Nothing Special   »   [go: up one dir, main page]

JPS5839069A - Semiconductor diaphragm - Google Patents

Semiconductor diaphragm

Info

Publication number
JPS5839069A
JPS5839069A JP13756281A JP13756281A JPS5839069A JP S5839069 A JPS5839069 A JP S5839069A JP 13756281 A JP13756281 A JP 13756281A JP 13756281 A JP13756281 A JP 13756281A JP S5839069 A JPS5839069 A JP S5839069A
Authority
JP
Japan
Prior art keywords
diaphragm
semiconductor
thin film
groove
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13756281A
Other languages
Japanese (ja)
Other versions
JPH0158673B2 (en
Inventor
Kenkichi Takadera
高寺 賢吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP13756281A priority Critical patent/JPS5839069A/en
Publication of JPS5839069A publication Critical patent/JPS5839069A/en
Publication of JPH0158673B2 publication Critical patent/JPH0158673B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To stabilize a semiconductor diaphragm against environmental temperature variation which diaphragm is used as a detector in a device for measuring pressure, differential pressure or absolute pressure by forming the lower center of a planar chip of a semiconductor single crystal in recessed state as a thin film and forming a fine and deep groove at the peripheral fixing part. CONSTITUTION:Since a silicon diaphragm 1 has a groove 6 for absorbing stress strain of itself, the stress strain is not almost transmitted from the peripheral fixing part 4 to a thin film diaphragm 3, thereby reducing the temperature drift of the zero point due to stress strain for extremely stable operation. It is not necessary to form a mount 10 in a special structure, the material may arbitrarily employ glass, silicon, alumina, metal and the like, and the mounting to the mount 10 can be arbitrarily selected by a method of utilizing low melting point glass, synthetic resin adhesive, gold-silicon eutectic crystal and the like. Further, since the groove 6 for absorbing the strain stress is narrow and deep in U- shaped section, it can be used forcibly even under high differential pressure without problem.

Description

【発明の詳細な説明】 この発wAは圧力鳴差圧・絶対圧など音測定する機器に
おいて検出素子として使用される半導体ダイヤフラムの
改良に関する。 半導体ダイヤフラム上にピエゾ抵抗素
子を形成したものを検出素子として用いる圧力S差圧・
絶対圧などの測定器は今年多見京れゐものであるが、そ
の性能違威上殊VclIA点とされるの肱、ピエゾ抵抗
係数の温度変化に起因する測定スパンの温度変化、周囲
温度変化によって半導体ダイヤ75五に加わる歪応力に
起因するゼロ点の温度ドリフトなどである。 本発明は
、上記のゼロ点の温度ドリフトの改良にかかるもので、
半導体ダイヤプラムとそれが取り付けられる取付台及び
覗り付けのための接合層などとの熱膨張係数の差によっ
て薄膜ダイヤフラムに加わる熱歪の影譬を減少すること
を目的とする。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an improvement of a semiconductor diaphragm used as a detection element in a device for measuring sound such as differential pressure or absolute pressure. Pressure S differential pressure using a piezoresistive element formed on a semiconductor diaphragm as a detection element
Absolute pressure and other measuring instruments have been introduced this year, but their performance is particularly high due to temperature changes at the VclIA point, temperature changes in the measurement span due to temperature changes in the piezoresistance coefficient, and ambient temperature changes. This includes temperature drift at the zero point due to strain stress applied to the semiconductor diamond 755 due to the stress. The present invention relates to improving the temperature drift of the above-mentioned zero point,
The object of the present invention is to reduce the influence of thermal strain applied to a thin film diaphragm due to the difference in thermal expansion coefficient between a semiconductor diaphragm, a mounting base to which it is attached, a bonding layer for viewing, and the like.

上記目的を達成するための従来の提案として、特開18
54−99585号公報に開示の1のがある。
As a conventional proposal to achieve the above purpose, JP-A-18
No. 54-99585 discloses one.

これば圧力・差圧°・絶対圧計なとの受圧部を構成する
部材から検出素子である半導体ダイヤフラムに加わる歪
応力を減らすために特殊な構造を採用した取付台管用し
るものであるが、その取付台の構造が複雑なため製造上
難点があると共に、歪応力の伝達を完全にはなくしえな
いなどの欠点がある。 また他の従来の提案として、実
開昭54−143275号公報に開示のものが11)、
これは半導体ダイヤ72ふと同じ素材からなる取付台を
用いることによシ、取付台と半導体ダイヤフラムの熱膨
張係数の差による熱歪応力の発生を防止することを目的
とし、取付台に溝を形設することによシ、この目的をよ
り完全に達成しようとするものである。 しかし、上記
いずれの提案のものも半導体ダイヤフラム自身は何ら歪
を吸収する手段を有しておらず、半導体ダイヤ75ムと
取付台を一体化するためf′%接合層が起歪部として発
生する歪応力を吸収することばてきないという難点があ
る。
This is a type of mounting pipe that has a special structure to reduce the strain stress applied to the semiconductor diaphragm, which is the detection element, from the members that make up the pressure receiving part such as pressure, differential pressure, and absolute pressure gauges. The structure of the mounting base is complicated, which makes it difficult to manufacture, and it also has drawbacks such as the fact that the transmission of strain stress cannot be completely eliminated. Other conventional proposals include those disclosed in Japanese Utility Model Application Publication No. 54-14327511),
This is done by using a mounting base made of the same material as the semiconductor diaphragm, and with the aim of preventing the generation of thermal strain stress due to the difference in thermal expansion coefficient between the mounting base and the semiconductor diaphragm, grooves are formed in the mounting base. By establishing this, we aim to more fully achieve this objective. However, in any of the above proposals, the semiconductor diaphragm itself does not have any means to absorb strain, and in order to integrate the semiconductor diaphragm and the mounting base, the f'% bonding layer is generated as a strain-generating part. The problem is that there is no language that can absorb strain stress.

半導体ダイヤフラムと取付台會一体化するための方法と
してμ、合成樹脂による接着、低一点ガラスによる接合
、金−シリコンの共晶合金による接合、陽Ii*合法、
金属ソルダ一層による接合など種々の方法が既に提案・
実用化されているが、上記いずれの方法を用いても、接
合層には接合時に発生した歪応力が残ると共に、半導体
ダイヤスラムと接合層中取付台の熱膨張係数を完全には
一致させることはできなめために熱歪応力が薄膜ダイヤ
フラムに加わることはまぬがれ得ない。
Methods for integrating the semiconductor diaphragm and the mounting table include μ, synthetic resin bonding, low single point glass bonding, gold-silicon eutectic alloy bonding, positive Ii* method,
Various methods such as bonding using a single layer of metal solder have already been proposed and
Although these methods have been put to practical use, no matter which method is used, the strain stress generated during bonding remains in the bonding layer, and the thermal expansion coefficients of the semiconductor diaphragm and the mount in the bonding layer cannot be completely matched. Because of the slanted surface, it is inevitable that thermal strain stress will be applied to the thin film diaphragm.

この発BAは、との悪影響をと9除き、周囲温度変化に
対して安定に動作する。 すなわち熱歪応力が薄膜ダイ
ヤフラムに加わることの無い半導体ダイヤフラムを提供
するものであり、圧力・差圧・絶対圧計等に好適に使用
される。
This BA operates stably against changes in ambient temperature, excluding the adverse effects of . In other words, the present invention provides a semiconductor diaphragm in which thermal strain stress is not applied to the thin film diaphragm, and is suitably used in pressure, differential pressure, absolute pressure gauges, and the like.

すなわち、この発明の半導体ダイヤフラムは、半導体単
結晶の板状チップの下面中央部を上面へ向けて凹ませて
中央部を薄肉にしてその中央部を薄膜ダイヤフラムとす
ると共に、その周囲の比較的厚内の部分を周辺固定部と
し%―らにその周辺固定部に前記薄膜ダイヤフラムを取
り囲むように応力吸収の為の細く深い*1形成して構成
さfまたものである。 こめ半導体ダイヤプラムμ、取
付台から接合層を介しであるいは接合層自体から半導体
ダイヤフラムの周辺固定部に加わる歪応力が薄膜ダイヤ
フラムへと伝わるのを、細く深い溝を設けることにより
防止することができるので、半導体ダイヤフラムとの熱
膨張係数の一致、歪応力の伝達防止などを考慮し九特別
な取付台を必要とせず、半導体ダイヤフラムと取付台の
!!合の手法も容易で広い温度範囲にわ大って安定に動
作しりろものである。
That is, in the semiconductor diaphragm of the present invention, the central part of the lower surface of a semiconductor single crystal plate chip is concave toward the upper surface to make the central part thinner, and the central part becomes a thin film diaphragm. The inner part is used as a peripheral fixing part, and the peripheral fixing part is formed thin and deep *1 for stress absorption so as to surround the thin film diaphragm. By providing a narrow and deep groove in the semiconductor diaphragm μ, it is possible to prevent the strain stress applied to the peripheral fixing portion of the semiconductor diaphragm from being transmitted from the mounting base through the bonding layer or from the bonding layer itself to the thin film diaphragm. Therefore, in consideration of matching the coefficient of thermal expansion with the semiconductor diaphragm and preventing transmission of strain stress, etc., there is no need for a special mounting base, and the mounting base can be attached to the semiconductor diaphragm! ! This method is also simple and operates stably over a wide temperature range.

以下、図に示す実施例に基いて、この発明を詳説する。Hereinafter, this invention will be explained in detail based on embodiments shown in the drawings.

181図に示す(1)u、この発明の半導体ダイヤフラ
ムの一実施例であるシリコンダイヤスラムである。
(1) u shown in Fig. 181 is a silicon diaphragm which is an embodiment of the semiconductor diaphragm of the present invention.

このシリコンダイヤフラム(13は、(tlO)面を有
するシリコン単結晶で概略7swX7swX200μm
の正方形の板状チップの下面中央部(2)を電解エツチ
ング等により削除して、その中央部に厚さ十数声調の薄
膜ダイヤフラムβ)を円形に形成したものである。 円
形の直径はz−3mである。
This silicon diaphragm (13 is a silicon single crystal with a (tlO) plane and has an approximate size of 7 sw x 7 sw x 200 μm.
The center part (2) of the lower surface of the square plate-shaped chip is removed by electrolytic etching or the like, and a circular thin film diaphragm β) having a thickness of about ten tones is formed in the center part. The diameter of the circle is z-3m.

薄膜ダイヤスラム(31f1周囲の厚さ200声肩 の
部分は周辺固定5(4)である。
Thin film diaphragm (200mm thickness around 31f1) The shoulder part is peripherally fixed 5 (4).

薄膜ダイヤフラム(31t−取9sむように周辺固定部
(4)に形設されえIIIIは歪応力吸収のための細く
深い溝(6)であ夛、周辺固定部(4)の下面(5) 
′に開口しており、それら開口(6m)(6b)(6e
)(@d) u四辺形をなしている。 そしてその四辺
形の辺をなす開口の長手方向はいずれ4(xiz)軸方
向を向いている。 開口の幅は数声講から数+pmで、
溝の深さは周辺固定部(4)の厚みの概略80〜9oチ
すなわち約160−IJIO声肩である。
A thin film diaphragm (31t-9s) is formed on the peripheral fixing part (4).
', and these openings (6m) (6b) (6e
) (@d) It forms a u quadrilateral. The longitudinal direction of the opening forming the sides of the quadrilateral is always oriented in the 4 (xiz) axis direction. The width of the aperture is from a few notes to a few + pm,
The depth of the groove is approximately 80 to 9 degrees of the thickness of the peripheral fixing portion (4), that is, approximately 160 degrees.

このような歪応力吸収の為の溝(6)ハ、周辺固定部(
4)の下面(5)[5i01.5ljN4などの薄膜を
形成し大径上記開口(6a)(6b)(6e)(6d)
 K対応した四辺形パターンをフォト・リソグラフィー
の技術によりくり抜いたのち、A PW (Am1n@
pyoca−techol Water)エツチングを
施すことで極めて好適に形設できる。 すなわち、AP
Wエツチングによれば(111)面はほとんどエツチン
グされない。 従って、(110)面上に<112>軸
方向に長手方向を有するように開けられたエッチジグ窓
を有するシリコンをAPWエツチングすれば、深ζ方向
にのみエツチングされ、横方向のエツチングすなわちア
ンダーエッチ1jtxtx)面があられれるのでほとん
ど進まない。 結局、下面(5)が上記四辺形パターン
の深さ方向にのみエツチングされて下面(5) K垂直
な#18 (7m)(7b)(7c)(7d)をもつ歪
 一応力吸収の為の溝(6)が狭く深い断面略U字状に
形 。
Groove (6) C for absorbing such strain stress, peripheral fixing part (
4) Lower surface (5) Form a thin film such as [5i01.5ljN4 and open the above large diameter openings (6a) (6b) (6e) (6d)
After cutting out a quadrilateral pattern corresponding to K using photolithography technology, A PW (Am1n@
It can be formed very suitably by etching (pyoca-techol water). That is, AP
According to W etching, the (111) plane is hardly etched. Therefore, if APW etching is performed on silicon having an etch jig window opened on the (110) plane so that the longitudinal direction is in the <112> axis direction, the etching will be performed only in the deep ζ direction, and the etching will occur in the lateral direction, that is, underetch 1jtxtx. ) The surface is so rough that little progress is made. As a result, the lower surface (5) is etched only in the depth direction of the quadrilateral pattern, and the lower surface (5) has K perpendicular #18 (7m) (7b) (7c) (7d) for stress absorption. The groove (6) is narrow and deep, with a roughly U-shaped cross section.

成されることになるからである。 歪応力吸収の為の溝
(6)の深シμエツチング時間によシコントロールで匙
、幅は前記フォト・リソグラフィー技術によってエツチ
ングマスクに開けられる四辺形パターンの辺の@によっ
てコントロールできる。
Because it will be done. The depth of the groove (6) for absorbing strain stress can be controlled by the etching time, and the width can be controlled by the sides of the quadrilateral pattern formed in the etching mask by the photolithography technique.

このようにして周辺固定5(4)の下面(5) K開口
する断面略U字状の歪応力吸収の為のfli [61を
形成されたシリコンダイヤフラム(1)汀、纂4図に示
すように、その上1iiK7オト・リソグラフィーの手
法に工pたとえばピエゾ抵抗素チーより成る歪ゲージ1
LI191t−形成され、歪応力吸収の為の溝(6)よ
り外側の周辺同定部下面(5)f>取付面(5a)の部
分で取付台−に取り付けられ、圧力・差圧・絶対圧尋の
検出素子■とされる。
In this way, the lower surface (5) of the peripheral fixing 5 (4) is formed with a silicon diaphragm (1) having an approximately U-shaped cross section with an opening for strain stress absorption (1), as shown in Figure 4. In addition, for example, a strain gauge 1 made of a piezoresistive element may be applied to the photolithography method.
LI191t is formed, and is attached to the mounting base at the area where the peripheral identification lower surface (5) f > mounting surface (5a) outside the groove (6) for strain stress absorption, and pressure, differential pressure, and absolute pressure. It is considered as the detection element (■).

上記シリコンダイヤフラム(υでは、上記説明のように
それ自身が歪応力吸収の為の$ 161 ft有してい
るから、周辺固定@(4)から薄膜ダイヤフラムa)へ
の歪応力の伝達がほとんどない。 従って、歪応力によ
る零点の温度ドv7トが非常に少く、極めて安定に動作
しうる%tlである。 また、取付台頭を特殊な構造と
する必要もなく、素材もガラス、シリコン、アル建す、
金属などの素材を任意に使用することができる。 さら
にその上、取付台頭への取り付けを、低融点ガラス、合
成樹脂接着剤、金−シリコンの共晶を利用する方法など
任意に選択して行うことができる。 また歪応力吸収の
為の連出)が狭く深い断面U字状であるから、ダイヤフ
ラム(1)の両面の差圧によりブリッジ部υに生ずる応
力に剪断応力になるが、シリコンセ剪断応力に対して強
いので、大きな差圧下でも強度的に問題なく使用できる
Since the silicon diaphragm (υ) itself has $161 ft for absorbing strain and stress as explained above, there is almost no transmission of strain and stress from the peripheral fixation @(4) to the thin film diaphragm a). . Therefore, the temperature dot v7 at the zero point due to strain stress is very small, and the temperature is %tl, which allows extremely stable operation. In addition, there is no need for a special structure for the mounting base, and materials such as glass, silicone, aluminum, etc.
Any material such as metal can be used. Furthermore, attachment to the mounting base can be carried out by any method such as using low melting point glass, synthetic resin adhesive, or gold-silicon eutectic. In addition, since the diaphragm (1) has a narrow and deep U-shaped cross section, the stress generated in the bridge portion υ due to the differential pressure on both sides of the diaphragm (1) becomes shear stress, but the silicon shear stress Because it is strong, it can be used even under large differential pressure without any problems in terms of strength.

他の実施例とし゛ては、歪応力吸収の為の溝をダイヤフ
ラムの上面に開口する溝とするもの、あるいは下面に開
口する溝と上面に開口する溝との二重の溝とするものが
挙げられる。 また、他の異方向性エツチングたとえば
アルカリエツチングを用いて歪応力吸収の為の溝を形成
してもよい。
Other examples include one in which the groove for absorbing strain stress is a groove that opens on the top surface of the diaphragm, or one in which the groove is a double groove with a groove that opens on the bottom surface and a groove that opens on the top surface. It will be done. Further, grooves for absorbing strain stress may be formed using other anisotropic etching such as alkali etching.

さらにスパッタリング、プラズマエツチング、電子ビー
ム加工などを用いて歪応力吸収の為の溝を形成してもよ
い、 この場合には、(112)軸方向の辺をもつ四辺
形パターンの溝とする必要がないから、円形パターンな
どの任意のバター/の溝を形設することができる。 ま
たさらに、半導体をゲルマニウムとしたものが挙けられ
る。
Furthermore, grooves for absorbing strain stress may be formed using sputtering, plasma etching, electron beam machining, etc. In this case, it is necessary to form grooves in a quadrilateral pattern with sides in the (112) axis direction. Since there is no pattern, any butter/grooves can be formed, such as a circular pattern. Furthermore, examples include those using germanium as the semiconductor.

【図面の簡単な説明】[Brief explanation of the drawing]

881図はこの発明V半導体ダイヤフラムの一実施例の
lI2図におけるI−I噺面図、第2図IWl1図に示
す半導体ダイヤフラムの底面図、iiJ図tit同じく
底面部を見た斜視図、lI4図は第1図に示す半導体ダ
イヤフラムを用いえ圧力検出素子の縦端面図である。 (13・−・シリコンダイヤフラム、■・・・薄膜ダイ
ヤスラム、(4)・・・周辺■定部、(6)−下面、(
5B)・・・取付面、(61・・・歪応力吸収の為の溝
、(6m)(6b)(6e)(6d) ・i1口、(7
m)(7b)(7c)(7d) −溝壁、(9)・・・
ピエゾ抵抗素子、−・・・取付台、(ll−・・圧力検
出素子。 特許出願人 株式会社島津製作所
Figure 881 is an I-I side view in Figure 1I2 of an embodiment of the semiconductor diaphragm of this invention V, Figure 2 is a bottom view of the semiconductor diaphragm shown in Figure 11, Figure iiJ is a perspective view of the same bottom view, and Figure 1I4. 2 is a longitudinal end view of a pressure sensing element using the semiconductor diaphragm shown in FIG. 1. FIG. (13--Silicon diaphragm, ■--Thin film diaphragm, (4)--Periphery ■ Fixed part, (6)--Bottom surface, (
5B)...Mounting surface, (61...Groove for strain stress absorption, (6m) (6b) (6e) (6d) ・i1 port, (7
m) (7b) (7c) (7d) - Groove wall, (9)...
Piezoresistance element, -...Mounting base, (ll-...Pressure detection element. Patent applicant: Shimadzu Corporation

Claims (1)

【特許請求の範囲】 1、半導体単結晶の板状チップの下面中央部を上面へ向
けて凹ませて薄膜ダイヤフラムを形成すると共に、その
周囲の比較的厚内の部分を周辺固定部とした半導体ダイ
ヤフラムにおいて、−薄膜ダイヤフラムを取り囲むよう
に周辺固定iBK細く深い鱒を形成したことを特徴とす
る半導体ダイヤフラム。 1 半導体がシリコンであり、板状チップの上・下面を
(口0)mとし、下面(1to)面上で(11り軸方向
に辺をもつ4辺形の各辺に沿って異方向性エツチングを
施して、周辺固定部下面に開口する細く深い溝を形成し
てなる請求の範囲第五項記載の半導体ダイヤフラム。 1 歪吸収溝よp外側の周辺固定部下面が′、半導体ダ
イヤフラム教付台への取付面となる請求の範fll11
項記載の半導体ダイヤフラム。 表 異方向性エツチングが、A P W (Ami n
@P)’ −roeateehol Wat@r)エツ
チングである請求の範囲82項記載の半導体ダイヤフラ
ム。 5、ダイヤフラム上面にピエゾ抵抗素子が形成されてな
る請求の範1i1E1項から謳4項のいずれかに記載の
半導体ダイヤフラム、。
[Scope of Claims] 1. A semiconductor in which the central part of the lower surface of a semiconductor single-crystal plate-like chip is recessed toward the upper surface to form a thin film diaphragm, and a relatively thick part around the thin film diaphragm is used as a peripheral fixing part. A semiconductor diaphragm characterized in that - a periphery fixed iBK thin and deep trout is formed in a diaphragm so as to surround a thin film diaphragm. 1 The semiconductor is silicon. The semiconductor diaphragm according to claim 5, wherein the semiconductor diaphragm is formed by etching to form a narrow and deep groove opening on the lower surface of the peripheral fixing member. Scope of claim that is the mounting surface to the standFll11
Semiconductor diaphragm described in Section 1. Table Anisotropic etching is A P W (Amin
83. The semiconductor diaphragm according to claim 82, wherein the semiconductor diaphragm is etched. 5. The semiconductor diaphragm according to any one of claims 1i1E1 to 4, wherein a piezoresistive element is formed on the upper surface of the diaphragm.
JP13756281A 1981-08-31 1981-08-31 Semiconductor diaphragm Granted JPS5839069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13756281A JPS5839069A (en) 1981-08-31 1981-08-31 Semiconductor diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13756281A JPS5839069A (en) 1981-08-31 1981-08-31 Semiconductor diaphragm

Publications (2)

Publication Number Publication Date
JPS5839069A true JPS5839069A (en) 1983-03-07
JPH0158673B2 JPH0158673B2 (en) 1989-12-13

Family

ID=15201618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13756281A Granted JPS5839069A (en) 1981-08-31 1981-08-31 Semiconductor diaphragm

Country Status (1)

Country Link
JP (1) JPS5839069A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183156A (en) * 1984-03-01 1985-09-18 Canon Inc Ink jet recording head
JPS6198552A (en) * 1984-10-19 1986-05-16 Canon Inc Manufacture of liquid jet recording head
JPS63283073A (en) * 1987-05-15 1988-11-18 Toshiba Corp Semiconductor pressure sensor
JPH01127268U (en) * 1988-02-23 1989-08-31
JPH0363834U (en) * 1989-10-24 1991-06-21
WO2000029822A1 (en) * 1998-11-12 2000-05-25 Maxim Integrated Products, Inc. Chip-scale packaged pressure sensor
WO2000029823A1 (en) * 1998-11-12 2000-05-25 Maxim Integrated Products, Inc. Hermetic packaging for semiconductor pressure sensors
WO2004055569A1 (en) * 2002-12-17 2004-07-01 Sharan Instruments Corporation Optical element fixing structure, optical element fixing body, optical element, and optical element holder
JP2013178182A (en) * 2012-02-29 2013-09-09 Alps Electric Co Ltd Capacitive physical quantity sensor and manufacturing method thereof
JP2013178181A (en) * 2012-02-29 2013-09-09 Alps Electric Co Ltd Capacitive physical quantity sensor and manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183156A (en) * 1984-03-01 1985-09-18 Canon Inc Ink jet recording head
JPS6198552A (en) * 1984-10-19 1986-05-16 Canon Inc Manufacture of liquid jet recording head
JPS63283073A (en) * 1987-05-15 1988-11-18 Toshiba Corp Semiconductor pressure sensor
JPH01127268U (en) * 1988-02-23 1989-08-31
JPH0363834U (en) * 1989-10-24 1991-06-21
WO2000029822A1 (en) * 1998-11-12 2000-05-25 Maxim Integrated Products, Inc. Chip-scale packaged pressure sensor
WO2000029823A1 (en) * 1998-11-12 2000-05-25 Maxim Integrated Products, Inc. Hermetic packaging for semiconductor pressure sensors
US6346742B1 (en) 1998-11-12 2002-02-12 Maxim Integrated Products, Inc. Chip-scale packaged pressure sensor
US6351996B1 (en) 1998-11-12 2002-03-05 Maxim Integrated Products, Inc. Hermetic packaging for semiconductor pressure sensors
WO2004055569A1 (en) * 2002-12-17 2004-07-01 Sharan Instruments Corporation Optical element fixing structure, optical element fixing body, optical element, and optical element holder
US7692883B2 (en) 2002-12-17 2010-04-06 Sharan Instruments Corporation Optical element fixing structure, optical element fixing body, optical element, and optical element holder
JP2013178182A (en) * 2012-02-29 2013-09-09 Alps Electric Co Ltd Capacitive physical quantity sensor and manufacturing method thereof
JP2013178181A (en) * 2012-02-29 2013-09-09 Alps Electric Co Ltd Capacitive physical quantity sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0158673B2 (en) 1989-12-13

Similar Documents

Publication Publication Date Title
US6546804B2 (en) Method of making a pressure sensor comprising a resonant beam structure
US9534925B2 (en) Hemitoroidal resonator gyroscope
CN103154682B (en) Optical-fiber-compatible acoustic sensor
JPS5839069A (en) Semiconductor diaphragm
JP2011004129A (en) Microphone
US7055392B2 (en) Micromechanical pressure sensor
Rola Anisotropic etching of silicon in KOH+ Triton X-100 for 45° micromirror applications
US6171437B1 (en) Semiconductor manufacturing device
JPS59155971A (en) High pressure resistant pressure sensor
JPH11135804A (en) Semiconductor accelerometer and its manufacture
TW200411155A (en) Isolated micro pressure sensor
JPS6013314B2 (en) Pressure-electrical signal converter
JP2001330529A (en) Pressure sensor
CN108132093A (en) A kind of outstanding film fiber optic acoustic sensors and preparation method thereof
JP2006250760A (en) Sensor
JP2650455B2 (en) Semiconductor pressure sensor
JP2740898B2 (en) X-ray exposure mask and method of manufacturing the same
JPH0250066B2 (en)
JPS6281539A (en) Diaphragm
JPH03107767A (en) Acceleration sensor
JP2011085407A (en) Vibrating pressure sensor
JPS6257225A (en) Method for measuring thickness of silicon wafer
JPH07113707A (en) Semiconductor composite function sensor
JPH0234973A (en) Semiconductor pressure sensor
Flaten Frequency dependence of critical velocity behavior in oscillatory flow of superfluid helium-4 through a small aperture