Nothing Special   »   [go: up one dir, main page]

JPS5852492A - Plating method for iron-zinc solid solution alloy - Google Patents

Plating method for iron-zinc solid solution alloy

Info

Publication number
JPS5852492A
JPS5852492A JP14964081A JP14964081A JPS5852492A JP S5852492 A JPS5852492 A JP S5852492A JP 14964081 A JP14964081 A JP 14964081A JP 14964081 A JP14964081 A JP 14964081A JP S5852492 A JPS5852492 A JP S5852492A
Authority
JP
Japan
Prior art keywords
plating
current density
bath
metals
excess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14964081A
Other languages
Japanese (ja)
Inventor
Mitsuo Azuma
東 光郎
Junichi Morita
順一 森田
Takashi Watanabe
孝 渡辺
Mitsuo Yoshida
光男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14964081A priority Critical patent/JPS5852492A/en
Publication of JPS5852492A publication Critical patent/JPS5852492A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To obtain plated layers permitting high degrees of chemical conversion in mass production by specifying the titled plating conditions by high current density for steel materials for automobiles, houshold electrical appliances, etc. CONSTITUTION:Metals are plated on steel materials by using a sulfate bath of 0.02-0.15 Zn<++>/Fe<++> weight ratio in the plating bath, >=100g/l total and within solubility limit in sulfate concon. of both metals and 0.8-2.3pH and using an insoluble anode at 60-200A/dm<2> current density and 40-80 deg.C bath temp. Here, if the ion ratios of both metals are in excess of the upper limit, no solid soln. alloy of iron and zic is formed, and the water resistance and alkali resistance of the phosphated film are not enough. If below the lower limit, the plated film is vulnerable to formation of rust. If the sulfate conc. of both metals is below the lower limit, it is difficult to obtain the balance in said ion ratios and impossible to maintain high current density. When the pH is too low, the results are similar to those when the above-described ion ratios are similar to those when the above-described ion ratios are in excess of the upper limit, and conversely, if it is in excess of 2.3, high speed plating is difficult. If the current density is below the lower limit, it hinders devices and mass productivity and if in excess of the upper limit, continuous high speed plating is difficult.

Description

【発明の詳細な説明】 本発明は、鋼材上に鉄−亜鉛固溶体合金めつき層を形成
させるめりき方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plating method for forming an iron-zinc solid solution alloy plating layer on a steel material.

鋼材(銅帯、鋼板、鋼管または形鋼等を含む。)は強度
が大きく、加工性に富み、大量に供給しつる材料である
ため重要な金属材料であり自動車用、家電用などに多量
に使用されている。しかしながら錆びやすく腐食しやす
いという欠点を有するほか、溶接性、加工性、化成処理
性、塗装性などにおいてより高度の特性が要求されつつ
ある。このため、鋼材の表面処理が極めて重要であるが
、従来、鋼材の上に、代表的には亜鉛めっきを施し、そ
の上に化成処理を行い、さらに電着塗料等の塗料を塗装
する方法が行われていた。亜鉛めっきについては、最近
、電気めっき法により、Fe −Zn合金めつきを鋼材
上に施すことにより、さらに耐食性、溶接性、塗装性な
どを改良する試みが行われている。自動車用、家電用、
建材用などの大量用途に適するためには、めっき処理も
量産性が必要である。このため高電流密度によるF・−
Zn合金めっきが考えられたが、未だ、このための条件
が明確となっていなかった。
Steel materials (including copper strips, steel plates, steel pipes, steel sections, etc.) are important metal materials because they are strong, highly workable, and can be supplied in large quantities, and are used in large quantities for automobiles, home appliances, etc. It is used. However, it has the drawback of being easily rusted and corroded, and more advanced properties are being required in terms of weldability, processability, chemical conversion treatment properties, paintability, etc. For this reason, surface treatment of steel is extremely important, but conventional methods typically involve galvanizing the steel, applying chemical conversion treatment on top of that, and then painting with paint such as electrodeposition paint. It was done. Regarding zinc plating, attempts have recently been made to further improve corrosion resistance, weldability, paintability, etc. by applying Fe--Zn alloy plating on steel materials by electroplating. For automobiles, home appliances,
In order to be suitable for large-scale applications such as building materials, the plating process must also be mass-producible. Therefore, F・− due to high current density
Zn alloy plating was considered, but the conditions for this were not yet clear.

本発明者は、めっき層上に化成処理を行った場合、密着
性および耐食性の良好な化成処理層を形成せしめ、その
結果、自動車用途において通常節される電着塗料等の下
地塗料との密着性、塗装耐食性を強化するめっき方法に
ついて研究し、さらに鉄(Fe)−亜鉛(z!0固溶体
合金めっき層を鋼材上表面に高電流密度下、量産的に形
成させる方法にについて詳細な検討を進めた結果、本発
明を完成するに至ったものである。
The present inventor has discovered that when a chemical conversion treatment is performed on a plating layer, a chemical conversion treatment layer with good adhesion and corrosion resistance is formed, and as a result, it is possible to form a chemical conversion treatment layer with good adhesion and corrosion resistance. We conducted research on plating methods to enhance corrosion resistance and paint corrosion resistance, and also conducted detailed studies on methods for mass-producing iron (Fe)-zinc (z!0 solid solution alloy plating layers) on steel surfaces under high current density. As a result of this progress, we have completed the present invention.

以下本発明方法について詳述す4゜ 本発明はめっき浴として、洛中の一/F・0重量比が0
.02〜0.15 、両金属の硫酸塩濃度が計100 
g /1以上溶解限以内、pHが0.8〜2.3である
硫酸塩浴を用い、電流密度60〜200 A/dm”、
浴温40〜80℃の条件下で、不溶性陽極を用い、鋼材
上に電気めっきすることを特徴とする。
The method of the present invention will be described in detail below.
.. 02 to 0.15, the total sulfate concentration of both metals is 100
g/1 or more and within the solubility limit, using a sulfate bath with a pH of 0.8 to 2.3, and a current density of 60 to 200 A/dm.
It is characterized by electroplating on steel materials using an insoluble anode at a bath temperature of 40 to 80°C.

まず、硫酸塩浴中のzr+F/F@−1−1−重量比を
0.02〜0,15の比とすることが必要である。この
ために適量の硫酸亜鉛、および硫醗第1鉄をめっき浴中
へ補給し、この比の範囲内となるよう制御する。
First of all, it is necessary to set the zr+F/F@-1-1-weight ratio in the sulfate bath to a ratio of 0.02 to 0.15. For this purpose, appropriate amounts of zinc sulfate and ferrous sulfate are supplied into the plating bath, and the ratio is controlled to be within this range.

zn+l−7Fe+)重量比が0.15を超えると、め
っき層中の亜鉛量が過多となるため、鉄−亜鉛固溶体合
金は形成されない。このため、りん酸塩処理を行ったと
き得られたりん酸塩皮膜の耐水性や耐アルカリ性が充分
でない。この理由として、本発明者は、りん議塩処理時
に被処理面からのFs+の溶出が十分に起らないため、
耐水性や耐アルカリ性に秀れたホスフォヒライト系りん
酸塩結晶(Fs!5la(pot)t)の生成が困難に
なる結果であると考えている。
If the weight ratio (zn+l-7Fe+) exceeds 0.15, the amount of zinc in the plating layer will be too large, and no iron-zinc solid solution alloy will be formed. For this reason, the water resistance and alkali resistance of the phosphate film obtained when phosphate treatment is performed are insufficient. The reason for this is that the elution of Fs+ from the surface to be treated does not occur sufficiently during phosphorus salt treatment.
We believe that this is because it becomes difficult to generate phosphohyrite-based phosphate crystals (Fs!5la(pot)t) that have excellent water resistance and alkali resistance.

Zn+4−/F@”重量比が0.02に至らないと、め
っき層中のF・含有量が過多となり、発錆しゃすく防食
効果が低下してくるので好ましくない。
If the weight ratio of Zn+4-/F@'' does not reach 0.02, the F content in the plating layer becomes excessive, rusting is likely to occur, and the anticorrosion effect decreases, which is not preferable.

両金属の硫酸塩濃度は、計100g/1以上溶解限以内
トする。loog/1未満のときは、上記Zn”/F−
重量比のバランスをとることが困難となる他、めっき浴
の電導度が下がり、高電流密度を維持できない。
The sulfate concentration of both metals should be at least 100 g/1 in total and within the solubility limit. When it is less than log/1, the above Zn"/F-
In addition to making it difficult to balance the weight ratio, the conductivity of the plating bath decreases, making it impossible to maintain a high current density.

めっき浴のpHは0.8〜2.3の範囲とする。pHが
余り低いと、めっき層中の亜鉛含有量が多くなり、上述
の洛中Zn”’/F1++重量比が0.15を超えた場
合と同様の不都合を生ずる。逆に、PHが2.3を超え
ると、めっき時に陰極近傍でpHが上昇する際に、水酸
化鉄が沈澱しやすくなるなど、めっき浴の劣化が起りや
すく安定した高速めっきが施し難くなる。通常はめっき
によりpHが下がり、金属イオンの補給により、pHが
元の値に戻るため、浴pHが一定値に維持される・こと
となるが、必要があればpHの調整は硫酸、アンモニア
、または水の補給等で行うことができる。本発明のめっ
き浴のpHは低いのでめっき成分金属は相当大きな溶解
速度を有するので、補給は容易であり、めっき浴の−p
Hの微変動から金属成分の消耗、補給程度も推定しうる
The pH of the plating bath is in the range of 0.8 to 2.3. If the pH is too low, the zinc content in the plating layer will increase, causing the same disadvantages as when the above-mentioned Rakuchu Zn''/F1++ weight ratio exceeds 0.15.On the contrary, if the pH is 2.3 If it exceeds , the plating bath is likely to deteriorate, such as iron hydroxide precipitating when the pH increases near the cathode during plating, making it difficult to perform stable, high-speed plating.Normally, the pH decreases during plating, Replenishment of metal ions will return the pH to its original value, so the bath pH will be maintained at a constant value; however, if necessary, the pH should be adjusted by replenishing sulfuric acid, ammonia, or water. Since the pH of the plating bath of the present invention is low, the plating component metal has a considerably high dissolution rate, so replenishment is easy and -p of the plating bath is low.
The degree of consumption and replenishment of metal components can also be estimated from slight fluctuations in H.

つぎにめっき条件であるが、電流密度は60〜200 
A / (11!l”の範囲とする。高速めっきのため
には、少なくとも電流密度は60 A/(1!!1’以
上とすることが重要であり、これ未満ではめっき時間が
長くなり連続めりき装置も極めて長くなり量産性にも支
障をきたすようになる。200A/dm″を超えると、
特に陰極面からの水素ガス発生量が著しく高速めっきを
連続的にすることが難しくなってくる0 浴温もめっきの安定性のためには40〜80”Cの範囲
に制御することが必要である。40″C未満ではめっき
浴温の定温制御が困難であり、しがもめつき層の密着性
も劣る等不利益を生ずるので好ましくない。また、80
℃超では、液の蒸発が大きく また装置材質の選択も難
しくなるので好ましくない。
Next, regarding the plating conditions, the current density is 60 to 200.
The current density should be in the range of A/(11!l"). For high-speed plating, it is important that the current density is at least 60 A/(1!!1'). If the current density is less than this, the plating time will be longer and continuous The marking device also becomes extremely long, which poses a problem in mass production.If it exceeds 200A/dm,
In particular, the amount of hydrogen gas generated from the cathode surface is significant, making it difficult to perform continuous high-speed plating.The bath temperature must also be controlled within the range of 40 to 80"C to ensure plating stability. If the temperature is less than 40"C, it is difficult to control the plating bath temperature at a constant temperature, and disadvantages such as poor adhesion of the plating layer occur, which is not preferable. Also, 80
If the temperature exceeds ℃, evaporation of the liquid will be large and selection of equipment material will be difficult, which is not preferable.

つぎに、本発明では、可溶性陽極を用いず、不溶性陽極
を用いることによって高速めっきを可能とした。可溶性
陽極では、電極消耗による取換えが煩雑であるばかりで
なく、高電流密度下では、電極不働態化現象を起し、高
速めっきそのものが不可能となる。本発明の不溶解性陽
極は、たとえば鉛合金あるいは白金、ロジウム、イリジ
ウムなどの貴金属系、あるいはこれらの醗化物系などに
よって構成される。かかる不溶解性溶極を用いたときは
、高電流密度下で安定しためりき電流を確保でき為従っ
て、めっ・き皮膜の制御が極めて容易となる。形成され
た固溶体合金めっき層はZn含有量が35重量%以下で
ある。
Next, in the present invention, high-speed plating is made possible by using an insoluble anode instead of a soluble anode. In the case of a soluble anode, not only is it troublesome to replace the electrode due to wear, but also the electrode becomes passivated under high current density, making high-speed plating impossible. The insoluble anode of the present invention is made of, for example, a lead alloy, a noble metal such as platinum, rhodium, or iridium, or a melt of these metals. When such an insoluble melt electrode is used, a stable threshold current can be ensured under high current density, and therefore the control of plating and coating becomes extremely easy. The formed solid solution alloy plating layer has a Zn content of 35% by weight or less.

なお1本発明においては、pHを低く保ち、また硫酸塩
濃度を高くし浴電導性をできるだけ付与し、高電流密度
適用時のめっき焼けの防止、浴電圧の低減を狙っている
が、本発明のめっき浴には、硫酸アンモニウム、硫酸ソ
ーダ、硫酸アルミニウムなどの電導性付与剤を、鉄イオ
ンや亜鉛イオンの溶解性を損わない程度、たとえば5〜
80g/l添加することは差支えない。
1. In the present invention, the pH is kept low and the sulfate concentration is increased to provide as much bath conductivity as possible, with the aim of preventing plating burn when applying high current density and reducing bath voltage. In the plating bath, conductivity imparting agents such as ammonium sulfate, sodium sulfate, and aluminum sulfate are added to an amount that does not impair the solubility of iron ions and zinc ions, for example, 5 to 50%.
There is no problem in adding 80 g/l.

鋼材が特に高度の防食性を要求される分野、たとえば自
動車用鋼材に使用されたとき、積雪地の道路に散布され
た溶雪用の塩による塩害や 小石などの飛散によるチッ
ピング被害の生ずることがある。特に塩による被害は大
きく、甚だしい場合には鋼材そのものの孔あきを誘起し
、安全面からも重大な障害となる。
When steel materials are used in fields that require a particularly high degree of corrosion resistance, such as automobile steel materials, salt damage from melting salt sprinkled on roads in snow-covered areas and chipping damage from flying pebbles can occur. be. The damage caused by salt is particularly severe, and in severe cases, it can cause holes in the steel itself, which poses a serious problem from a safety standpoint.

このような場合、固溶体合金めっき層の下層に、さらに
めっき層を設け、防食性、防錆性の強化を図ることもで
きる。たとえば、鋼素材上に下層として電気めっきによ
りδ、相、ζ相、およびζ相の内1種もしくは2種以上
からなり、実質的にη相を含有しない5〜25g/讐程
度の厚さのF・−Zn系金属間化合物合金層を形成させ
、これを鋼材として、この鋼材上に上層として本発明固
溶体合金めっきを、たとえば0.5〜7g/m’の厚さ
施このような金属間化合物層は、たとえばめっき浴とし
て z、、+t−/F@−)4−重量比が0.4〜0.
9、両金属の硫酸塩濃度が計100g/J以上溶解限以
内、pHが0.8〜0.3である硫酸塩浴を用い、電流
密度60〜200 A/ム” 、浴温4o〜80℃のめ
っき条件下で、不溶解性陽極を用い電気めっきすること
により形成させることができる。δ、相は主としてFe
 Zn 7の組成を有し、Zn 8B、6〜93重量%
を含有し、ζ相は主としテFθIIznIIおよ(J 
Fe H′ZXX10の混晶であり、Zn72〜80重
量%を含有し、ζ相は主としてFeZnuの組成を有し
、Zn 93.8〜94.5重量外を含有するとされて
おり、耐食性にすぐれている。しかし、5g/−未満の
厚さでは耐食性の効果が発揮できず、25 g/m’超
となると、生産性の観点からは、電気めっきで製造する
メリッFが少なくなるのみならず、加工性や溶接性が却
って悪化する。
In such a case, a plating layer may be further provided below the solid solution alloy plating layer to enhance anticorrosion and rust prevention. For example, a layer of about 5 to 25 g/layer consisting of one or more of δ, phase, ζ phase, and ζ phase and substantially free of η phase is formed by electroplating as a lower layer on a steel material. A F.-Zn based intermetallic compound alloy layer is formed, this is used as a steel material, and the solid solution alloy plating of the present invention is applied as an upper layer on the steel material to a thickness of, for example, 0.5 to 7 g/m'. The compound layer can be formed, for example, as a plating bath with a z,,+t-/F@-)4-weight ratio of 0.4 to 0.
9. Use a sulfate bath in which the sulfate concentration of both metals is 100 g/J or more within the solubility limit, the pH is 0.8 to 0.3, the current density is 60 to 200 A/mu'', and the bath temperature is 4 to 80. It can be formed by electroplating using an insoluble anode under plating conditions at °C.δ, the phase is mainly Fe.
Has a composition of Zn 7, Zn 8B, 6-93% by weight
The ζ phase mainly contains TeFθIIznII and (J
It is a mixed crystal of FeH'ZXX10, contains 72 to 80% by weight of Zn, and the ζ phase has a composition mainly of FeZnu, and is said to contain 93.8 to 94.5% by weight of Zn, and has excellent corrosion resistance. ing. However, if the thickness is less than 5 g/m', the corrosion resistance effect cannot be achieved, and if the thickness exceeds 25 g/m', not only will the merits of manufacturing by electroplating decrease from the viewpoint of productivity, but also the processability will be reduced. On the contrary, weldability deteriorates.

本発明固溶体合金めっきは、従来の電気亜鉛めっきや鉄
−亜鉛合金溶融めっきに比べて、電着塗装時塗膜上にブ
リスター等塗膜欠陥の生ずることが少なく、まためっき
層の膜厚が薄いため成形性が良好である。
Compared to conventional electrogalvanizing and iron-zinc alloy hot-dip plating, the solid solution alloy plating of the present invention is less likely to cause coating defects such as blisters on the coating during electrodeposition, and the coating layer is thinner. Therefore, the moldability is good.

上記金属間化合物合金めっき鋼材の上に本発明の固溶体
合金めっきを施すときは、厚さ0.5〜7g/W?、好
ましくは1〜3g/−の範囲が好ましい。
When applying the solid solution alloy plating of the present invention on the above-mentioned intermetallic alloy plated steel material, the thickness should be 0.5 to 7 g/W? , preferably in the range of 1 to 3 g/-.

固溶体合金層が0.5g/rr?未満では、化成処理性
が良好でなくブリスター等の塗膜欠陥を生じやすい。ま
た7g/−超としても化成処理性はそれ程向上しない。
Solid solution alloy layer is 0.5g/rr? If it is less than that, the chemical conversion treatment property is not good and coating film defects such as blisters are likely to occur. Moreover, even if it exceeds 7 g/-, the chemical conversion treatment property will not improve much.

また、たとえば冷延鋼板上に単独層として用いる場合も
厚さ0.5〜7g/m’、好ましくは1〜3g/−の範
囲が好ましい。りん酸塩処理時の被処理面からのFs+
溶出が起りにくいある種の高強度冷延鋼板上に本発明を
施すと良好な7オスフオフイライト系りん酸塩皮膜が形
成されることを確かめた。
Further, when it is used as a single layer on a cold rolled steel plate, for example, the thickness is preferably in the range of 0.5 to 7 g/m', preferably 1 to 3 g/m'. Fs+ from the treated surface during phosphate treatment
It has been confirmed that when the present invention is applied to a certain type of high-strength cold-rolled steel sheet that is unlikely to be leached, a good 7-Osphophyllite phosphate film is formed.

つぎに実施例をあげて説明する。Next, an example will be given and explained.

実施例 鋼材として、つぎの素材A、B、Cを用いた。Example The following materials A, B, and C were used as steel materials.

素材A:Fe含有量含有量15凰20 20g/−のFe − Zn合金電気めっき鋼板。Material A: Fe content content 15 凰20 20g/- Fe-Zn alloy electroplated steel sheet.

素材B:F・含有量約12重量%、めっき量30g/−
のFe − Zn合金溶融めっき鋼板。
Material B: F, content approximately 12% by weight, plating amount 30g/-
Fe-Zn alloy hot dip coated steel sheet.

素材C:  SPC なお1素材A−Cの板厚はいずれも0.8−である0 めっき浴組成は、Fe50, 、’yH,0とznSO
4・7H10の合算量が約5 0 0 g/ lN も
H.)、So. 3。
Material C: SPC Note that the plate thicknesses of materials A to C are all 0.8-0.The plating bath composition is Fe50, , 'yH,0 and znSO.
The total amount of 4.7H10 is approximately 500 g/lN. ), So. 3.

g/lで・Z,++/Fe+重量比を変化させた。浴p
H1、2、浴温60℃、電流密度10 0 A / d
m” とし、陽極として、チタン基板に白金めつきした
ものを不溶解性陽極として用いた。めっき量は3g/m
”となるように、めっき時間を変えることによって調整
した。
The weight ratio of .Z,++/Fe+ was varied in g/l. bath p
H1, 2, bath temperature 60°C, current density 100 A/d
m”, and a titanium substrate plated with platinum was used as an insoluble anode.The amount of plating was 3 g/m.
” was adjusted by changing the plating time.

得られた試料について、つぎの評価を行った。The following evaluations were performed on the obtained samples.

A9  めっき層密着性 めっき面に白色ビニルテープを貼り付け、該面を内側に
してOT曲げを行ない、テープに付着しためつき層の剥
離を測定した(パウダリングテスト)。
A9 Adhesion of plating layer A white vinyl tape was attached to the plating surface, OT bending was performed with the surface facing inside, and peeling of the plating layer adhering to the tape was measured (powdering test).

B.りん酸塩処理性 りん酸塩処理は7オス7オフイライト(Phospho
−phyllite % Zn1Fe(PO,)t)系
浸漬処理型薬剤である日本ペイント物製G r S−D
 −2000を使用し、これをTA16〜18、AR1
8〜20、zn++1000±200ppmSFs” 
50〜1100ppに調整したものに試料を120秒浸
漬して行った。
B. Phosphate treatment Phosphate treatment is 7 male 7 ophylite (Phospho
-phyllite % Zn1Fe(PO,)t) based immersion treatment type chemical Gr S-D manufactured by Nippon Paint Co., Ltd.
-2000, TA16-18, AR1
8-20, zn++1000±200ppmSFs”
The sample was immersed for 120 seconds in a solution adjusted to 50 to 1100 pp.

(η皮膜量 りん酸塩皮膜量は、皮膜を2重量%CrOs溶液で溶解
して求めた。
(η Film Amount The phosphate film amount was determined by dissolving the film in a 2% by weight CrOs solution.

(匂P比率 により求めた。(Odor P ratio It was calculated by

C9塗装後の耐食性 上記りん酸塩処理した後の試料板を120°C×10分
間空焼きし、この上に日本ペイント物製のパワートップ
U−30をカチオン電着塗装した。
Corrosion resistance after C9 coating The sample plate after the above phosphate treatment was air baked at 120°C for 10 minutes, and Power Top U-30 manufactured by Nippon Paint Co., Ltd. was applied by cationic electrodeposition.

クロスカット剥離中、耐赤さび性、赤さび発生時間の3
つの評価は、この段階の試料を使用した。
3 during cross-cut peeling, red rust resistance, and red rust generation time
Two evaluations used samples at this stage.

又、耐水密着性については、乾燥膜厚20μとなるよう
上記カチオン電着塗装を施した塗装板上に、日本ペイン
ト■製アミラックTP−16Rを乾燥膜厚25μとなる
ように塗装、焼付しく140°C×20分間)、さらに
上塗りとして日本ペイント■製アミラック030を乾燥
膜厚が30μとなるよう塗装焼付(140℃×20分間
)行った試料について評価した。
In addition, regarding water-resistant adhesion, on the painted plate which had been subjected to the above cationic electrodeposition coating to a dry film thickness of 20 μm, Amirac TP-16R manufactured by Nippon Paint ■ was applied to a dry film thickness of 25 μm, and baked with 140 μm. 20 minutes at 140 degrees Celsius), and then baked (140 degrees Celsius for 20 minutes) with Amylac 030 manufactured by Nippon Paint ■ to a dry film thickness of 30 μm as a top coat.

(1)耐水密着性 上塗り塗装板を40℃の湯に240時間浸漬し、浸漬終
了後すみやかに鋼素地に達する2w角の基盤目を100
個刻み、セロテープで剥離し、塗膜剥離面積比で評価し
た。
(1) Water-resistant adhesion A top-coated plate is immersed in hot water at 40°C for 240 hours, and after the immersion is finished, 100 2W square base lines reach the steel substrate.
Each piece was peeled off with cellophane tape, and the peeled area ratio was evaluated.

(2)クロスカット剥離中 カチオン電着塗料の乾燥膜厚20μ塗装板に、鋼素地に
達するクロスカットを施し、塩水噴霧試験(360時間
、JIS2371)を行い、その剥離中(片側−>で判
定qだ。
(2) During cross-cut peeling A board coated with cationic electrodeposition paint with a dry film thickness of 20 μm was cross-cut to reach the steel substrate, and a salt spray test (360 hours, JIS2371) was performed, and during the peeling process (one side ->It's q.

、11 (3)耐赤さび性 カチオン電着塗料の乾燥膜厚20μ塗装板で、塩水噴霧
試験(360時間、JIS2371)後のクロスカット
部の赤さび発生状況を観察した。
, 11 (3) Red Rust Resistance On a plate coated with a cationic electrodeposition paint having a dry film thickness of 20 μm, the occurrence of red rust at the cross-cut portion was observed after a salt spray test (360 hours, JIS 2371).

(4)赤さび発生時間 カチオン電着塗料の乾燥膜厚5μ塗装板で、クロスカッ
トをせず、塩水噴霧試験(JIS2731)を行い、赤
さび発生までの時間を測定した。
(4) Time for occurrence of red rust A salt spray test (JIS 2731) was conducted on a board coated with a cationic electrodeposition paint with a dry film thickness of 5 μm without cross-cutting, and the time until the appearance of red rust was measured.

以上の結果を第1表に示す。The above results are shown in Table 1.

Claims (1)

【特許請求の範囲】[Claims] 1、めりき浴として、洛中のZ、+1−/F、−H−重
量比が0.02〜0.15、両金属の硫酸塩濃度が計1
00g/1以上溶解限以内、pHが0.8〜2.3であ
る硫、酸塩浴を用い、電流密度60〜20OA/ム3、
浴温40〜80℃の条件下で、不溶解性陽極を用い、鋼
材上に電気めっきすることを特徴とする鉄−亜鉛固溶体
合金めつき方法。
1. As a polishing bath, the weight ratio of Z, +1-/F, -H- in Rakuchu is 0.02 to 0.15, and the sulfate concentration of both metals is 1.
00g/1 or more and within the solubility limit, using a sulfuric acid salt bath with a pH of 0.8 to 2.3, a current density of 60 to 20OA/mu3,
A method for plating an iron-zinc solid solution alloy, which comprises electroplating onto a steel material using an insoluble anode at a bath temperature of 40 to 80°C.
JP14964081A 1981-09-24 1981-09-24 Plating method for iron-zinc solid solution alloy Pending JPS5852492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14964081A JPS5852492A (en) 1981-09-24 1981-09-24 Plating method for iron-zinc solid solution alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14964081A JPS5852492A (en) 1981-09-24 1981-09-24 Plating method for iron-zinc solid solution alloy

Publications (1)

Publication Number Publication Date
JPS5852492A true JPS5852492A (en) 1983-03-28

Family

ID=15479640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14964081A Pending JPS5852492A (en) 1981-09-24 1981-09-24 Plating method for iron-zinc solid solution alloy

Country Status (1)

Country Link
JP (1) JPS5852492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081038U (en) * 1994-10-13 1996-06-21 佐鳥電機株式会社 Trigger switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081038U (en) * 1994-10-13 1996-06-21 佐鳥電機株式会社 Trigger switch

Similar Documents

Publication Publication Date Title
US4510209A (en) Two layer-coated steel materials and process for producing the same
JP3967519B2 (en) Zn-Mg electroplated metal plate and method for producing the same
EP0125658B1 (en) Corrosion resistant surface-treated steel strip and process for making
JPH03138389A (en) Zn-mg alloy plated steel sheet having excellent plating adhesion and corrosion resistance and its production
JPS5815554B2 (en) Plated steel materials for cationic electrodeposition coating
KR890001109B1 (en) Corrosion-resistant steel strip having zn-fe-p alloy electroplated thereon
JPS5867886A (en) Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof
JPS5852492A (en) Plating method for iron-zinc solid solution alloy
JPS5852494A (en) Iron-zinc alloy plated steel material
JP2787365B2 (en) Organic thin film coated Cr-containing zinc-based multi-layer rust-proof steel sheet having excellent long-term adhesion of organic thin film and cationic electrodeposition coating property, and method for producing the same
JPH0121234B2 (en)
JPS5925992A (en) Surface treated steel sheet having high corrosion resistance and its production
JPH0256437B2 (en)
JPS6213590A (en) Surface-treated steel sheet having excellent coating property, adhesion after coating and corrosion resistance and its production
JP2509940B2 (en) Method for producing Zn-Ni alloy plated steel sheet
JPH01108396A (en) Production of galvannealed steel sheet for coating by cationic electrodeposition
JPS5852493A (en) Plating method for iron-zinc intermetallic compound alloy
JPS62278297A (en) Method for chromating metal-surface-treated steel sheet
JPH0142359B2 (en)
JPS60131977A (en) Surface treated steel sheet having superior suitability to chemical conversion treatment
JPS61119694A (en) Production of electroplated steel plate
JPS63250489A (en) Surface-treated steel sheet having excellent corrosion resistance and electrodeposition coating property
JPH04246193A (en) Galvanized metal material excellent in resistance to heat and corrosion
JPS63176490A (en) Surface treated steel sheet having superior corrosion resistance and suitability to phosphating
JPH0718464A (en) Production of highly corrosion-resistant electrogalvanized steel sheet excellent in chemical convertibility