Nothing Special   »   [go: up one dir, main page]

JPS5844957A - Production of pipe of high melting point metal - Google Patents

Production of pipe of high melting point metal

Info

Publication number
JPS5844957A
JPS5844957A JP14174881A JP14174881A JPS5844957A JP S5844957 A JPS5844957 A JP S5844957A JP 14174881 A JP14174881 A JP 14174881A JP 14174881 A JP14174881 A JP 14174881A JP S5844957 A JPS5844957 A JP S5844957A
Authority
JP
Japan
Prior art keywords
pipe
water
cooled copper
mold
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14174881A
Other languages
Japanese (ja)
Inventor
Sadao Obata
小畠 貞男
Eiji Fukushima
福島 英二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP14174881A priority Critical patent/JPS5844957A/en
Publication of JPS5844957A publication Critical patent/JPS5844957A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
    • B22D15/02Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor of cylinders, pistons, bearing shells or like thin-walled objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/06Casting non-ferrous metals with a high melting point, e.g. metallic carbides

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To facilitate the formation of a long-sized pipe of a high m.p. metal by forming a metallic pipe in a mold made of a water-cooled copper core in a vacuum or inert gaseous atmosphere. CONSTITUTION:Cooling water (a) is flowed sufficiently in the water-cooled copper mold 8 and water-cooled copper core 2 of a mold 1 made of a water- cooled core toward a discharge port (b). A high m.p. metal is melted by an electron beam laser or arc in a vacuum or inert gaseous atmosphere and is conducted into the mold 1, whereby a high m.p. metallic pipe is formed.

Description

【発明の詳細な説明】 この考案は高融点金属または合金製の高純度長尺パイプ
に関するもので、従来の粉末焼結法に較べ、高純度でか
つ長尺のパイプを製造することを目的とし、外側水冷銅
モールドおよび水冷銅中子の組合せにより溶解しながら
製造したパイプである。
[Detailed Description of the Invention] This invention relates to a high-purity long pipe made of high-melting point metal or alloy, and its purpose is to manufacture a long pipe with high purity compared to the conventional powder sintering method. , a pipe manufactured by melting by a combination of an outer water-cooled copper mold and a water-cooled copper core.

従来、一般に広く用いられている高融点金属、合金製パ
イプ(タングステン、モリブデンなど)は粉末焼結法で
製造されているが、長尺ものの製造は困難である。以下
粉末焼結法によるパイプ製造の欠点を述べる。
Conventionally, pipes made of high-melting point metals and alloys (tungsten, molybdenum, etc.), which are generally widely used, have been manufactured by a powder sintering method, but it is difficult to manufacture long ones. The disadvantages of pipe manufacturing using the powder sintering method will be described below.

1、粉末を圧縮成形するため、長尺ものの成形は困難で
ある。また圧縮密度も一定になりに(い。
1. Since powder is compression molded, it is difficult to mold long items. Also, the compressed density becomes constant.

このため高温焼結中に変形することがあり、矯正に時間
がかかる。
For this reason, it may become deformed during high-temperature sintering, and it takes time to straighten it.

2、#m尺ものでも薄肉のものは割れたり、クラックが
入り易い。
2. Thin-walled items, even those with #m dimensions, are likely to break or crack.

3、材料が粉末であるため不純物(主に酸素含有−数1
100pp )が多い。このため溶接性に問題を生じる
3. Since the material is powder, there are impurities (mainly oxygen content - number 1)
100pp) is common. This causes problems in weldability.

高純度のパイプが要求される場合は溶解したインゴット
を鍛造、圧延加工して、薄板とする。これを円筒状にま
るめて、端面を電子ビーム溶接法で高純度パイプを製造
するが次の、ような欠点がある。
If a high-purity pipe is required, the molten ingot is forged and rolled into a thin plate. This is rolled into a cylindrical shape and the end face is manufactured by electron beam welding to produce a high-purity pipe, but it has the following drawbacks.

1、溶解材を鍛造圧延した板材を円筒状に加工す・るた
め、厚肉のものは困難である。
1. Because the plate material is forged and rolled from molten material and processed into a cylindrical shape, it is difficult to produce thick-walled materials.

2、長尺のものはむずかしい。2. Long items are difficult.

その他の製造方法による欠点 1、溶解インゴットから外周加工、中ぐり加工で高純度
パイプの製造は可能であるがロスが大きい。
Disadvantage 1 of other manufacturing methods: Although it is possible to manufacture high-purity pipes by peripheral processing and boring from a molten ingot, there is a large amount of loss.

また長尺ものはロスが大きく、割り高となる。Also, long items have a large amount of loss and are relatively expensive.

この発明の目的は高融点、高純度パイプを製造するもの
で、核融合炉のエネルギー機器、化学工業関連機器およ
びその他に用いられるタングステン、モリブデンとそれ
らの合金に代表される^―点材料のパイプの製造方法を
提供する。
The purpose of this invention is to manufacture high-melting point, high-purity pipes made of ^-point materials such as tungsten, molybdenum, and their alloys, which are used in energy equipment for nuclear fusion reactors, equipment related to the chemical industry, and others. Provides a manufacturing method.

この発明・は従来、高融点金属の溶解法により、電子ビ
ームまたはアーク溶解により、インゴーットを製造して
いるが、この水冷銅モールドの内側に水冷銅中子をとり
つけることにより、容易にパイプの製造ができることが
わかった。
This invention has conventionally produced ingots by electron beam or arc melting using a high-melting point metal melting method, but pipes can be easily produced by attaching a water-cooled copper core to the inside of this water-cooled copper mold. It turns out that it can be done.

この高純度パイプは、高真空中または超高純度不活性ガ
ス雰囲気中で外側水冷銅モールドおよび水冷銅中子を使
用するので不純物の混入はほとんどない。
This high-purity pipe uses an outer water-cooled copper mold and a water-cooled copper core in a high vacuum or ultra-high purity inert gas atmosphere, so there is almost no contamination by impurities.

以下その特長を述べる。The features are described below.

1、水冷銅中子のサイズによりパイプの一肉厚をかえる
ことができる。
1. The thickness of the pipe can be changed depending on the size of the water-cooled copper core.

2、単体金属のパイプを製造する場合または合金でも組
成の変動がない場合は熱源として電子ビームを用いる。
2. An electron beam is used as a heat source when manufacturing a single metal pipe or when the composition of an alloy does not change.

3、合金パイプ製造の場合、組成の変動が予想される時
は熱源として非消耗アークを用いる。このように組成が
目標値に達しない場合は非消耗アーク溶解法で製造すれ
ば組成の変動はほとんどない。
3. In the case of manufacturing alloy pipes, use a non-consumable arc as a heat source when compositional fluctuations are expected. In this way, if the composition does not reach the target value, there will be almost no fluctuation in the composition if the non-consumable arc melting method is used to manufacture the product.

4、粒状またはスポンジ状の細かい素材でも製造できる
4. It can also be manufactured from fine granular or spongy materials.

5、引きさげ方式なので、下方向の距離を長くすること
により長尺パイプができる。
5. Since it is a pull-down method, a long pipe can be created by increasing the downward distance.

6、長尺パイプ製造の場合、1回目の被溶解材がとけ終
り、2回目の被溶解材をとかす際、パイプめ端面との境
界面は全く見られない。これはパイプの端面を十分、融
液帯にしておいてから被溶解材の融滴を落下させるため
である。
6. In the case of manufacturing long pipes, when the first melting material is finished melting and the second melting material is melted, no boundary surface with the end surface of the pipe can be seen. This is because the end face of the pipe is sufficiently formed into a melt zone before the melt droplets of the material to be melted are allowed to fall.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

実施例1 MO粉末を圧縮成形し、これを1800℃水素炉中で焼
成して、およそ10φx 6007;の焼結体を得た。
Example 1 MO powder was compression-molded and fired in a hydrogen furnace at 1800°C to obtain a sintered body of approximately 10φx6007mm.

これを炉内(1)にセットした。炉内の真空度は1 X
 1O−5T Orr以上とした。熱源には電子ビーム
(6)を用いた。水冷銅モールド(8)および水冷銅中
子(2)に十分冷却水(a>を排水口(b)に向けて流
した。環状底板(3)は被溶解材(5)と同質のものを
用いた。これを十分な融液としてから、被溶解材の先端
を照射し、融滴を底板に落下させた。周囲(径)に溶融
金属が一様にたまったら、環状とめ軸(4)を移動し、
底板(3)を下方向に少しずつ移゛動させると同時に被
溶解材も適時、下方向に送りこんだ。かくして外径70
φ×内径60φx 1500g+−長さのパイプ(7)
を得た。このパイプの酸素含有鎖は1〜3pp−の範囲
内であった。またこのパイプの外周面および内面は清ら
かであって、特に機械加工をする必要はなかった。
This was set in the furnace (1). The degree of vacuum inside the furnace is 1
It was set to 10-5T Orr or more. An electron beam (6) was used as a heat source. Sufficient cooling water (a) was poured into the water-cooled copper mold (8) and the water-cooled copper core (2) toward the drain port (b).The annular bottom plate (3) was made of the same material as the material to be melted (5). After making a sufficient amount of molten liquid, the tip of the material to be melted was irradiated and the molten droplets were allowed to fall onto the bottom plate.When the molten metal was uniformly collected around the circumference (diameter), the annular stop shaft (4) was used. move and
While the bottom plate (3) was moved downward little by little, the material to be melted was also fed downward at appropriate times. Thus the outer diameter is 70
φ x inner diameter 60φ x 1500g+- length pipe (7)
I got it. The oxygen-containing chains of this pipe ranged from 1 to 3 pp-. Moreover, the outer peripheral surface and inner surface of this pipe were clean and did not require any special machining.

実施例2 Mo−V−C合金の高純度パイプを製造する場合、■が
入っているため、高真空中での溶解は組成の変動がある
ので、熱源を非消耗型アークを用いた。この合金の組成
比は0.05%G、  1.0%V。
Example 2 When manufacturing a high-purity pipe made of Mo-V-C alloy, a non-consumable arc was used as the heat source because the composition changes when melted in a high vacuum due to the presence of ■. The composition ratio of this alloy is 0.05%G and 1.0%V.

残りMOの重鎖割合で実施例1のように十分混合後、焼
成し被溶解材とした。これを炉内にセット後、炉内を1
x 10″ST orr以下に減圧し、アルゴンガスを
封入して炉内を清浄した。再度高真空状態にしてから超
高純度アルゴンガスを300TOrr封入した。電極は
タングステン電極を4本用いた。
After sufficient mixing with the heavy chain ratio of the remaining MO as in Example 1, the mixture was fired to obtain a material to be melted. After setting this in the furnace, the inside of the furnace is 1
The pressure was reduced to below x 10"ST orr, and argon gas was filled in to clean the inside of the furnace. After returning to a high vacuum state, 300 TOrr of ultra-high purity argon gas was filled in. Four tungsten electrodes were used as electrodes.

このうち1本は被溶解材用、残り3本で底板とパイプの
周囲(径)の溶融用とした。水冷銅モールドおよび水冷
銅中子は実施例1と同質、1径のものを用い、同径のパ
イプを得た。このパイプの上。
One of these was used for melting the material to be melted, and the remaining three were used for melting the bottom plate and the circumference (diameter) of the pipe. The water-cooled copper mold and the water-cooled copper core were of the same quality and diameter as in Example 1, and a pipe of the same diameter was obtained. on this pipe.

中、下の3か所を切り出し、各組成の定最分析を行ツタ
結果、Vl;t O09〜1.0%、 Cハ100〜3
00pp−の範囲内で、残りはMOであって、はとんど
偏析は認められなかった。また含有酸素量は2〜4pp
−の範囲内であった。
Cut out the middle and bottom three parts and perform a constant analysis of each composition. Results: Vl; tO09~1.0%; C 100~3
Within the range of 00 pp-, the remainder was MO, and almost no segregation was observed. Also, the amount of oxygen contained is 2 to 4 pp
It was within the range of −.

実施例3 粒状のニオブをホッパーに装入して、熱源は電子ビーム
を用いた。水冷銅モールド径は40φ、水冷銅中子は3
0φのものを用いた。ニオブの底板をとかし、十分な融
液となってから、ホッパー内の振動板をゆるやかに振動
させて、といを通してモ−ルドのななめ上方より少量ず
つ落下させた。ビームガンは3本用いて十分に周囲をと
かしながら、底板を下方向に移させた。かしくて外径を
40φX内径30φX 1500m−長さのパイプを得
た。外周面および内面とも滑らかであった。定量分析の
結果酸素量は1〜5901の範囲であった。
Example 3 Granular niobium was charged into a hopper, and an electron beam was used as the heat source. Water-cooled copper mold diameter is 40φ, water-cooled copper core is 3
One with a diameter of 0φ was used. After the niobium bottom plate was melted to form a sufficient melt, the diaphragm in the hopper was gently vibrated, and the melt was allowed to fall little by little from above the mold through the hole. Three beam guns were used to thoroughly comb the surrounding area and move the bottom plate downward. In this way, a pipe with an outer diameter of 40φ, an inner diameter of 30φ, and a length of 1500 m was obtained. Both the outer peripheral surface and the inner surface were smooth. As a result of quantitative analysis, the oxygen content was in the range of 1 to 5,901.

この発明によりMOなどの高融点金属やその合金が高純
度で長尺ものが容易に製造できるようになった。
This invention has made it possible to easily manufacture high-purity, long metals such as MO and their alloys in long lengths.

なお、変形例、応用例を示せば次の通りである。In addition, modifications and application examples are as follows.

■例えば水冷銅モールドを円形にして、水冷銅中子を角
型したものとか、その逆の場合の異形パイプ製造も応用
できる。
■For example, it can be applied to manufacturing irregularly shaped pipes, such as making a water-cooled copper mold circular and making a water-cooled copper core square, or vice versa.

■熱源としてプラズマアークも使用できる。■Plasma arc can also be used as a heat source.

■高融点金属に限らず他金属およびその合金にも十分適
用できるもの、である。
■It is applicable not only to high melting point metals but also to other metals and their alloys.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明高融点金属顎パイプの製造を示す装置の
断面図である。 1、外側水冷銅モールド 2、水冷銅中子 3、被溶解材を受ける底板 4、底板のとめ軸 5、被溶解材 6、熱源 7、パイプ
FIG. 1 is a sectional view of an apparatus for manufacturing a refractory metal jaw pipe according to the present invention. 1, outer water-cooled copper mold 2, water-cooled copper core 3, bottom plate 4 for receiving the material to be melted, stopper shaft of the bottom plate 5, material to be melted 6, heat source 7, pipe

Claims (1)

【特許請求の範囲】 真空中または不活性ガス雰囲気中で電子ビーム。 レーザ文はアークにて高融点金属を溶融し、この溶融さ
れた金属を水冷銅中子製モールド体内を導通して高1点
金属パイプを成形することを特徴とする高融点金属パイ
プの製造方法。
[Claims] Electron beam in vacuum or inert gas atmosphere. A method for manufacturing a high-melting point metal pipe, which is characterized by melting a high-melting point metal with an arc and passing the molten metal through a water-cooled copper core mold body to form a high-point metal pipe. .
JP14174881A 1981-09-10 1981-09-10 Production of pipe of high melting point metal Pending JPS5844957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14174881A JPS5844957A (en) 1981-09-10 1981-09-10 Production of pipe of high melting point metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14174881A JPS5844957A (en) 1981-09-10 1981-09-10 Production of pipe of high melting point metal

Publications (1)

Publication Number Publication Date
JPS5844957A true JPS5844957A (en) 1983-03-16

Family

ID=15299275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14174881A Pending JPS5844957A (en) 1981-09-10 1981-09-10 Production of pipe of high melting point metal

Country Status (1)

Country Link
JP (1) JPS5844957A (en)

Similar Documents

Publication Publication Date Title
US5119729A (en) Process for producing a hollow charge with a metallic lining
US3565602A (en) Method of producing an alloy from high melting temperature reactive metals
GB2575005A (en) A process and method for producing titanium and titanium alloy billets, spherical and non-spherical powder
US3305923A (en) Methods for bonding dissimilar materials
CN112011700B (en) Method for adding zirconium alloy ingot casting alloy elements
JP5703414B1 (en) Method for producing platinum group base alloy
US4110893A (en) Fabrication of co-cr-al-y feed stock
DE19953470A1 (en) Tube target
US4681627A (en) Process for preparing an ingot from metal scrap
JPS5844957A (en) Production of pipe of high melting point metal
US4808225A (en) Method for producing an alloy product of improved ductility from metal powder
JPH06264233A (en) Sputtering target for producing tft
JPS5935642A (en) Production of mo alloy ingot
JPH0995743A (en) Production of smelted metallic material, smelted metallic material and electron beam melting equipment
Moss et al. The arc-melting of niobium, tantalum, molybdenum and tungsten
EP3107684B1 (en) Brazing alloy wires and method of brazing
JP4210768B2 (en) Nitrogen-added steel pipe, consumable electrodes fixed with nitrogen-added steel pipes and methods for producing them, and method for producing high nitrogen-containing steel by pressure electroslag remelting method using consumable electrodes
CN118527664A (en) Preparation method of powder of high sphericity low-density steel
JPS57145946A (en) Manufacture of titanium alloy
CN118492379A (en) Preparation method of high-strength low-density ablation-resistant steel powder
JPH06212376A (en) Production of rod, wire or tube of molybdenum or molybdenum alloy
JPS6173844A (en) Consumable type electrode and its production
KR20200104808A (en) Molded article made of a molybdenum-aluminum-titanium alloy
JPH0741344B2 (en) Fe-Co alloy forging method
CN118932204A (en) Preparation method of large-size TC20 titanium alloy cast ingot