate with N203, exists as an intermediate product but does not exist as a stable compound in the atmosphere.
一方活性炭の窒素酸化物の吸着は、N203という状態
での吸着であると考れられる。On the other hand, the adsorption of nitrogen oxides by activated carbon is considered to be in the state of N203.
まだ活性炭自身、大気中でNO2を通しだ場合、NO2
をNOに還元する性質がある。If activated carbon itself passes NO2 in the atmosphere, NO2
It has the property of reducing NO to NO.
活性炭自身のN203の吸着容量は2■NO2/1m4
古性炭の程度で、すぐに寿命が飽和となる。The adsorption capacity of activated carbon itself for N203 is 2■NO2/1m4
If the coal is old, its lifespan will soon reach saturation.
そこで本発明では活性炭のこの様な性質を応用して、N
203を吸着させ、吸着したN203はアルカリで吸収
させることのサイクルを行わしめ、活性炭を1種の触媒
として、NOxとアルカリとの反応速度を高めることに
利用している訳である。Therefore, in the present invention, by applying these properties of activated carbon, N
A cycle of adsorbing NOx and absorbing the adsorbed N203 with an alkali is performed, and activated carbon is used as a type of catalyst to increase the reaction rate between NOx and the alkali.
NOxとアルカリとの吸収反応が、実際に進行している
反応であるので、NOxの吸収容量(除去容量)として
は、NOxとアルカリとの当量吸収反応のレベルの近く
まで反応が進行するために、50〜N O 2/1ml
試料程度の除去容量が得られているものと考えられる。Since the absorption reaction between NOx and alkali is the reaction that is actually progressing, the absorption capacity (removal capacity) of NOx is approximately equal to the level of the equivalent absorption reaction between NOx and alkali. , 50~N O 2/1ml
It is thought that a removal capacity comparable to that of the sample was obtained.
したがって、活性炭の作用は、吸着剤として作用すると
言うよりはむしろ、先に述べた様に触媒として作用して
いるものであると考えられる。Therefore, activated carbon is considered to act as a catalyst, rather than as an adsorbent, as described above.
図面は、K2COa/Ca(OH)2/CaSO4・1
/2H20/−3/3/2の組成物について、活性炭の
添加量を変えた場合のNO2除去率の変化を示す。The drawing shows K2COa/Ca(OH)2/CaSO4・1
2 shows the change in NO2 removal rate when the amount of activated carbon added is changed for the composition /2H20/-3/3/2.
試験条件は前記の表の場合と同様である。The test conditions are the same as in the table above.
活性炭の添加は5重量%程度から有効であり、又30重
量%を越えると強度が低下する不都合がある。Addition of activated carbon is effective from about 5% by weight, and if it exceeds 30% by weight, there is a disadvantage that the strength decreases.
従って5〜30重量%の範囲が好ましい。Therefore, a range of 5 to 30% by weight is preferred.
以上の様にK2CO3、Ca(OH)2などのアルカリ
と粉末活性炭の共存はNOx除去性能、とくにNO2除
去性能が高いだめの必要条件であるが、硬化材としては
本来反応には直接関係せず、ポーラスで安定な形に造粒
硬化するだめに用いるものであるだめ、比較的広範囲の
硬化材が使用可能である。As mentioned above, the coexistence of alkali such as K2CO3 and Ca(OH)2 and powdered activated carbon is a necessary condition for high NOx removal performance, especially NO2 removal performance, but as a hardening agent, it is not directly related to the reaction. Since it is used for granulating and curing into a porous and stable form, a relatively wide range of hardening materials can be used.
なかでも、水硬化性セメント材や水との混練物を乾燥な
どにより硬化できるものは、アルカリを均一に分散でき
るので有利である。Among these, hydraulic cement materials and those that can be hardened by drying or the like after being kneaded with water are advantageous because they can uniformly disperse alkali.
成型性をも考慮すると、実用的には、水硬性セメント材
、ベントナイト、ケイソウ士、焼石こう(硫酸カルシウ
ム)、水酸化カルシウムが有効であり、特に焼石こうを
用いた場合、最良のNO2除去性能が得られる。Taking moldability into consideration, hydraulic cement, bentonite, diatomite, calcined gypsum (calcium sulfate), and calcium hydroxide are practically effective, and especially when calcined gypsum is used, it has the best NO2 removal performance. is obtained.
以上のように本発明によれば、大気中の窒素酸化物を極
めて簡便な乾式法で除去することができる。As described above, according to the present invention, nitrogen oxides in the atmosphere can be removed by an extremely simple dry method.
図面はK2CO3−Ca(OH)2−CaSO4・1/
2H20の系に対する活性炭の添加量とNO2除去率と
の関係を示す。The drawing shows K2CO3-Ca(OH)2-CaSO4・1/
The relationship between the amount of activated carbon added to the 2H20 system and the NO2 removal rate is shown.
Claims (1)
ソウ土及び水酸化カルシウムよりなる群から選んだ硬化
材とアルカリと粉末活性炭との成型物よクなる粒子の集
合体に、窒素酸化物含有気体を接触させることによシ前
記気体中の窒素酸化物を吸収除去することを特徴とする
窒素酸化物の除去方法。 2 アルカリが、アルカリ金属もしくはアルカリ士類金
属の水酸化物まだは炭酸塩の群から選んだものである特
許請求の範囲第1項記載の窒素酸化物の除去方法。 3 アルカリが炭酸カリウムであり、硬化材が水酸化カ
ルシウムである特許請求の範囲第2項記載の窒素酸化物
の除去方法。 4 粒子の活性炭含量が5〜30重量%である特許請求
の範囲第1項記載の窒素酸化物の除去方法。[Scope of Claims] 1 Nitrogen is added to an aggregate of particles such as a molded product of a hardening material selected from the group consisting of hydraulic cement material, calcined gypsum, bentonite, diatomaceous earth, and calcium hydroxide, alkali, and powdered activated carbon. A method for removing nitrogen oxides, which comprises contacting with an oxide-containing gas to absorb and remove nitrogen oxides in the gas. 2. The method for removing nitrogen oxides according to claim 1, wherein the alkali is selected from the group of hydroxides and carbonates of alkali metals or alkali metals. 3. The method for removing nitrogen oxides according to claim 2, wherein the alkali is potassium carbonate and the curing agent is calcium hydroxide. 4. The method for removing nitrogen oxides according to claim 1, wherein the activated carbon content of the particles is 5 to 30% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51041576A JPS585699B2 (en) | 1976-04-12 | 1976-04-12 | How to remove nitrogen oxides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51041576A JPS585699B2 (en) | 1976-04-12 | 1976-04-12 | How to remove nitrogen oxides |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS52123987A JPS52123987A (en) | 1977-10-18 |
JPS585699B2 true JPS585699B2 (en) | 1983-02-01 |
Family
ID=12612259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51041576A Expired JPS585699B2 (en) | 1976-04-12 | 1976-04-12 | How to remove nitrogen oxides |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS585699B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53127900A (en) * | 1977-04-13 | 1978-11-08 | Matsushita Electric Ind Co Ltd | Cigarette filter |
CN104226251A (en) * | 2014-09-29 | 2014-12-24 | 镇江华域环保设备制造有限公司 | Oxidization modified active carbon adsorbent and preparation method thereof |
CN106861610A (en) * | 2017-04-12 | 2017-06-20 | 明光市国星凹土有限公司 | A kind of preparation method containing bentone adsorbent |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4984956A (en) * | 1972-12-11 | 1974-08-15 |
-
1976
- 1976-04-12 JP JP51041576A patent/JPS585699B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4984956A (en) * | 1972-12-11 | 1974-08-15 |
Also Published As
Publication number | Publication date |
---|---|
JPS52123987A (en) | 1977-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3009309B2 (en) | Methods for removing hydrogen sulfide from gas streams | |
CA2336855C (en) | Process and catalyst/sorber for treating sulfur compound containing effluent | |
JP4110427B2 (en) | Absorber regeneration | |
US5703003A (en) | Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas | |
EP0908230B1 (en) | Nitrogen dioxide absorbent and its use for purifying ventilation gas | |
CA2023004C (en) | Removal of trialkyl arsines from fluids | |
Du et al. | Mesostructured amorphous manganese oxides: facile synthesis and highly durable elimination of low-concentration NO at room temperature in air | |
KR100456185B1 (en) | Eliminator For Removing Harmful Gases In Flue Gases And Method For Removing The Sames Thereby | |
US5462693A (en) | Air purifying agent and a process for producing same | |
WO2002022239A1 (en) | Removal of sulfur oxides from exhaust gases of combustion processes | |
JPS585699B2 (en) | How to remove nitrogen oxides | |
US3443886A (en) | Exhaust gas treatment | |
JP2778031B2 (en) | Nitrogen oxide / sulfur oxide absorbent | |
JP3027219B2 (en) | How to remove nitrogen oxides | |
JP3705933B2 (en) | Nitrogen oxide and / or sulfur oxide adsorbent and method for removing nitrogen oxide and / or sulfur oxide using the adsorbent | |
JPH05123571A (en) | Adsorbent of nitrogen oxide and removal of nitrogen oxide using the same | |
Toshima et al. | The adsorption and desorption of nitrogen oxide by the aqueous dispersion of the chelate resin-immobilized iron (II) complex. | |
KR102434658B1 (en) | Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same | |
JP3131480B2 (en) | Air purifier and method for producing the same | |
JP2003164757A (en) | Adsorbent for nitrogens oxide and/or sulfur oxides | |
WO2010073350A1 (en) | Nox absorbent, method for production of the same, and method for removal of nox | |
JPH09248448A (en) | Adsorbent of nitrogen oxide and removal apparatus of nitrogen oxide | |
JPH01180222A (en) | Production of molded body for cleaning up exhaust gas | |
JP3607694B2 (en) | Nitrogen oxide absorbent, its regeneration method and nitrogen oxide recovery method | |
JP2896912B2 (en) | Catalyst regeneration method |