JPS5855748A - Composite type covered electrode - Google Patents
Composite type covered electrodeInfo
- Publication number
- JPS5855748A JPS5855748A JP56152879A JP15287981A JPS5855748A JP S5855748 A JPS5855748 A JP S5855748A JP 56152879 A JP56152879 A JP 56152879A JP 15287981 A JP15287981 A JP 15287981A JP S5855748 A JPS5855748 A JP S5855748A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electrode
- resin
- ion
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 24
- 239000011347 resin Substances 0.000 claims abstract description 55
- 229920005989 resin Polymers 0.000 claims abstract description 55
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000007788 liquid Substances 0.000 claims abstract description 23
- -1 silver halide Chemical class 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 14
- 238000005342 ion exchange Methods 0.000 claims abstract description 13
- 230000035699 permeability Effects 0.000 claims abstract description 11
- 239000010419 fine particle Substances 0.000 claims abstract description 7
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 210000001124 body fluid Anatomy 0.000 claims description 12
- 239000010839 body fluid Substances 0.000 claims description 12
- 229910001507 metal halide Inorganic materials 0.000 claims description 7
- 239000003822 epoxy resin Substances 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims description 6
- 229920000647 polyepoxide Polymers 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 abstract description 34
- 239000004925 Acrylic resin Substances 0.000 abstract description 6
- 229920000178 Acrylic resin Polymers 0.000 abstract description 6
- 150000001450 anions Chemical class 0.000 abstract description 6
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052709 silver Inorganic materials 0.000 abstract description 6
- 239000004332 silver Substances 0.000 abstract description 6
- 239000011810 insulating material Substances 0.000 abstract description 5
- 229910021607 Silver chloride Inorganic materials 0.000 abstract description 4
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 47
- 239000010408 film Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000011630 iodine Substances 0.000 description 5
- 229910052740 iodine Inorganic materials 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- ZUZLIXGTXQBUDC-UHFFFAOYSA-N methyltrioctylammonium Chemical class CCCCCCCC[N+](C)(CCCCCCCC)CCCCCCCC ZUZLIXGTXQBUDC-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- XKBGEWXEAPTVCK-UHFFFAOYSA-M methyltrioctylammonium chloride Chemical compound [Cl-].CCCCCCCC[N+](C)(CCCCCCCC)CCCCCCCC XKBGEWXEAPTVCK-UHFFFAOYSA-M 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 239000005968 1-Decanol Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- WNBGYVXHFTYOBY-UHFFFAOYSA-N benzyl-dimethyl-tetradecylazanium Chemical class CCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 WNBGYVXHFTYOBY-UHFFFAOYSA-N 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- VICYBMUVWHJEFT-UHFFFAOYSA-N dodecyltrimethylammonium ion Chemical class CCCCCCCCCCCC[N+](C)(C)C VICYBMUVWHJEFT-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002345 surface coating layer Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は複合型被覆電極、さらに特定すれば被覆[6イ
オン選択性電極および被覆11111食電極を一体化し
た小型の複合電極に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite coated electrode, and more particularly to a compact composite electrode that integrates a coated ion selective electrode and a coated 11111 eclipse electrode.
たとえば生物化学的研究において、生体液のイオン濃度
を測定するには被測定液の量が少ないことが望まれる。For example, in biochemical research, in order to measure the ion concentration of a biological fluid, it is desirable that the amount of the fluid to be measured be small.
従来の液膜型電極は薄膜ガラス容器のなかに内部溶液を
保持する必要があるので、全体の嵩が大きく、かつ電極
を浸漬する被測定液の量も多い。Conventional liquid film type electrodes require an internal solution to be held in a thin glass container, resulting in a large overall volume and a large amount of liquid to be measured in which the electrode is immersed.
また薄膜ガラス容器は脆弱であって、取扱いが面倒であ
る。Moreover, thin film glass containers are fragile and difficult to handle.
そこで上記欠点を解消するため、本発明者らは、先に検
出すべき陰イオンを配位子としたイオン交換体を分散さ
せたエポキシ樹脂の動作層からなる陰イオン選択電極と
沈殿性ハロゲン化金属塩の層およびハロダン化塩を分散
させた増化ビニル樹脂の層を動作層とした照合電極とを
組合わせた複合型被覆電極を発明したのであるが、使用
する樹脂について必要な特性を研究した結果、本発明に
到達したものである。Therefore, in order to overcome the above drawbacks, the present inventors developed an anion-selective electrode consisting of a working layer of epoxy resin in which an ion exchanger with the anion to be detected as a ligand is dispersed, and a precipitated halogenated electrode. He invented a composite coated electrode that combines a reference electrode with a layer of metal salt and a layer of reinforced vinyl resin in which halide salts are dispersed as the active layer, but researched the necessary characteristics of the resin used. As a result, we have arrived at the present invention.
本発明の要旨は、被覆型イオン選択性電極Aおよび被覆
型照合電極Bを電気絶縁lICをはさんで一体化し、被
覆型イオン選択性電極Aは、イオン交換体液を分散させ
た耐水性の強いまたは水透過性の小さい樹脂の層1を被
測定液に接するように配置し、他方被覆製照合電極Bは
、沈殿性ハロゲン化金属塩の層2の上に形成し九ノ、
o fy化基塩微粒子分散させた第1の耐水性の弱いま
たは水透過性の大きい樹脂の層3を被覆する第2の樹脂
保護膜4を被測定液に接するように配置し、かつこれら
の電極AおよびBは、前記層1および4以外の被測定液
に接する面を電気絶縁性樹脂の層5で被覆し、これらの
電極AおよびBの導電性金属基材6′または基材6に施
した導電性下塗シ層7からそれぞれ導線8を引出したこ
とを特徴とする(ただし、層lがニーキシ樹脂、層3が
塩化ビニル樹脂、かつ膜4がエポキシ樹脂でおるものを
除く。)複合蓋被覆電極によって達成することができる
。The gist of the present invention is that a coated ion-selective electrode A and a coated reference electrode B are integrated with an electrically insulating IC sandwiched therebetween, and the coated ion-selective electrode A is a highly water-resistant electrode in which ion exchange body fluid is dispersed. Alternatively, the layer 1 of a resin with low water permeability is placed in contact with the liquid to be measured, and the coated reference electrode B is formed on the layer 2 of the precipitable metal halide salt.
o A second resin protective film 4 covering the first resin layer 3 with low water resistance or high water permeability in which fy base salt fine particles are dispersed is placed in contact with the liquid to be measured, and these Electrodes A and B are coated with a layer 5 of electrically insulating resin on the surfaces other than the layers 1 and 4 that come into contact with the liquid to be measured. A composite film characterized in that conductive wires 8 are drawn out from each conductive undercoat layer 7 (excluding those in which layer 1 is made of Nyxy resin, layer 3 is made of vinyl chloride resin, and film 4 is made of epoxy resin). This can be achieved by a lid-covered electrode.
本発明の複合蓋被覆電極は、種々な形状、たとえば被測
定液に浸漬する場合には竪型平板状(第1図)とし、被
測定液を電極の上面に載せる場合には横蓋の平板状(第
2図および第3図)またはコ、f状(第4図)とするこ
とができる、なお、第2図の横蓋平板状被覆電極は基材
6に導電性下塗〕7を施した場合であシ、第3図の横蓋
平板状被覆電極は導電性金属基材6′に導電性下塗#)
7を施さない場合である。いずれの場合も、従来の液膜
型電極と比べて著しく小型であシ、平板状の電極は主面
を4+wg+ 程度、コツプ状電極は内底面を8m程
度とすることができる。このため測定に必要な液量も少
量ですみ、特に横型の平板状またはコツプ状の場合は極
めて少量たとえば0.1rnlで十分である。The composite lid-coated electrode of the present invention has various shapes, for example, a vertical flat plate shape (Fig. 1) when immersed in the liquid to be measured, and a flat plate with a horizontal lid when the liquid to be measured is placed on the top surface of the electrode. (FIGS. 2 and 3) or C, F-shape (FIG. 4).The side-covered plate-shaped covered electrode in FIG. In this case, the horizontal cover plate-shaped covered electrode shown in Fig. 3 is coated with a conductive undercoat on the conductive metal base 6'.
This is a case where 7 is not applied. In either case, it is significantly smaller than the conventional liquid film type electrode, and the main surface of the flat electrode can be approximately 4+wg+, and the inner bottom surface of the cup-shaped electrode can be approximately 8m. Therefore, only a small amount of liquid is required for measurement, and particularly in the case of a horizontal flat plate or a pot, an extremely small amount, for example 0.1 rnl, is sufficient.
本発明の複合型被覆電極は、陰イオン活量を測定する場
合には、塩素、ヨウ素、硝酸、亜硝酸または過塩素酸の
各イオンを測定することができ、そのイオン選択性電極
AKはイオン交換体として、それぞれ塩素、ヨウ素、硝
酸、亜硝酸または過塩素酸のイオンを会合したトリオク
チルメチル7ンモニウム塩、ベンジルジメチルテトラデ
シルアンモニウム塩、セシルトリメチルアンモニウム塩
。When measuring anion activity, the composite coated electrode of the present invention can measure each ion of chlorine, iodine, nitric acid, nitrous acid, or perchloric acid, and the ion-selective electrode AK is ion-selective. As exchangers, trioctylmethyl heptammonium salt, benzyldimethyltetradecylammonium salt, and ceyltrimethylammonium salt are associated with ions of chlorine, iodine, nitric acid, nitrous acid, or perchloric acid, respectively.
ドデシルトリメチルアンモニウム塩などのアルキルアン
モニウム塩を用いる。これらのアンモニウム塩のうちト
リオクチルメチルアンモニウム塩が被測定液に溶けに<
<、電極の寿命の点などから最適量ある。Alkylammonium salts such as dodecyltrimethylammonium salts are used. Among these ammonium salts, trioctylmethylammonium salt is soluble in the liquid to be measured.
<There is an optimum amount from the viewpoint of electrode life.
イオン交換体は、有機溶媒例えばl−デカノール、ニト
ロベンゼン、クロロホルムtりtil 、 2−ジクロ
ロエタンに溶解または分散してイオン交換体液とする。The ion exchanger is dissolved or dispersed in an organic solvent such as l-decanol, nitrobenzene, chloroform tritil, or 2-dichloroethane to form an ion exchange body fluid.
これら溶媒に対するイオン交換体の濃度は被測定液のイ
オン活量の程度に応じ設計的に変化させうるが一般には
01〜80重量%である。The concentration of the ion exchanger in these solvents can be changed depending on the degree of ionic activity of the liquid to be measured, but is generally 0.1 to 80% by weight.
このイオン交換体液を樹脂中に分散させて基材に被覆し
電極とするのであるが、イオン交換体液を樹脂内に保持
できるようにこの樹脂としては耐水性の強いまたは水透
過性の小さい樹脂を使用すればよいことがわかり九、耐
水性の強いまたは水透過性の小さい樹脂とは一般に強靭
な樹脂であって微視的にみて空隙が少なく水中における
膨潤など性状の変化をみせないものでオシ、例えばアク
リル樹脂、ウレタン樹脂を使用することができる。This ion exchange body fluid is dispersed in a resin and coated on a base material to form an electrode.In order to retain the ion exchange body fluid within the resin, a resin with strong water resistance or low water permeability is used as the resin. 9.Resins with strong water resistance or low water permeability are generally tough resins with few microscopic voids and do not show changes in properties such as swelling in water. For example, acrylic resin or urethane resin can be used.
これらの樹脂中へのイオン交換体液の分散は、二液型樹
脂の場合、二液をイオン交換体液と混合して固化するこ
とによって可能であり、アクリル樹脂またはウレタン樹
脂など一液型の場合には、それらのフェスをイオン交換
体液と混合し、固化すればよい。すなわち樹脂が回流動
体の形でイオン交換体液と混合し、導電性金属基材また
は基材に施した導電性下塗りの上に塗布してから樹脂を
硬化させてイオン交換体液を樹脂中に分散し固化させて
電極とするのである。Dispersion of ion-exchange body fluids into these resins is possible in the case of two-component resins by mixing the two-component with the ion-exchange body fluid and solidifying it, and in the case of one-component resins such as acrylic resins or urethane resins. can be mixed with ion-exchanged body fluids and solidified. That is, the resin is mixed with the ion exchange fluid in the form of a circulating fluid, applied onto a conductive metal substrate or a conductive undercoat applied to the substrate, and then the resin is cured to disperse the ion exchange fluid into the resin. It is then solidified to form an electrode.
本発明の複合型被覆電極の照合電極Bは、導電性金属基
材または基材6に施した導電性下塗り7の上に沈殿性ハ
ロダン化金属塩、例えば塩化銀、臭化銀またはこれらの
混合物のN12を形成し、この上にハロゲン化塩例えば
塩化カリウム、臭化カリウムまたはこれらの混合物の微
粒子を樹脂に分散させた層3を形成し、さらにこの上を
樹脂保膿膜4で被覆する。この保膜膜となる樹脂はノ・
ログン化塩の微粒子を分散させる樹脂よシも耐水性の強
いまたは水透過性の小さい樹脂例えば工?キシ樹脂、ア
クリル樹脂またはウレタン樹脂が適当である。ハロゲン
化塩の微粒子を分散させる樹脂としては微視的にみて水
透過性が比較的大きい本のが適しておシ、例えば塩化ビ
ニル樹脂を使用できる。この照合電極における各樹脂層
もイオン選択性電極の場合と同様の方法で形成させる。Reference electrode B of the composite coated electrode of the present invention comprises a precipitable metal halide salt, such as silver chloride, silver bromide or a mixture thereof, on a conductive metal substrate or a conductive undercoat 7 applied to a substrate 6. A layer 3 in which fine particles of a halide salt such as potassium chloride, potassium bromide, or a mixture thereof are dispersed in a resin is formed on the layer 3, and this layer is further covered with a resin impulsion film 4. The resin that becomes this protective film is
Is it possible to use a resin that disperses the fine particles of rognized salt, such as a resin with strong water resistance or low water permeability? Oxygen resins, acrylic resins or urethane resins are suitable. As the resin for dispersing the fine particles of the halide salt, a resin having relatively high water permeability when viewed microscopically is suitable; for example, vinyl chloride resin can be used. Each resin layer in this reference electrode is also formed by the same method as in the case of the ion-selective electrode.
すなわち樹脂を回流動体の形でハロダン化塩を分散させ
てから沈殿性ハロダン化金属塩の層の上に塗布して硬化
させて層3を形成し、その上によシ耐水性が強いまたは
水透過性の/J1さい樹脂を回流動体の形で塗布し、硬
化させればよい。That is, the resin is dispersed in the form of a circulating fluid, and then applied onto the layer of the precipitable metal halodanide salt and cured to form layer 3, and on top of this, a layer 3 is formed that has strong water resistance or water resistance. A water-permeable /J1 resin may be applied in the form of a circulating fluid and cured.
なおイオン選択性電極Aにおいてイオン交換体液と樹脂
との重量比はl:3〜2:lが適当であシ、これよシ樹
脂の割合が大き−と膜抵抗が大きすぎてイオン電極とし
ての作用に難があp、これよシ小さいとイオン交換体液
の膜外への洩れが多くなシ適尚でない、また照合電極に
おいてハロゲン化塩の微粒子とこれを分散させる樹脂の
重量比は2:1〜5:lが適当であシ、これよシ樹脂の
割合が大きいと膜抵抗が大きくなシ、しか9も膜中にお
けるハロゲン化塩量が少なくなるため安定した電位を示
さない。これよ)小さいと膜を硬化形成させる場合大き
なハロゲン化塩め結晶が析出し、均一に分散された膜を
形成しにぐい。In addition, in the ion-selective electrode A, the appropriate weight ratio of ion exchange body fluid to resin is 1:3 to 2:1. If the size is too small, the ion-exchanged body fluid will often leak out of the membrane, which is not appropriate.Also, in the reference electrode, the weight ratio of the fine particles of halide salt to the resin for dispersing them is 2: A ratio of 1 to 5:l is suitable; if the proportion of resin is too large, the membrane resistance becomes large, and also in case of 9, the amount of halide salt in the membrane decreases, so that a stable potential is not exhibited. If it is too small, large halide salt crystals will precipitate when hardening the film, making it difficult to form a uniformly dispersed film.
本発明の複合型被覆電極の基材には導電性金属またはこ
れに導電性下塗)を施したものあるいは樹脂、紙などの
非導電性基材に導電性下塗シを施して使用する。また耐
水性のない素材では、被験水溶液に直接ふれる部分をポ
リマーコーティングなどによって耐水加工すればよい。The base material of the composite coated electrode of the present invention is a conductive metal or a conductive base coated thereon, or a non-conductive base material such as resin or paper coated with a conductive base coat. In addition, if the material is not water-resistant, the parts that will come into direct contact with the test aqueous solution may be treated with a water-resistant coating such as a polymer coating.
導電性金属の場合は導電性下1mシを要しないが、それ
でも導電性下塗シを施した方が次の層との接着性を高め
るために望ましい、とくに照合電極の側の基材は沈殿性
ハロダン化金属塩の層2を形成する際に酸化被膜ができ
易くこの場合は接着性が劣る。酸化されにくい銀、白金
などの貴金属を用いてもこの問題は解決できるが、高価
につく。また導電性金属の場合、竪型平板状(第1図)
では電気絶縁材Cと共用できない難もでてくる。しかし
てエポキシ樹脂などの合成樹脂を基材とし、導電性下塗
シを施して使用することが便宜である。In the case of conductive metals, a conductive undercoat of 1 m is not required, but it is still desirable to apply a conductive undercoat to improve adhesion with the next layer, especially if the base material on the side of the reference electrode is a precipitating layer. When forming the layer 2 of the metal halide salt, an oxide film is likely to be formed, and in this case, the adhesiveness is poor. This problem can be solved by using noble metals such as silver and platinum, which do not easily oxidize, but they are expensive. In the case of conductive metals, the shape is vertical and flat (Fig. 1).
Then, there is a problem that it cannot be used in common with electrical insulating material C. Therefore, it is convenient to use a synthetic resin such as an epoxy resin as a base material and apply a conductive undercoat.
なお、導電性下塗シとして銀ペーストまたはカーーン(
−ストが適当であ如、この上に電極AおよびBの動作層
をそれぞれ形成し、この場合、下塗シ層から導線を引出
す。もちろん、基材に導電性金属を使用する場合は、直
接この金属から導線を引出せばよい。In addition, silver paste or Karn (
- If the coating is suitable, the active layer of electrodes A and B is formed thereon, in which case the conductor wires are drawn out from the base coat layer. Of course, if a conductive metal is used as the base material, the conductive wire may be directly drawn out from this metal.
導電性下塗シ層7と沈殿性ハロダン化金属の層2とは混
合され一体であってもよい。との場合の適当な混合比率
は例えば銀ペーストと塩化銀の場合において重量比で約
15:85である。The conductive undercoat layer 7 and the precipitable metal halide layer 2 may be mixed and integrated. For example, a suitable mixing ratio of silver paste and silver chloride is about 15:85 by weight.
また、竪型電極の場合には、被験水溶液に浸漬するので
電極AおよびBのそれぞれの層lおよび4以外の被験水
溶液に!Iする面は電気絶縁性樹脂九とえはエポキシ樹
脂で被覆する。In addition, in the case of a vertical electrode, since it is immersed in the test aqueous solution, the test aqueous solution other than layers 1 and 4 of electrodes A and B, respectively! The exposed surface is coated with electrically insulating resin or epoxy resin.
各層または膜の厚さについては、イオン選択性電極ム儒
のイオン交換体液を分散させ九樹脂層は0、1−0.5
■が適当である。これより厚すと膜抵抗が大きくなシ、
薄すぎると膜の強度が不足し、耐久性に難がある。照合
電極側Bではハq/r’ン化金属層2およびハロゲン化
塩を分散させた第1の樹脂層3の厚みは0.1〜1.0
−でよいが、0.2〜0.5−の範囲で十分である。第
2の樹脂層10!!I4け、第1の樹脂層3を層膜する
ためのものであシ、厚すぎると膜抵抗が大きすぎるので
0.05−・0,3簡の範囲が好ましい。For the thickness of each layer or membrane, the thickness of the ion-selective electrode is 0, 1-0.5.
■ is appropriate. If it is thicker than this, the membrane resistance will increase.
If it is too thin, the film will lack strength and will have poor durability. On the reference electrode side B, the thickness of the haq/r' metal layer 2 and the first resin layer 3 in which halide salt is dispersed is 0.1 to 1.0.
-, but a range of 0.2 to 0.5 is sufficient. Second resin layer 10! ! I4 is for layering the first resin layer 3, and if it is too thick, the film resistance will be too large, so a range of 0.05 to 0.3 is preferable.
実施例
複合型被覆電極は、竪型平板状および横型コツプ状の2
種とし、それぞれイオン選択性電極をヨウ素イオンと硝
酸イオンとの2種のイオン選択性として作製した。竪型
平板状および横型コツプ状の形状は第1図および第4図
に示す構造を有する。The composite coated electrode of the embodiment has two types: a vertical flat plate shape and a horizontal cup shape.
As a seed, two types of ion-selective electrodes were prepared, one for iodine ions and one for nitrate ions. The vertical plate-like and horizontal cup-like shapes have structures shown in FIGS. 1 and 4.
イオン電極ムは基材6としてのエポキシ樹脂の上に厚み
約0.2■の導電性下塗υ層7として銀エポキシペース
ト層を形成した。ヨウ素イオンおよび硝酸イオンを選択
的に測定する場合には、それぞれのイオンを会合したト
リオクチルメチルアンモニウム塩0,3重量−を含む1
−デカノール溶液アクリル樹脂フェスを混合し、常温で
硬化させて厚み約0.3mmの動作層lを形成した。イ
オン交換体液と樹脂との割合は重量で約1:2である。In the ion electrode, a silver epoxy paste layer was formed as a conductive undercoat layer 7 having a thickness of about 0.2 square centimeters on an epoxy resin as a base material 6. When selectively measuring iodine ions and nitrate ions, 1 containing 0.3% by weight of trioctylmethylammonium salt associated with each ion is used.
- A decanol solution acrylic resin face was mixed and cured at room temperature to form a working layer 1 with a thickness of about 0.3 mm. The ratio of ion exchange body fluid to resin is about 1:2 by weight.
なおヨウ素イオンを会合したトリオクチルメチルアンモ
ニウム塩ハ、トリオクチルメチルアンモニウムクロライ
ドに1−デカノールを40重量優になるように加え、1
モル/す、トルのヨウ化カリウム水溶液をほぼ同容量加
え、攪拌、遠心分離して、水層を除去し、これを3回繰
返して得た。Incidentally, trioctylmethylammonium salt associated with iodine ions, 1-decanol was added to trioctylmethylammonium chloride in an amount of over 40% by weight,
Approximately the same volume of an aqueous potassium iodide solution of mol/mole/torr was added, stirred and centrifuged to remove the aqueous layer, and this process was repeated three times to obtain the mixture.
硝酸イオンを会合させる場合は、イオン源として硝酸カ
リウムを用いて同様の方法で可能であるが、イオン交換
反応に7〜8回の繰返しを要した。トリオクチルメチル
アンモニウムクロライドの塩素イオンの所望イオンへの
交換反応の終了は、除去する水層中の塩素イオンの有無
を硝酸銀の滴下によって検査するととKよって可能であ
る。When nitrate ions are to be associated, a similar method can be used using potassium nitrate as an ion source, but the ion exchange reaction requires 7 to 8 repetitions. The exchange reaction of trioctylmethylammonium chloride for chlorine ions into desired ions can be completed by checking the presence or absence of chloride ions in the aqueous layer to be removed by dropping silver nitrate.
照合電l1BFi黄幇sとしての工Iキシ樹脂の上に厚
み約0.2■の導電性下塗多層7としての銀ペースト層
を形成し、沈殿性ハロダン化金属塩の層2を形成すべき
以外の面をマスキングして0.5モル塩酸水溶液および
0.5モル硝酸銀水溶液に交互に数回浸漬し、塩化銀を
層7上に沈着させ、これを厚み0.3鴫の層3とし、ハ
ロダン化塩としての塩化カリウム黴粉末を重量比3:1
で分散させた塩化ビニル層3を厚み約0.4■に形成し
、さらにこの上にアクリル樹脂フェスで厚み約O1l■
の軌脂層膜膜4を形成した。A silver paste layer with a thickness of about 0.2 cm as a conductive undercoat multilayer 7 should be formed on the resin as a reference voltage 11 BFi yellow sulfur, and a layer 2 of a precipitable metal halide salt should be formed. Masking the surface of the layer, the silver chloride is deposited on the layer 7 by dipping it several times alternately in a 0.5 molar hydrochloric acid aqueous solution and a 0.5 molar silver nitrate aqueous solution. Potassium chloride mold powder as chloride salt in a weight ratio of 3:1
A vinyl chloride layer 3 dispersed in
A rubber layer film 4 was formed.
なお横型コツプ状複合電極の場合は、電極AおよびBを
別個に作製した後、エポキシオリゴマーおよび硬化剤に
よって接着して電気絶縁材Cとし、コツプ状に複合させ
た。In the case of a horizontal chip-shaped composite electrode, electrodes A and B were prepared separately and then bonded together using an epoxy oligomer and a curing agent to form an electrical insulating material C, which was then combined into a chip-like composite electrode.
これら形状およびイオン選択性の異なる4’ldJの複
合電極について、被測定液のイオン活量範Uを4 X
10−’〜5 X 10−’Mとして、電極間の電位差
を一計で測定した結果を第5図に示す。曲線ti、12
ti竪型平板状であって、それぞれヨウ素および硝酸の
イオン選択性電極の測定結果を示し、曲921.22は
横型コツプ状であって、七れぞれヨウ素および硝酸のイ
オン選択性電極の測定結果を示す、応答安定所要時間は
95%に達するまでが数十秒であった。またイオン選択
性については、選択定数KP OL、= &X/C&
j ) 1/n (式中1、J
azは測定対象イオンlの活量の対数log ai と
電位差との関係において、妨害イオンjの影養を愛社て
電位差が一定となった水平直線の延長と、影譬を受けて
いない勾配直線の延長との交点で示される測定対−象イ
オン活量の対数値である切片活量、ajは妨害イオンの
活量、鳳は妨害イオンの荷電数である。)の値は、Cl
O4−およびI−に対して2〜3であった他は、はとん
どの陰イオンに対して1以下であった。For these 4'ldJ composite electrodes with different shapes and ion selectivities, the ion activity range U of the liquid to be measured is 4
FIG. 5 shows the results of measuring the potential difference between the electrodes as a total of 10-' to 5 x 10-'M. Curve ti, 12
tiIt is a vertical plate shape and shows the measurement results of an ion-selective electrode for iodine and nitric acid, respectively, and track 921.22 is a horizontal cup-like shape and shows the measurement results for an ion-selective electrode for iodine and nitric acid, respectively. The results show that the time required for response stabilization to reach 95% was several tens of seconds. Regarding ion selectivity, the selection constant KP OL, = &X/C&
j ) 1/n (in the formula 1, J az is the relationship between the logarithm log ai of the activity of the ion to be measured l and the potential difference, and the horizontal straight line where the potential difference is constant by taking the influence of the interfering ion j) The intercept activity is the logarithmic value of the ion activity to be measured, which is indicated by the intersection of the extension and the extension of the unaffected slope straight line, aj is the activity of the interfering ion, and 0 is the charge number of the interfering ion. ) is Cl
was less than 1 for most anions, except for 2-3 for O4- and I-.
竪型平板状電極および横型コツ/状電極の構造上の相違
にもとづく特性の相違点として杜、第5図に示すように
前者の方が応答下限が低い、これは電極を被測定液に浸
漬して液を攪拌したためと考えられる。なお一定イオン
濃度における電位差の測定値の蜜動は前者が±2mV程
度、後者は10”Mにおいても±1 mV @ fでや
や勝っていた。As shown in Figure 5, the difference in characteristics between the vertical plate-like electrode and the horizontal plate-like electrode due to their structural differences is that the lower response limit of the former is lower; this is because the electrode is immersed in the liquid to be measured. This is thought to be because the liquid was stirred. Note that the fluctuation of the measured potential difference at a constant ion concentration was about ±2 mV for the former, and slightly better for the latter at ±1 mV @ f even at 10''M.
なお必要とする被測定液の量は、浸漬する竪型の場合に
は約0.54を必要とするが、横型電極のコ、fに入れ
る場合には0.1m7で十分であシ、特に少量ですむ利
点を有する。The amount of liquid to be measured required is approximately 0.54 m in the case of a vertical type for immersion, but 0.1 m7 is sufficient when it is placed in the horizontal type electrodes. It has the advantage of requiring only a small amount.
第1図は本発明の複合型被覆電極の1つの笑施態様であ
る竪型平板状電極の断面図であり、第2図は本発明の複
合型被覆電極の他の実施態様である横型の平板状電極の
断面図であシ、第3図は本発明の複合型被覆電極の別の
実施態様である横型の平板状電極であって電極の基材に
導電性金属を用いて導電性下塗シを施さ々い場合の断面
図であpl
第4図は本発明の複合型被覆電極の別の実施態様である
横型のコ、f状電極の断面図であシ、tIc5図は本発
明の複合型被覆電極の陰イオン活量の対数対電位差の関
係を示すグラフである。
A・・・イオン選択性電極、B・・・照合電極、C・・
・電気絶縁材、l・・・電極Aのイオン交換体液を分散
させた樹脂層、2・・・電極Bの沈殿性ハロゲン化金属
塩層、3・・・電極Bのハロダン化塩を分散させた第1
の樹脂層、4・・・電極Bの第2の樹脂保護膜、5・・
・側面被覆層、6・・・基材、6′・・・導電性金属基
材、7・・・導電性下塗多層、8・・・導線、11・・
・竪型電極(I″″)、12・・・竪型電極(NO,−
)、21・・・力、プ状電極(I’″)、22・・・カ
ップ状電極(NO3−)。
1F!2司
!F3y1FIG. 1 is a sectional view of a vertical flat plate electrode which is one embodiment of the composite coated electrode of the present invention, and FIG. 2 is a sectional view of a horizontal plate electrode which is another embodiment of the composite coated electrode of the present invention. FIG. 3 is a sectional view of a flat plate electrode, and FIG. 3 shows a horizontal flat plate electrode which is another embodiment of the composite coated electrode of the present invention, in which a conductive metal is used as the base material of the electrode and a conductive undercoat is used. Fig.4 is a cross-sectional view of a horizontal U-shaped electrode, which is another embodiment of the composite coated electrode of the present invention, and Fig.5 is a cross-sectional view of the case where no 2 is a graph showing the relationship between the logarithm of anion activity and the potential difference of a composite coated electrode. A... Ion selective electrode, B... Reference electrode, C...
・Electrical insulating material, 1...Resin layer in which ion-exchanged body fluid of electrode A is dispersed, 2...Precipitable metal halide salt layer of electrode B, 3... Halodanide salt of electrode B is dispersed. The first
Resin layer, 4... Second resin protective film of electrode B, 5...
・Side surface coating layer, 6... Base material, 6'... Conductive metal base material, 7... Multi-layer conductive undercoat, 8... Conductive wire, 11...
・Vertical electrode (I″″), 12... Vertical electrode (NO, -
), 21... Force, cup-shaped electrode (I'''), 22... Cup-shaped electrode (NO3-). 1F!2 Tsukasa!F3y1
Claims (1)
を電気絶縁材Cをはさんで一体化し、被覆製イオン選択
性電極Aは、イオン交換体液を分散させた耐水性の強い
または水透過性の小さい樹脂の層lを被測定液に接する
ように配置し、他方被覆m*合電極Bは、沈殿性ハロダ
ン化金属塩の層2の上に形成したハロダン化塩微粒子を
分散させた第4の樹脂の耐水性の弱いまたは水透過性の
大きい層3を被覆する第2の樹脂保護膜4を被測定液に
接するように配置し、かつこれらの電極AおよびBは、
前記層lおよび4以外の被測定液に接する面を電気絶縁
性樹脂の層5で被覆し、これらの電極AおよびBの導電
性金属基材6′または基材6に施した導電性下塗シ層7
からそれぞれ導線8を引出したことを特徴とするいだし
、層lがニーキシ樹脂、!II3が塩化ビニル樹脂、か
つ膜4が、エポキシ樹脂であるものを除く、)複合型被
覆電極。 2、イオン選択性電極Aおよび照合電極Bけそれぞれ被
測定液に接する層lおよび4の主面を電気絶縁膜Cの主
面に平行するように配置した、特許請求の範囲第1項記
載の複合型被覆電極。 3、イオン選択性電極ムおよび照合電極Bは、それぞれ
被測定液Kmする層lおよび4の上面を電気絶SaCの
上面とともに同一平面上にあるように配置した、特許請
求の範囲第1項記載の複合w1被覆電極。 4、全体の形が平板状である、特許請求の範囲j113
項記載の複合型被覆電極。 5、全体の形がコ、ゾ状である、特許請求の範囲第3項
記載の複合型被覆電極。[Claims] 1. Covered ion selective electrode A and covered reference electrode B
The coated ion-selective electrode A is made of a coated ion-selective electrode A, in which a layer l of resin with strong water resistance or low water permeability in which an ion-exchange body fluid is dispersed is brought into contact with the liquid to be measured. The other coating m*combining electrode B is a fourth resin layer with low water resistance or high water permeability formed on the layer 2 of the precipitable metal halide salt and in which fine particles of the halide salt are dispersed. A second resin protective film 4 covering electrodes A and B is placed in contact with the liquid to be measured, and these electrodes A and B are
The surface in contact with the liquid to be measured other than the layers 1 and 4 is coated with a layer 5 of electrically insulating resin, and the conductive metal base material 6' of these electrodes A and B or a conductive undercoat applied to the base material 6 is coated with a layer 5 of an electrically insulating resin. layer 7
It is characterized by having conductive wires 8 drawn out from each, and the layer 1 is made of Nyxy resin,! ) Composite coated electrodes, except those in which II3 is vinyl chloride resin and membrane 4 is epoxy resin. 2. The ion-selective electrode A and the reference electrode B are arranged so that the main surfaces of the layers 1 and 4 in contact with the liquid to be measured are parallel to the main surface of the electrically insulating film C. Composite coated electrode. 3. The ion-selective electrode and the reference electrode B are arranged so that the upper surfaces of the layers 1 and 4, which respectively carry the liquid to be measured, are on the same plane as the upper surface of the electroinsulating SaC, as set forth in claim 1. composite w1 coated electrode. 4. Claim j113 in which the overall shape is a flat plate.
Composite coated electrode as described in . 5. The composite coated electrode according to claim 3, wherein the overall shape is U-shaped.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56152879A JPS5855748A (en) | 1981-09-29 | 1981-09-29 | Composite type covered electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56152879A JPS5855748A (en) | 1981-09-29 | 1981-09-29 | Composite type covered electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5855748A true JPS5855748A (en) | 1983-04-02 |
Family
ID=15550114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56152879A Pending JPS5855748A (en) | 1981-09-29 | 1981-09-29 | Composite type covered electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5855748A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60241767A (en) * | 1984-05-15 | 1985-11-30 | Shinko Electric Co Ltd | Linear pulse motor |
JPS60241768A (en) * | 1984-05-15 | 1985-11-30 | Shinko Electric Co Ltd | Linear pulse motor |
JPS6426142A (en) * | 1987-07-22 | 1989-01-27 | Kyoto Daiichi Kagaku Kk | Ion electrode element |
-
1981
- 1981-09-29 JP JP56152879A patent/JPS5855748A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60241767A (en) * | 1984-05-15 | 1985-11-30 | Shinko Electric Co Ltd | Linear pulse motor |
JPS60241768A (en) * | 1984-05-15 | 1985-11-30 | Shinko Electric Co Ltd | Linear pulse motor |
JPH0550225B2 (en) * | 1984-05-15 | 1993-07-28 | Shinko Electric Co Ltd | |
JPS6426142A (en) * | 1987-07-22 | 1989-01-27 | Kyoto Daiichi Kagaku Kk | Ion electrode element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cattrall et al. | Coated-wire ion-selective electrodes | |
US4115209A (en) | Method of determining ion activity using coated ion selective electrodes | |
Mi et al. | Determination of complex formation constants of lipophilic neutral ionophores in solvent polymeric membranes with segmented sandwich membranes | |
JPS6020700B2 (en) | A frame that supports a pair of electrodes | |
JPS584981B2 (en) | ion selective electrode | |
Neihof et al. | The A Quantitative Electrochemical Theory of the Electrolyte Permeability of Mosaic Membranes Composed of Selectively Anion-Permeable and Selectively Cation-Permeable Parts and its Experimental Verification. I. An Outline of the Theory and its Quantitative Test in Model Systems with Auxiliary Electrodes. | |
JPS62500197A (en) | ion selective electrode | |
EP0325562A2 (en) | Dry ion-selective electrodes for the determination of ionic species in aqueous media | |
JP3135956B2 (en) | Solid contact, potential difference sensor device using the same, and method using sensor device | |
Kwon et al. | An all-solid-state reference electrode based on the layer-by-layer polymer coating | |
EP0661535A1 (en) | Ion sensor | |
US4211623A (en) | Halide electrode | |
JPS5855748A (en) | Composite type covered electrode | |
Walsh et al. | Solid‐state sodium‐selective sensors based on screen‐printed Ag/AgCl reference electrodes | |
US6193865B1 (en) | Analytic cell | |
EP0929804A1 (en) | Analytic cell | |
Levitchev et al. | Photocurable carbonate-selective membranes for chemical sensors containing lipophilic additives | |
CA2319987C (en) | Polymeric compositions for ion-selective electrodes | |
Mikhelson et al. | Ionophore-Based ISEs | |
JPH0136580B2 (en) | ||
JPS645248Y2 (en) | ||
JP2516450B2 (en) | Sheet type electrode for ion measurement | |
Guagneli | Novel design of a flow-through potentiometric sensing device | |
Cattrall et al. | COATED–WIRE ION-SELECTIVE | |
JPS5855746A (en) | Covered type nitric acid ion selective electrode and its preparation |