JPS5845228A - Preparation of polyester chip - Google Patents
Preparation of polyester chipInfo
- Publication number
- JPS5845228A JPS5845228A JP14245781A JP14245781A JPS5845228A JP S5845228 A JPS5845228 A JP S5845228A JP 14245781 A JP14245781 A JP 14245781A JP 14245781 A JP14245781 A JP 14245781A JP S5845228 A JPS5845228 A JP S5845228A
- Authority
- JP
- Japan
- Prior art keywords
- chips
- heating tank
- temperature
- polyethylene terephthalate
- phase polymerization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polyesters Or Polycarbonates (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はポリエステルチップの製造法に関し、特に中空
成形用途に適したポリエチレンテレフタレートチップの
製造法に関する。さらに詳しくは本発明はポリマ中のア
セトアルデヒト金倉を減少せしめ、成形加工性および中
空成形品の実用強度、透明性を高めるための効率的なポ
リエステルチップの製造法に関する。ポリエステル、特
にポリエチレンテレフタレートr1′i優れた物理的性
質、化学的性質′に有しているので、繊維、フィルム、
プラスチック成形分野などで広く使用されている。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing polyester chips, and more particularly to a method for manufacturing polyethylene terephthalate chips suitable for blow molding applications. More specifically, the present invention relates to an efficient method for producing polyester chips that reduces acetaldehyde content in a polymer and improves moldability, practical strength, and transparency of blow-molded products. Polyester, especially polyethylene terephthalate, has excellent physical and chemical properties, making it suitable for fibers, films,
Widely used in plastic molding fields.
従来プラスチック中空成形品向は樹脂としては、主とし
てポリ塩化ビニルが用いられてきたが、近年該ポリマの
衛生問題により、食品向は中空成形容器の分野でその使
用が制限を受けるようになってきた。一方ポリエチレン
テレフタレートは、前述の通り、優れた諸特注を有して
いるにもかかわらず、中空成形分野、特に食品容器分野
への進出が十分でなかった。Conventionally, polyvinyl chloride has been mainly used as the resin for plastic blow-molded products, but in recent years, due to sanitary issues with this polymer, its use in the field of blow-molded food containers has come to be restricted. . On the other hand, as mentioned above, polyethylene terephthalate has not sufficiently penetrated into the blow molding field, especially the food container field, although it has various excellent custom orders.
この原因は、主に、ポリマの溶融時の粘度が低いことお
よび結晶化が速く得られる製品が白化しやすいこと並び
に製品中にアセトアルデヒドが残存することにあった。The main reasons for this are that the viscosity of the polymer is low when melted, that products that crystallize quickly tend to whiten, and that acetaldehyde remains in the products.
これらの問題のうち前二者に対しては成形技術の観点か
ら各種の改良がなされ一応ポリ塩化ビニルの代替として
の機能をもつようになったが、依然として、ポリエチレ
ンテレ7タレートには、アセトアルデヒドを含有するた
め、充填物の味や臭いが変化しやすいという欠点がある
。このポリエチレンテレフタレート中のアセトアルデヒ
ドを減少せしめ、中空成形用として十分な溶融粘度が得
られるよう重合度を上昇せしめる方法として、具体的に
は減圧あるいは不活性気体流通下190℃以上融点以下
の温度で数時間乃至数十時間処理するいわゆる固相重合
法が知られている。Regarding the first two of these problems, various improvements have been made from the viewpoint of molding technology, and it has come to function as a substitute for polyvinyl chloride. This has the disadvantage that the taste and odor of the filling are likely to change. As a method to reduce the acetaldehyde in this polyethylene terephthalate and increase the degree of polymerization so as to obtain a sufficient melt viscosity for blow molding, specifically, the method is to reduce the amount of acetaldehyde in polyethylene terephthalate and increase the degree of polymerization to obtain a sufficient melt viscosity for blow molding. A so-called solid phase polymerization method is known in which the treatment is carried out for hours to several tens of hours.
このうちで高温不活性気流下で行なう同相重合法はチッ
プの処理が連続的に行なえるため経済性、生産性に優れ
る利点がある。Among these, the in-phase polymerization method, which is carried out under a high-temperature inert gas flow, has the advantage of being excellent in economy and productivity because chips can be processed continuously.
しかしながら、高温不活性気流下で行なう固相重合法は
ポリエチレンテレフタレート中のアセトアルデヒド全十
分に減少せしめ、重合度の上昇が十分に行なわれるよう
な条件下では、チップ間でのブロッキングや融着が起り
やすく、安定したテップの処理ができにくい欠点がある
。本発明者らは中空成形用途に適したポリエチレンテレ
フタレートとしてポリマ中のアセトアルデヒドを減少せ
しめ、成形加工性および中空成形品特注を高めるための
効率的なチップの製造法について鋭意検討した結果、本
発明に到達したものである。However, solid-phase polymerization carried out under a high-temperature inert gas flow sufficiently reduces all the acetaldehyde in polyethylene terephthalate, and under conditions where the degree of polymerization is sufficiently increased, blocking and fusion between chips may occur. The disadvantage is that it is difficult to process stable steps. The present inventors made polyethylene terephthalate suitable for use in blow molding to reduce acetaldehyde in the polymer, and as a result of intensive study on an efficient method for manufacturing chips to improve moldability and customization of blow molded products, the present invention was developed. It has been reached.
即ち、本発明は攪拌装wLヲ有する加熱槽の下部より温
度18℃の熱風を該加熱槽内に吹き込み該加熱槽の上部
よシ温度T0℃の熱風を該加熱槽内から排出させつつ、
該加熱槽の上部よシポリエチレンテレフタレートチップ
を連続的に該加熱槽内に供給し咳加熱槽内に少なくとも
30分間滞留させて後、該チップラ核加熱槽下部より排
出させ、次いで該チップを攪拌装[1−有する第二の加
熱槽の上部より連続的に該第二の加熱槽内に供給し該第
二の加熱槽の下部より温度T2℃の不活性ガ5−
スft#第二の加熱槽内に吹き込むことによって少々く
とも(資)分間該チップを熱処理して後、該チップを該
第二の加熱槽下部よ夕排出させ、次いで該チップを温度
T1℃の不活性気流下の移動床式固相重合装置内に連続
的に供給して同相重合せしめることを特徴とするポリエ
ステルチップの製造法を提供するものである。That is, the present invention blows hot air at a temperature of 18°C into the heating tank from the lower part of the heating tank having a stirring device WL, and discharges the hot air at a temperature T0°C from the upper part of the heating tank from the inside of the heating tank.
The polyethylene terephthalate chips are continuously fed into the heating tank from the upper part of the heating tank, and after remaining in the cough heating tank for at least 30 minutes, are discharged from the bottom of the chipper core heating tank, and then the chips are placed in a stirring device. [1- Inert gas 5-sq.ft. is continuously supplied into the second heating tank from the upper part of the second heating tank and has a temperature of T2°C from the lower part of the second heating tank. After heat treating the chips for at least a few minutes by blowing into the tank, the chips are discharged from the bottom of the second heating tank, and then the chips are transferred under an inert air flow at a temperature of T1°C. The present invention provides a method for producing polyester chips, characterized in that polyester chips are continuously supplied into a bed-type solid-phase polymerization apparatus and subjected to in-phase polymerization.
〔但LATg≦T0≦Tm −120
T0<T工
Tg + 15≦T、≦Tab −80T□<T、≦き
−25
T、≦T3≦Ttn −20
でbe、Tyは本発明方法に供する前のポリエチレンテ
レフタレートチップのガラス転移温度(C) ’に示L
A7’mは本発明方法に供する前のポリエチレンテレフ
タレートチップの融点(℃)t−示す。〕
6−
本発明に用いられるポリエチレンテレフタレートとは、
エチレンテレフタレート単位が少くと4185モル−1
好ましくは90モルチ以上のものであシ、テレフタル酸
とエチレングリコールとのエステル化反応後、また社テ
レフタル酸の低級アルキルエステルとエチレンクリコー
ルとのエステル交換反応後、得られるビスジオールエス
テルおよび/またはその低重合体全重合触媒、たとえば
従来公知のアンチモン化合物、ゲルマニウム化合物、チ
タン化合物の一種以上、の存在下に高温、高真空下にて
重縮合せしめることによって得られるものであって、テ
レフタル酸残基以外のジカルボン酸残基またはジオール
残基が少量存在してもよい。[However, LATg ≦ T0 ≦ Tm -120 T0 The glass transition temperature (C) of the polyethylene terephthalate chip shown in 'L
A7'm indicates the melting point (°C) t- of the polyethylene terephthalate chips before being subjected to the method of the present invention. ] 6- What is polyethylene terephthalate used in the present invention?
The least amount of ethylene terephthalate units is 4185 mol-1
It is preferably 90 molar or more, and bisdiol ester and/or It is obtained by polycondensation at high temperature and high vacuum in the presence of a low polymer total polymerization catalyst, such as one or more of conventionally known antimony compounds, germanium compounds, and titanium compounds. Small amounts of dicarboxylic acid residues or diol residues other than the groups may be present.
テレフタル酸残基以外のジカルボン酸残基としてはイソ
フタル酸、フタル酸、2.6−ナフタリンジカルボン酸
、トリメリット酸、ピロメリット酸、アジピン酸、5−
ナトリウムスルホイソフタル酸などの残基がある。Dicarboxylic acid residues other than terephthalic acid residues include isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, trimellitic acid, pyromellitic acid, adipic acid, 5-
There are residues such as sodium sulfoisophthalate.
であるが他のグリコールを少量併用してもよい。However, small amounts of other glycols may be used in combination.
この例としてはプロビレyグリコール、トリメチレング
リコール、テトラメチレングリコール、ネオペンチルグ
リコール、シクロヘキサンジメタツール、ジエチレング
リコールなどが挙げられる。Examples include probylene glycol, trimethylene glycol, tetramethylene glycol, neopentyl glycol, cyclohexane dimetatool, diethylene glycol, and the like.
かくして得られたいわゆるポリエチレンテレフタレート
、プレポリマーは攪拌装置tVする第1段の加熱槽の上
部より連続的に供給し、充てん状態で攪拌されながら下
部よシ排出される。該加熱槽は下部よt)T□℃の熱風
が吹き込む様になってお飢九℃の排気ガスが槽上部から
排出される構造金有している。赦加熱槽はプレポリマー
の結晶化を5チツプを融着せしめることなく、行なうた
めのもので、熱風の吹き込み温度が(7’ya −80
E’を越える場合Lポリエステルチップの変形が著しく
商品価値が劣り、(TI+15)c未満の場合は槽内で
のチップ同志のブロッキングや融着が起こ夕また十分な
結晶化も起こりにくい欠点がある。The so-called polyethylene terephthalate or prepolymer thus obtained is continuously supplied from the upper part of the first stage heating tank using the stirrer tV, and is discharged from the lower part while being stirred in the filled state. The heating tank has a structure in which hot air at T□° C. is blown into the lower part and exhaust gas at 9° C. is discharged from the upper part of the tank. The cooling tank is used to crystallize the prepolymer without fusing the 5 chips, and the hot air blowing temperature is (7'ya -80
If it exceeds E', the L polyester chips will be significantly deformed and the commercial value will be inferior, and if it is less than (TI+15)c, the chips will block or fuse together in the tank, and sufficient crystallization will not occur. .
ここで用いられる熱風は空気または窒素などの不活性ガ
スのいずれも適用できる。該第1段加熱槽においてポリ
エチレンテレ7タレートプレボリマーは十分に結晶化合
行なうため、少なくとも30分間、好ましくは1時間以
上の滞留時間で熱処理が行な頼れる。また槽下部よシ吹
き込まれた熱風はプレポリマーチップとの熱交換後槽上
部より排出されるが、排出される熱風温度が(7’m−
120)Cl越える場合はプレポリマーチップの粒面に
おいて、また熱風温度が1℃未満の場合はチップ層の内
部においてチップ同志のブロッキングないし融着が起こ
シ好ましくない。The hot air used here can be air or an inert gas such as nitrogen. In order to sufficiently crystallize the polyethylene tere-7-thalerate prebolimer in the first stage heating tank, the heat treatment can be carried out with a residence time of at least 30 minutes, preferably one hour or more. In addition, the hot air blown from the bottom of the tank is discharged from the top of the tank after heat exchange with the prepolymer chips, but the temperature of the discharged hot air is (7'm-
120) If the temperature exceeds Cl, blocking or fusion of the chips may occur on the grain surface of the prepolymer chip, and if the hot air temperature is less than 1° C., blocking or fusion of the chips may occur inside the chip layer, which is undesirable.
次に第1段の加熱槽で加熱処理されたプレポリマーチッ
プは第1段加熱槽下部から連続的に排出され、第1段加
熱槽と同様の機構t−有する(攪拌装置を有し上部よシ
テッグを導入9−
し充てん状態で下部よりチップを連続的に排出し、熱風
は下部よシ導入され上部に排出される)第2段の加熱槽
に上部より連続的に導入される。との槽はチップ間での
融着を防止しながら攪拌下にチップ温度を同相重合温度
の近傍まで高めるのが目的であり、槽下部よシ吹き込む
熱風はチップの劣化を防止するため、不活性ガスが好ま
しい。吹き込む熱風の温度は第1段加熱槽での熱風温度
T0よシ高く、(T想−25)℃以下で多シ、好ましく
Fir、よJ15℃以上高く、(Tm−25)℃以下の
温度で6る。第2段加熱槽におけるチップの昇温処理が
無攪拌であったシ、前記温度範囲を越えたりすると該槽
内ま九は続いて導入される同相重合塔内においてチップ
間の融着の発生原因とな飢好ましくない。Next, the prepolymer chips that have been heat-treated in the first-stage heating tank are continuously discharged from the bottom of the first-stage heating tank, and have the same mechanism as the first-stage heating tank (it has a stirring device and starts from the top). The chips are continuously discharged from the lower part in a filled state, and the hot air is introduced from the lower part and discharged to the upper part).The heated air is continuously introduced from the upper part to the second stage heating tank. The purpose of this tank is to raise the chip temperature to near the homophase polymerization temperature while stirring while preventing fusion between chips.The hot air blown from the bottom of the tank is inert to prevent chip deterioration. Gas is preferred. The temperature of the hot air blown in is higher than the hot air temperature T0 in the first stage heating tank, and is preferably Fir, preferably at a temperature of 15°C or more and below (Tm-25)°C. 6ru. If the temperature of the chips in the second-stage heating tank was raised without stirring, and the temperature exceeded the above range, the temperature inside the tank would cause fusion between the chips in the same-phase polymerization tower that was subsequently introduced. I don't like starvation.
かくして得られた昇温処理された結晶化チップは、温度
12℃以上、(Tm−20)’C以下の不活性気流下移
動床式固相重合装置に供給され、少なくとも2時間の滞
留時間で連続的に10−
固相重合が行なわれる。The temperature-raised crystallized chips thus obtained are fed to a moving bed type solid phase polymerization apparatus under an inert gas flow at a temperature of 12°C or higher and (Tm-20)'C or lower, and the temperature is increased for at least 2 hours. A continuous 10-solid phase polymerization is carried out.
ポリエチレンテレフタレートプレポリマーチップは上述
のような多段前熱処理、引きつづく固相重合によって高
重合度化、および脱アセトアルデヒド化が行なわれるi
!%本発明の如くの特定の条件下で多段前熱処理を行な
うことによシ、■チップ変形やチップ同志のブロッキン
グ、融着等の問題がないためチジス生産性が向上すると
共に成形機への供給が極めて容易であること、■チップ
が極度あ変形を受けないためポリマ中のヒゲ状物、粉状
物の発生が少なく、成形品の透明性が向上する等の特徴
を有する。Polyethylene terephthalate prepolymer chips are subjected to multi-stage preheat treatment as described above, followed by solid phase polymerization to increase the degree of polymerization and deacetaldehyde.
! % By performing multi-stage pre-heat treatment under specific conditions as in the present invention, there are no problems such as chip deformation, blocking or fusion between chips, which improves chip productivity and improves supply to the molding machine. (2) Since the chip is not subjected to extreme deformation, there is less generation of whiskers and powdery substances in the polymer, and the transparency of the molded product is improved.
溶融重合によって得られるプレポリマー即ち本発明方法
に供するポリエチレンテレフタレートは極限粘度が0.
50以上、0.72以下のものが用いられ、0.53以
上、0.68以下のもツカ特に好ましい。これらのプレ
ポリマーには通常(資)〜300pのアセトアルデヒド
が含有されているが、本発明の多段前熱処理、同相重合
処理を行なうことによシ、その極限粘度は少なくとも0
.05上昇ムチツブ中のアセトアルデヒド含有量は3p
ptn未満に減少させることができ、味覚変化が問題と
なる中空成形用途として好適な性質を示すようになる。The prepolymer obtained by melt polymerization, that is, the polyethylene terephthalate used in the method of the present invention, has an intrinsic viscosity of 0.
A value of 50 or more and 0.72 or less is used, and a value of 0.53 or more and 0.68 or less is particularly preferred. These prepolymers usually contain ~300p of acetaldehyde, but by performing the multistage preheat treatment and in-phase polymerization treatment of the present invention, the intrinsic viscosity of the prepolymers can be reduced to at least 0.
.. The acetaldehyde content in 05 rising whip is 3p
It can be reduced to less than ptn, and exhibits properties suitable for blow molding applications where taste change is a problem.
本発明におhて、ポリエチレンテレ7タレートテツプの
ガラス転移温度TQおよび融点Ttrsはパーキンエル
マー社製、示差熱量計DEC−IB型を用い、いったん
溶融したポリマー1079’j−急冷し、16℃/mの
昇温速度で加熱して得られる熱量変化のピーク温度で示
す。またポリエチレンテレフタレート中のアセトアルデ
ヒド含有量は液体窒素中でポリエチレンテレフタレート
を微粉砕して、この粉末を島津製作所製、4CM型ガス
クロマトグラフィーにより165℃に加熱し標準に対す
る生成ピークを比べて遊離したアセトアルデヒド量を求
めることにより測定される。In the present invention, the glass transition temperature TQ and melting point Ttrs of the polyethylene tere-7-talate tape were measured using a differential calorimeter DEC-IB model manufactured by PerkinElmer Co., Ltd., and the melted polymer 1079'j was quenched at 16°C/m. It is expressed as the peak temperature of the change in heat amount obtained by heating at a heating rate of . The acetaldehyde content in polyethylene terephthalate can be determined by finely pulverizing polyethylene terephthalate in liquid nitrogen, heating the powder to 165°C using a 4CM gas chromatograph manufactured by Shimadzu Corporation, and comparing the production peak with the standard to determine the amount of acetaldehyde released. It is measured by finding .
このようにして得られたチップを用いる中空成形は、射
出成形、押出成形等の従来周知の溶融成形技術に従がっ
て行なわれうる。また、極限粘度はO−クロロフェノー
ル溶媒を用い25℃で測定した値である。Blow molding using the chip thus obtained can be performed according to conventionally well-known melt molding techniques such as injection molding and extrusion molding. Moreover, the intrinsic viscosity is a value measured at 25° C. using an O-chlorophenol solvent.
以下実施例を挙げ本発明を具体的に説明するが本発明は
これらの実施例に限定されるものではない。The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples.
実施例 1゜
テレフタル篇と1.2モル倍のエチレングリコールの直
接エステル低重合体音285℃、減圧下で重縮合触媒と
して三酸化アンチモンを用い常法により重縮合反応を行
ない極限粘度0.54、含有アセトアルデヒド146p
pm、 T g 78.5覧T倶260.5℃全有する
平均長さ3.2箇、長径3.41101x短径2.2−
の円柱状のプレポリマーチップを得た。Example 1 A direct ester low polymer of terephthal and 1.2 moles of ethylene glycol was subjected to a polycondensation reaction at 285°C under reduced pressure using antimony trioxide as a polycondensation catalyst in a conventional manner to obtain an intrinsic viscosity of 0.54. , Contains 146p acetaldehyde
pm, T g 78.5 List T 260.5℃ Total average length 3.2 points, major axis 3.41101 x minor axis 2.2-
A cylindrical prepolymer chip was obtained.
該チップは、下部より170℃の加熱空気がチップ中に
吹き込まれ、かつ1rprnで回転する攪拌装置11N
する第1段加熱槽に上部より連続的に供給され、2時間
処理されつつ連続的13−
に槽下部より排出される。このときの排出ガス温度は1
10℃であった。排出されたチップは第1段と同様の機
構を有する臥加熱空気ではな(200Cの加熱窒素が用
いられている第2段の加熱槽に2時間の滞留時間をもつ
機上部よシ連続的に供給され下部より排出される。次に
、第2段加熱槽で処理されたチップは円筒状の移動床式
固相重合基に10時間の滞留時間を有する様に連続的に
塔上部よシ供給され下部よシ排出される。また塔下部か
らは210℃の加熱窒素が1.5抽ケ1−チップの風量
で導入さね、塔上部から排出される。The chip is heated through a stirring device 11N in which heated air at 170° C. is blown into the chip from the bottom and rotates at 1 rprn.
The raw material is continuously supplied from the upper part to the first stage heating tank, where it is treated for 2 hours, and then continuously discharged from the lower part of the tank. At this time, the exhaust gas temperature is 1
The temperature was 10°C. The discharged chips are not heated air having the same mechanism as the first stage (200C heated nitrogen is used in the second stage heating tank, which has a residence time of 2 hours) and is continuously flown from the upper part of the machine. The chips treated in the second stage heating tank are then continuously fed to the top of the tower so that they have a residence time of 10 hours. Further, heated nitrogen at 210° C. is introduced from the lower part of the tower at an air volume of 1.5 filtrate/chip, and is discharged from the upper part of the tower.
かくして得られたチップは極限粘度0.75、含有アセ
トアルデヒドはLOppmを有し、チップの変形が極め
て少なくかつチップ間のブロッキングや融着拡全く認め
られなかった。このチップを用い、内容積27CC2重
量262の円筒状有底)くリソンを射出成形機(シリン
ダ温度275℃)により得、次いで105℃の雰囲気下
で二軸延伸を行なへ内容積400CCの中14−
突成形容器を得た。得られたボトルポリマー中のアセト
アルデヒド含量は’1.4pprnと微量でかつ透明性
に優れたものであった。The chips thus obtained had an intrinsic viscosity of 0.75, acetaldehyde content of LOppm, and very little deformation of the chips, and no blocking or fusion spread between the chips was observed. Using this chip, a cylindrical bottomed mold with an internal volume of 27 cc and a weight of 262 cc was obtained using an injection molding machine (cylinder temperature: 275°C), and then biaxially stretched in an atmosphere of 105°C. 14- An extruded container was obtained. The acetaldehyde content in the obtained bottle polymer was as small as 1.4 pprn and had excellent transparency.
実施例 2
常mKよりテレフタル酸ジメチルとエチレングリコール
のエステル化反応に引きつづく重縮合反応を二酸化ゲル
マニウム0.013−の存在下で行ない、極限粘度0.
5?、含有アセトアルデヒド1’12ppm、 Ta7
8.0C,’2’m258.5℃、平均長さ3・011
m・長径3・2sm・短径2.0■を有する円柱状プレ
ポリマーテップを得る。Example 2 A polycondensation reaction following the esterification reaction of dimethyl terephthalate and ethylene glycol was carried out in the presence of 0.013-g germanium dioxide at normal mK, and the intrinsic viscosity was 0.
5? , Contains acetaldehyde 1'12 ppm, Ta7
8.0C, '2'm258.5℃, average length 3.011
A cylindrical prepolymer tip having a major axis of 3.2 mm and a minor axis of 2.0 mm is obtained.
次いで、実施例1と同様の方法である力ζ但し第1段加
熱空気吹込み温度165℃、排気温度11002)条件
下で該チップを3時間の滞留時間金保つ様連続的に供給
、排出し、第2段加熱槽については205℃の加熱窒素
を用い2.5時間滞留させ連続的に排出させた。排出し
たチップは実施例1の方法で215℃で6時間の滞留時
間をもつ様移動床式固相重合塔に連続的に供給され排出
される。Next, the chips were continuously supplied and discharged to maintain a residence time of 3 hours under the same method as in Example 1, except that the first stage heated air blowing temperature was 165° C. and the exhaust temperature was 11,000° C. As for the second stage heating tank, heating nitrogen at 205° C. was used, and the mixture was kept there for 2.5 hours and then continuously discharged. The discharged chips were continuously fed to a moving bed type solid phase polymerization column having a residence time of 6 hours at 215° C. according to the method of Example 1, and then discharged.
かくして得られたチップは極限粘度0.79、含有アセ
トアルデヒド1.0pptyhf有しチップの変形、ブ
ロッキング、融着等の問題は全く認められなかった。The chip thus obtained had an intrinsic viscosity of 0.79 and an acetaldehyde content of 1.0 pptyhf, and no problems such as chip deformation, blocking, or fusion were observed.
実験例
実施例1で得られたプレポリマーを用い実施例1の装f
t’を用いて得た実験例を表−1に示す。Experimental Example The prepolymer obtained in Example 1 was used to prepare the device f of Example 1.
Table 1 shows experimental examples obtained using t'.
実験ム2,3のように加熱槽の攪拌を行なわない場合は
チップ同志が融着し、以後の工程へのテップの送シ込み
が不可能になる。第1段加熱槽の空気入温度が(7’m
−80)Ck越える実験44の場合、得られる固相重合
チップが著しく変形してしまい商品価イ直の劣ったもの
が得られる欠点がある。また実験ム5のように空気入温
度が(7’g+15)Cを下まわったときは、該、m内
でチップがブロック化し、以後の工程への送シ込みが不
可能となる。If the heating tank is not stirred as in Experiments 2 and 3, the chips will fuse together, making it impossible to feed the chips into subsequent steps. The air inlet temperature of the first stage heating tank is (7'm
-80) In the case of Experiment 44 exceeding Ck, the obtained solid phase polymerized chips are significantly deformed, resulting in a disadvantage that products with inferior commercial prices are obtained. Furthermore, when the air inlet temperature falls below (7'g+15)C as in Experiment M5, the chips form blocks within m, making it impossible to feed them into subsequent steps.
また実験屋6,7の様に第2檜の温度が本発明の範囲を
越えると、A6の場合は第2段加熱槽で、屋7の場合は
固重梧で、チック同志の融着が起こり安定したテップの
排出が不可能となる。一方、実験&8は固相重合温度が
本発明の範囲を越えるものであり、実験屋9は第1段加
熱槽全用いない実験例であるがいずれの場合も面相重合
塔内で滅しい融層を起こしていた。In addition, when the temperature of the second cypress exceeds the range of the present invention, as in Experimental Houses 6 and 7, the fusion of the cypresses occurs in the second stage heating tank in the case of A6, and in the solid state in the case of House 7. This makes stable TEP discharge impossible. On the other hand, in Experiment &8, the solid phase polymerization temperature exceeds the range of the present invention, and in Experiment 9, the first stage heating tank is not used at all. was waking up.
17一 本発明の一実施態様を図面を参照して説明する。171 One embodiment of the present invention will be described with reference to the drawings.
図は本発明の固相重合に使用する装置の概略図である。The figure is a schematic diagram of an apparatus used for solid phase polymerization of the present invention.
駆動装置5、攪拌翼6を備えた攪拌装置含有する加熱槽
7の下部2より温度T□℃の熱風を該加熱槽内に吹き込
み、上部2′よp温度九℃の熱風を排出させつつ、上部
導入管1よりポリエチレンテレフタレートチップ管連続
的に供給し加熱槽7内に少くとも30分滞留させて後、
該チップを排出ノ(ルプ8會通じて連続的に排出させ、
次いで該チップ全駆動装f9、攪拌翼10を備えた攪拌
装置を有する第2の加熱槽11の上部よシ連続的に該第
2の加熱槽11内に供給し下部3よシ温度T℃の不活性
ガスを吹き込むことによって、少なくとも30分間該チ
ップを熱処理して後、該チップを第2の加熱槽11の下
部よシ排出バルブ12を通じて連続的に排出させ、次い
で該チップ全温度13℃の不活性気流下の移動床式固相
重合装[13内に連続的に供給して同相重合せしめる装
置であ18−
る。Hot air at a temperature T□°C is blown into the heating tank 7 from the lower part 2 of the heating tank 7 containing a stirring device equipped with a driving device 5 and a stirring blade 6, and while discharging hot air at a temperature 9°C from the upper part 2', After continuously supplying polyethylene terephthalate chips from the upper introduction pipe 1 and leaving them in the heating tank 7 for at least 30 minutes,
The chips are continuously discharged through a discharge nozzle (8 loops),
Next, the upper part of the second heating tank 11, which has a stirring device equipped with the full chip drive unit f9 and stirring blades 10, is continuously supplied into the second heating tank 11, and the lower part 3 is heated to a temperature of T°C. After heat treating the chips for at least 30 minutes by blowing inert gas, the chips are continuously discharged through the bottom discharge valve 12 of the second heating bath 11, and then the chips are heated to a total temperature of 13°C. A moving bed type solid phase polymerization unit [13] under an inert gas flow is a device in which the polymer is continuously fed into the same phase polymerization unit [18].
尚、4は加熱不活性ガス吹き込み管、4′は不活性ガス
排出口で15は固相重合チップ連続排出バルブ、16は
固相重合チップ貯槽である。In addition, 4 is a heated inert gas blowing pipe, 4' is an inert gas outlet, 15 is a solid phase polymerization chip continuous discharge valve, and 16 is a solid phase polymerization chip storage tank.
図は本発明の固相重合に使用する装置の一例を示す概略
図である。
19−The figure is a schematic diagram showing an example of an apparatus used for solid phase polymerization of the present invention. 19-
Claims (1)
該加熱槽内に吹き込み該加熱槽の上部よシ温度To℃
の熱風を該加熱槽内か、ら排出させつつ、該加熱槽の上
部よりポリエチレンテレフタレートチップを連続的に該
加熱槽内に供給し該加熱槽内に少なくとも30分間滞留
させて後、該チップを核加熱槽下部より排出させ、次い
で該テッグ會攪拌装置1を有する第二の加熱槽の上部よ
り連続的に該第二の加熱槽内に供給し、該第二の加熱槽
の下部よ、り温度12℃の不活性ガスを該第二の加熱槽
内に吹き込むことによって少なくとも30分間該チップ
を熱処理して仮、該チップを該第二の加熱槽下部より排
出させ、次いで該チップを温度T1℃ の不活性気流下
の移動床式同相重合装置内に連続的に供給して同相重合
せしめることを特徴とするポリエステルチップの製造法
。 但し、TQ ≦10≦−−120 To<T。 T(1+ 15≦T、57m−80 T、<T2≦−−25 T2≦13≦−−20 であり7% Tylri本発明方法に供する前のポリエ
チレンテレフタレートチップのガラス転移温度(℃)”
t−示LATmは本発明方法に供する前のポリエチレン
テレフタレートチップの融点(C)を示す、[Claims] Hot air at a temperature of 11°C is blown into the heating tank from the lower part of the heating tank equipped with a stirring device, and the temperature at the upper part of the heating tank is To°C.
While discharging hot air from inside the heating tank, polyethylene terephthalate chips are continuously fed into the heating tank from the upper part of the heating tank, and after staying in the heating tank for at least 30 minutes, the chips are It is discharged from the lower part of the nuclear heating tank, and then continuously supplied into the second heating tank from the upper part of the second heating tank equipped with the TEG stirring device 1, and then from the bottom of the second heating tank. The chip is heat-treated for at least 30 minutes by blowing an inert gas at a temperature of 12°C into the second heating tank, the chip is temporarily discharged from the bottom of the second heating tank, and then the chip is heated to a temperature of T1. 1. A method for producing polyester chips, which comprises continuously supplying polyester chips to a moving bed type in-phase polymerization apparatus under an inert air flow at .degree. C. for in-phase polymerization. However, TQ≦10≦−120 To<T. T(1+ 15≦T, 57m-80 T, <T2≦--25 T2≦13≦--20 and 7% TylriGlass transition temperature (℃) of polyethylene terephthalate chips before being subjected to the method of the present invention
The t-indication LATm indicates the melting point (C) of the polyethylene terephthalate chip before being subjected to the method of the present invention.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14245781A JPS5845228A (en) | 1981-09-11 | 1981-09-11 | Preparation of polyester chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14245781A JPS5845228A (en) | 1981-09-11 | 1981-09-11 | Preparation of polyester chip |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5845228A true JPS5845228A (en) | 1983-03-16 |
Family
ID=15315755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14245781A Pending JPS5845228A (en) | 1981-09-11 | 1981-09-11 | Preparation of polyester chip |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5845228A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59219328A (en) * | 1983-05-28 | 1984-12-10 | Toyobo Co Ltd | Production of high-polymerization degree polyester |
JP2004277723A (en) * | 2003-02-28 | 2004-10-07 | Mitsubishi Chemicals Corp | Process for production of polyester resin powder, process for production of polyester preform and thermal treatment equipment for polyester resin powder |
US8013107B2 (en) | 2003-10-10 | 2011-09-06 | Asahi Kasei Chemicals Corporation | Process for producing polyalkylene terephthalate, process for producing polyalkylene terephthalate molding and polyalkylene terephthalate molding |
US8202591B2 (en) | 2004-11-30 | 2012-06-19 | Asahi Kasei Chemicals Corporation | Polyester resin, molded object thereof, and processes for producing these |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54149793A (en) * | 1978-05-16 | 1979-11-24 | Celanese Corp | Preparation of polyethylene terephthalate suitable for drinking container |
-
1981
- 1981-09-11 JP JP14245781A patent/JPS5845228A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54149793A (en) * | 1978-05-16 | 1979-11-24 | Celanese Corp | Preparation of polyethylene terephthalate suitable for drinking container |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59219328A (en) * | 1983-05-28 | 1984-12-10 | Toyobo Co Ltd | Production of high-polymerization degree polyester |
JPH0379373B2 (en) * | 1983-05-28 | 1991-12-18 | Toyo Boseki | |
JP2004277723A (en) * | 2003-02-28 | 2004-10-07 | Mitsubishi Chemicals Corp | Process for production of polyester resin powder, process for production of polyester preform and thermal treatment equipment for polyester resin powder |
US8013107B2 (en) | 2003-10-10 | 2011-09-06 | Asahi Kasei Chemicals Corporation | Process for producing polyalkylene terephthalate, process for producing polyalkylene terephthalate molding and polyalkylene terephthalate molding |
US8202591B2 (en) | 2004-11-30 | 2012-06-19 | Asahi Kasei Chemicals Corporation | Polyester resin, molded object thereof, and processes for producing these |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7189441B2 (en) | Low intrinsic viscosity and low acetaldehyde content polyester, hollow preforms and containers obtained from said polymer | |
CN102408548B (en) | Method for prepareing polyethylene terephthalate | |
JP4167159B2 (en) | Production method of polyester resin | |
JP6056755B2 (en) | Ethylene terephthalate polyester resin for container molding and method for producing the same | |
JPH1081740A (en) | Improved production of polyester resin | |
JP3146652B2 (en) | Copolyester and hollow container and stretched film comprising the same | |
JP3072939B2 (en) | Copolyester and hollow container and stretched film comprising the same | |
JP3099473B2 (en) | Copolyester and molded article composed thereof | |
CN101258180A (en) | Apparatus for heat treatment of polyester particle and method of multistage solid-phase polycondensation of polyester particle | |
JPS5845228A (en) | Preparation of polyester chip | |
JPH09221540A (en) | Polyethylene terephthalate, hollow container, and oriented film | |
JPH08188643A (en) | Preparation of high viscosity polyester | |
JP3999620B2 (en) | Production method of polyester resin | |
JP3331719B2 (en) | Copolyester for direct blow bottle | |
JPH10139873A (en) | Production of polyethylene terephthalate | |
JP3357489B2 (en) | Polyester production method | |
JPS5845229A (en) | Preparation of polyester chip for blow molding | |
JP2003160654A (en) | Polyalkylene terephthalate and molding made of the same | |
JP3136767B2 (en) | Copolyester and hollow container and stretched film comprising the same | |
JPH11209588A (en) | Production of modified polyethylene terephthalate resin | |
JP4624590B2 (en) | Method for producing metal compound-containing polyester resin composition, preform for hollow molded article, and method for producing hollow molded article | |
JPH06184286A (en) | Polyethylene terephthalate and hollow vessel and drawn film composed of the resin | |
JP3136768B2 (en) | Copolyester and hollow container and stretched film comprising the same | |
JPS5847024A (en) | Production of polyester | |
JP5648526B2 (en) | Method for producing polyester resin pellets |