Nothing Special   »   [go: up one dir, main page]

JPS582750A - Method and device for measuring blood coagulation time - Google Patents

Method and device for measuring blood coagulation time

Info

Publication number
JPS582750A
JPS582750A JP57101496A JP10149682A JPS582750A JP S582750 A JPS582750 A JP S582750A JP 57101496 A JP57101496 A JP 57101496A JP 10149682 A JP10149682 A JP 10149682A JP S582750 A JPS582750 A JP S582750A
Authority
JP
Japan
Prior art keywords
coagulation time
light
blood coagulation
measuring
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57101496A
Other languages
Japanese (ja)
Inventor
クルト・スキルトクネクト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of JPS582750A publication Critical patent/JPS582750A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4905Determining clotting time of blood

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Ecology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Optical Measuring Cells (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は血ノ液試料の凝固時間の測定方法に関し、ここ
で試料−試薬混合物は、試料と少くとも一つの試薬とを
クペット内に導入して形成され、その上この方法を行な
うのに適する装置にも関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining the clotting time of a blood sample, wherein a sample-reagent mixture is formed by introducing the sample and at least one reagent into a cupette; It also relates to a device suitable for carrying out this method.

上記の型の方法装置(西独実用新案GM7707546
)は知られており、ここで試料−試薬混合物の凝固は混
合物を攪拌俸で攪拌することでもたらされ、この欅は測
定前にクベット内に導入されねばならず、且りペツシの
外側に置かれた磁力攪拌装置で駆動される。
Method equipment of the above type (West German utility model GM7707546
) is known, where the coagulation of the sample-reagent mixture is brought about by stirring the mixture with a stirring bar, which must be introduced into the cuvette before the measurement and which is placed outside the cuvette. It is driven by a magnetic stirring device.

多数の測定を行わわばならぬ時、攪拌欅をクベツ゛ト内
に導入するための作業の出費は上記既知の   ・方法
の欠点であることが見出されている。磁力攪拌装置は既
知装置の全材料費のかなりの部分を占めるから、このよ
うな装置が無くて働らく装置を持つことがさらに望まし
い。
When a large number of measurements are to be carried out, the expense of labor for introducing the stirrer into the cube has been found to be a drawback of the above-mentioned known method. Since magnetic stirring devices represent a significant portion of the total material cost of known devices, it is further desirable to have a device that will work without such devices.

本発明の下にある問題は、それゆえ必要な作業費、材料
費が低い上記の型の方法、装置を得ることである。
The problem underlying the invention is therefore to obtain a method, a device of the above type, which requires low labor and material costs.

本発明により、この問題は前に引用した涙の方法で解決
され、この方法は試料−試薬混合物を静止クペツシ内で
、混合物が静止クベット内に突出する縁のまわりで前后
に流れるよう動かし、それにより凝血がこの縁の上に形
成する段階を有する。
According to the invention, this problem is solved by the tear method cited earlier, which involves moving the sample-reagent mixture in a stationary cuvette so that the mixture flows forward and backward around the edges that project into the stationary cuvette. There is a stage where a blood clot forms on this edge.

本発明の次の目的は、血液試料の凝固時間を、試料と試
薬とを受けるクペツFで測定する装置である。本発明に
よる装置では、クペットの上部は仕切により2室に分割
され、仕切はクベツシの底部から一定の距離の所に置か
れた縁を持っている。
A further object of the invention is an apparatus for measuring the clotting time of a blood sample with a Kupets F receiving the sample and reagent. In the device according to the invention, the upper part of the kuvette is divided into two chambers by a partition, the partition having an edge placed at a certain distance from the bottom of the kuvette.

上記の既知の方法及び対応する装置と比べ□て、本発明
により得られる解決はクベット内に攪拌欅を導入する必
要がなく、それゆえこの攪拌機の駆動体が要らない利点
を持っている0本発明はそれゆえ、作業費、材料費を相
当に減らすことが出来る。
Compared to the above-mentioned known methods and corresponding devices, the solution obtained according to the invention has the advantage that there is no need to introduce a stirrer into the cuvette and therefore no drive for this stirrer is required. The invention can therefore significantly reduce labor and material costs.

本発明の作動例を添付図面を基として次に説明する。An example of the operation of the present invention will now be described with reference to the accompanying drawings.

第1図は本発明による装置に使われるクベットを示して
いる。このクペットはクベットの中味を光学的に測定の
出来る材料で作られる。このクベットは第1図の型であ
る必要はない。しかし、鋭い縁3Tt−持つ仕切2を持
つことが必要不可欠である。この仕切はクペットの上部
を2個の室7.8に分割する。
FIG. 1 shows a cuvette used in the device according to the invention. The cupette is made of a material that allows the contents of the cupette to be measured optically. This cuvette does not have to be of the type shown in Figure 1. However, it is essential to have the partition 2 with sharp edges 3Tt-. This partition divides the upper part of the cupette into two chambers 7.8.

装置は又、第1図に示す装置内に光源5(例えば発光ダ
イオード)と、受光器6(例えば光電ダイオード)を収
容している。これら要素により、クペツFを通る光束4
が夫々作られ、且受けられ、それにより光束は、光束4
が横切るクペットの中味の光の吸収を測定出来るため、
縁3の近く、その下を通る。光束4の通路は、縁3上に
形成される凝血33が光束4により横切られるように遺
ばれる。
The device also houses a light source 5 (e.g. a light emitting diode) and a light receiver 6 (e.g. a photoelectric diode) within the device shown in FIG. Due to these elements, the luminous flux 4 passing through Kupets F
are produced and received, respectively, so that the luminous flux becomes luminous flux 4
Because it is possible to measure the absorption of light in the contents of the cuppet that crosses it,
Pass near and under edge 3. The path of the light bundle 4 is left in such a way that the blood clot 33 formed on the edge 3 is traversed by the light bundle 4.

その上、装置は第1図に示す装置内に、光源62(例え
ば発光ダイオ−r62)と、受光器63(例えば光電ダ
イオード63)を収容している。これら要素により、ク
ペツシを通る光束61が夫々作られ、且受けられ、それ
により光束は、光束61が横切るクペツF中味の光吸収
を測定出来るため縁3の上を通る。光束61の通路はク
ベットの中に導入される試料の最大の量が光束61では
検知されないが、試料−試薬混合物に最小の容積が選ば
れた場合でも、試薬の追加后にこの混合物が光束61に
より横切られるように選ばれる。
Additionally, the device houses a light source 62 (eg, a light emitting diode 62) and a light receiver 63 (eg, a photoelectric diode 63) within the device shown in FIG. These elements create and receive, respectively, a beam of light 61 passing through the cup, so that the beam passes over the rim 3 in order to be able to measure the light absorption of the contents of the cup F traversed by the beam. The path of the beam 61 is such that the maximum amount of sample introduced into the cuvette is not detected by the beam 61, but even if a minimum volume is chosen for the sample-reagent mixture, after adding the reagent this mixture is selected to be crossed by.

光束4,61での光吸収測定時の周辺光の影響を減らす
ため、受光器として赤外IIフィルタが組込まれた光電
ダイオードを使うのが好宜しい。後者フィルタのフィル
タ範囲は約900 mmから1000 n+11で、約
940n鳳の所で最小減衰を持つのが好ましい。これら
フィルタにより、白熱光による周辺照明に対する測定の
、感受性は約5倍小さくなる。
In order to reduce the influence of ambient light when measuring the light absorption in the beams 4, 61, it is preferable to use a photodiode with an integrated infrared II filter as the receiver. The filter range of the latter filter is preferably from about 900 mm to 1000 mm, with a minimum attenuation at about 940 mm. These filters make the measurements approximately five times less sensitive to incandescent ambient illumination.

第2図に示すよう、クベツ>1の上部の室Tは開口9に
より装置21に結合され、この装置によりクベット中味
上に働らく可変空気圧を作ることが出来る。この圧力に
より、本発明による装置内の試料−試薬混合物は第3図
(3)で示すように動かされる。第7図、第8図につい
てあとで述べるように、装置21は例えばポンプ要素と
して振動膜22を持つことが出来る。これにより発生す
る空気圧は管23と開口Sとを経てタペット1内に進む
、クペットは作動時に開いたままの開口11を持ってい
る。
As shown in FIG. 2, the upper chamber T of the kvet>1 is connected by an opening 9 to a device 21, by means of which a variable air pressure can be created acting on the contents of the kvet. This pressure causes the sample-reagent mixture within the device according to the invention to move as shown in FIG. 3(3). As will be explained later with reference to FIGS. 7 and 8, the device 21 can have, for example, a vibrating membrane 22 as a pumping element. The air pressure generated thereby passes through the tube 23 and the opening S into the tappet 1, which has an opening 11 which remains open during operation.

第3図に示すように、上記装置を持つ本発明による方法
の働きとして次の段階が行なわれる。
As shown in FIG. 3, the following steps are performed in the operation of the method according to the invention with the device described above.

(1)予め決められた容積の血液又は血漿試料31がク
ペット内に導入され、その中で培養される0例として第
3図に示すように、試料の量41、これが縁3に到達せ
ず、それゆえ空気が試料面と縁3との間を自由に流れる
ことが出来るよう十分少なく選ぶのが好ましい。装置2
1で発生する空気圧はそれゆえ、予め決められた量の試
薬がクベツシ内に導入されない限り静止したままの試料
を動かすことが出来ない。
(1) A predetermined volume of blood or plasma sample 31 is introduced into the cupet and cultured therein.As shown in FIG. , is therefore preferably chosen to be small enough so that air can flow freely between the sample surface and the edge 3. Device 2
The air pressure generated at 1 cannot therefore move the sample, which remains stationary, unless a predetermined amount of reagent is introduced into the tube.

(8)  予め決められた量の試薬がクペット内に導入
される。試料と試薬との夫々の量は、試料−試薬混合物
の面が各場合、縁3と光束61との上に置かれるよう選
ばれる。それにより試薬がクペット内に導入されるや否
や次の効果が達成する。
(8) A predetermined amount of reagent is introduced into the cupette. The respective amounts of sample and reagent are chosen such that the side of the sample-reagent mixture lies in each case above the edge 3 and the beam 61. The following effects are thereby achieved as soon as the reagent is introduced into the cupette.

(3)試料−試薬混合物は、光□束61で検知される。(3) The sample-reagent mixture is detected by the light beam 61.

この時点が凝固時間測定の開始を示す。この時点はそれ
自身知られている電子シグナル処理装置と一致される。
This point marks the start of clotting time measurements. This point coincides with electronic signal processing devices known per se.

第2図に示す装置で生じる、上記空気圧の作用によって
、試料−試薬混合物は今や、流れ、それによって第3図
(3)に示す位置←)と(b)との間で前后に動く。そ
れにより試料は試薬と共に良く混合され、クベットの鋭
い縁3のまわりの混合物の流れが生じる。
Due to the action of the air pressure, which occurs in the apparatus shown in FIG. 2, the sample-reagent mixture now flows and thereby moves forward and backward between the positions ←) and (b) shown in FIG. 3 (3). Thereby the sample is well mixed with the reagents and a flow of the mixture around the sharp edges 3 of the cuvette occurs.

(4) (3)に示す縁3に関する液体の相・対運動に
よって、凝血33が凝固の瞬間に縁3の上に形成する。
(4) Due to the relative movement of the liquid with respect to the edge 3 shown in (3), a blood clot 33 forms on the edge 3 at the moment of coagulation.

この凝血が光束4により検知されるから、この光束で測
定される光吸収内の急な感知出来る変化が生じる。この
変化を測定することにより、凝固時点と同時に凝固時間
とが明らかとなり、正しく測定される。この測定のため
、確定された値の記録のため、それ自身知られている電
子シグナル処理装置支はデータ記録装置が使われる。
Since this blood clot is detected by the light beam 4, an abrupt and perceivable change in the light absorption measured with this light beam results. By measuring this change, the coagulation time becomes clear at the same time as the coagulation time, and can be measured correctly. For this measurement, an electronic signal processing device or data recording device, which is known per se, is used to record the determined values.

上記方法の変型として、且測定がそれによって悪くなら
ない限りにおいて、試料の量は又、試料だけがクベット
内にその面が縁3の上に置かれるほど十分大きく選ぶこ
とが出来る。この場合、試料は、試料に試薬が加えられ
て上記のように空気圧の作用で動かされる前に、同じ試
料−試薬混合物に対し第3図に示すものと同様に、光束
4により横切られる。
As a variant of the above method, and provided that the measurements are not impaired thereby, the sample volume can also be chosen to be large enough so that only the sample is placed in the cuvette with its side on the edge 3. In this case, the sample is traversed by a beam of light 4, similar to that shown in FIG. 3 for the same sample-reagent mixture, before the reagents are added to the sample and moved under the action of air pressure as described above.

第4表図から第6b図に示すように、本発明による装置
は文具なる型のクペットで働らくことが出来る。
As shown in Tables 4 to 6b, the device according to the invention can work in a cupette of the stationery type.

第4a図は第4b図に側面図で示すクペツシ41の断面
図である。第1図のクペット1の場合のように、クペッ
ト41は又鋭い縁43を持つ仕切44を持っている。ク
ベツ)41の頂W&45は開いている。第5図に示すよ
うに、可変空気圧はクペット41に横開口42を経て供
給され、開口は管77を経て、空気圧を作る装置に結合
される。
FIG. 4a is a sectional view of the coupe 41 shown in side view in FIG. 4b. As in the case of the cupette 1 of FIG. 1, the cupette 41 also has a partition 44 with sharp edges 43. Kubetsu) 41 top W & 45 are open. As shown in FIG. 5, variable air pressure is supplied to the cupet 41 through a lateral opening 42, which is connected via a tube 77 to a device for producing air pressure.

第1図によるクペツシと比べて、第4a図から第6b図
のクベット41はこれが測定装置内に容易に置くことが
出来るのでより簡単に作動が出来る利点を持っている。
Compared to the cupet according to FIG. 1, the cuvette 41 of FIGS. 4a to 6b has the advantage that it is easier to operate, since it can be easily placed in the measuring device.

第6a図は試料だけが入れられたクペット41を示して
いる。第6b図は試料−試薬が入れられたクペツ)41
を示している。第6a図、第6b図で、光束4.61の
位置は夫々各々小円で示されている。
FIG. 6a shows the cupette 41 containing only the sample. Figure 6b shows the container containing the sample-reagent) 41
It shows. In FIGS. 6a and 6b, the position of the light beam 4.61 is each indicated by a small circle.

第4a図、第4b図によるクベット41を持つ本発明に
よる装置の作動様式は第6図を基として上記したものと
同じである。
The mode of operation of the device according to the invention with the cuvette 41 according to FIGS. 4a and 4b is the same as described above on the basis of FIG.

第7@Iは可変空気圧を作る装置21(第1図)の好適
実施例の図解断面図を示している。この装置はハウジン
グT1内に収容される。鋼板73のコアーを持つ膜72
はこのハウジ・ング71内に置かれる。膜T2の振動は
電磁駆動組立体により生じ、この組立体は磁気コアー7
4と磁気コイル75とを有し、コイルに適当な交流が加
えられる。
7@I shows a diagrammatic cross-sectional view of a preferred embodiment of the device 21 (FIG. 1) for creating variable air pressure. This device is housed within a housing T1. Membrane 72 with a core of steel plate 73
is placed within this housing 71. The vibrations of the membrane T2 are caused by an electromagnetic drive assembly, which is connected to the magnetic core 7.
4 and a magnetic coil 75, to which a suitable alternating current is applied.

それによりハウジング71内に可変空気圧が生じ、この
空気圧は本発明による装置の2個のクペットに夫々管r
r、rsを経て加えられる。
This creates a variable air pressure in the housing 71, which air pressure is applied to each of the two cuplets of the device according to the invention.
It is added via r and rs.

第8図は第7図に示す装置で作ることの出断る空気圧の
時間に対する代表的変化を図解的に示している。空気圧
は+2ミリバールと一2ミリバールとの間で変動し、そ
の時間に対する変動は約40ヘルツの周波数を持つほぼ
正弦波型を持っている。
FIG. 8 diagrammatically shows a typical change over time in the air pressure produced by the apparatus shown in FIG. 7. The air pressure varies between +2 mbar and 12 mbar, and its variation over time has an approximately sinusoidal shape with a frequency of approximately 40 hertz.

上記作動例は、例えば100又は200マイクpリツタ
の試料容積、200マイク四リツタの決められた試薬容
積で作動する。
The above example of operation operates with a sample volume of, for example, 100 or 200 microliters and a defined reagent volume of 200 microliters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による装置のクペットと、その中に設け
られる電気−光学的装置とを示し、第2図は本発明によ
る装置のクペットと、その中に設けられ、クベット内の
可変空気圧を作る装置との断面を示し、 :、。 第3図は本発明による方法を行なう段階を示し、第4a
図から第6b図まではクペットの別型とその本発明によ
る装置内での使用を示し、第7図は可変空気圧を作るた
め第2図に示す装置I2の好適実施例の図解断面図を示
し、1118図は第7図によ、る装置で作ることの出来
る空気圧の代表的な時間との変化を図解的に示している
。 1・・・クペット、2・・・仕切、3・・・縁、4・・
・光−15・・・光源、6・・・受光器、7,8・・・
室、S・・・開口、11・・・開口、21・・・装置、
22・・・膜、23・・;管、31°°・試料、33・
・・凝血、41・・・クペット、42・・・開口、43
・・・縁、44・・・仕切、45川頂部。 61・・・光束、62川光源、63・・・受光器、T1
・・・ハウジング、72・・・膜、73,74・・・コ
アー、T5・・・コイル、77.78・・・管。 代理人 洩 村   皓 外4名 Fig、 I Fig、 2
FIG. 1 shows the cupette of the device according to the invention and the electro-optical device provided therein, and FIG. Showing a cross section with the making equipment:. FIG. 3 shows the steps of carrying out the method according to the invention, 4a
6b to 6b show variants of the cupette and their use in the device according to the invention, and FIG. 7 shows a schematic cross-sectional view of a preferred embodiment of the device I2 shown in FIG. 2 for creating a variable air pressure. , 1118 schematically shows a typical change over time in the air pressure that can be created with the apparatus shown in FIG. 1...Kuppet, 2...Partition, 3...Edge, 4...
・Light-15...Light source, 6...Receiver, 7, 8...
Chamber, S...opening, 11...opening, 21...device,
22... Membrane, 23...; Tube, 31°°・Sample, 33.
...Blood clot, 41...Kuppet, 42...Aperture, 43
...rim, 44...partition, 45 river top. 61... Luminous flux, 62 River light source, 63... Light receiver, T1
...housing, 72...membrane, 73,74...core, T5...coil, 77.78...tube. 4 agents: Hiromura Kōgai Fig, I Fig, 2

Claims (1)

【特許請求の範囲】 (1)  血液試料の凝固時間を測定する方法にして、
試料−試薬混合物が試料と少くとも一つの試薬とをクペ
ツ) (euマ・1t・)内に導入することで形成され
る測定方法において、前記試料−試薬混合物を静止した
クペツ)(1,41)内で、前記混合物が前記クベット
内に突出する縁(3,43)のまわりで前后に流れるよ
う動かし、それにより凝血がこの縁の上に形成される段
階を有する血液凝固時間測定方法。 (z)  特許請求の範囲第1項記載の血液凝固時間測
定方法において、前記混合物は空気圧により動かされる
血液凝固時間測定方法。 (8)  特許請求の範囲第′1項記載の血液凝固時間
測定方法において、前記凝固時間測定の開始は、前記試
料に前記試薬を加えた結果として生じる光吸収の変化を
測定することで検知され、前記光吸収は前記縁(3,4
3)、の上を通る光(61)の第1光束で測定される血
液凝固時間測定方法。 (4)特許請求の範囲第1項記載の血液凝固時間測定方
法において、前記縁(3,43)の上にWI成される凝
血(33)の形成は前記試料−試薬混合物の光吸収を前
記クペツシ(1)を通る光(4)の第2光束で測定する
ことで検知され、前記光束は前記縁(3)に近くその下
を通る血液凝固時間測定方法。 (5)血液試料の凝固時間を、前記試料と少くとも一つ
の試薬とを受けるクベット(1)により測定する装置に
おいて、前記クベットの上部は仕切<2.44)により
2室−(7,8)に分割され、前記仕切は前記クベット
の底部から一定の距離に置かれた縁(3,43)を持っ
ている血液凝固時間測定装置。 (6)特許請求の範囲第5項記載の血液凝固時間測定装
置において、前記クペットの前記上部の一方の室は開口
(9,42)を経て装[1(21)に結合され、前記装
置により可変空気圧を作ることが出来、前記空気圧によ
り前記クペット内に収容された液体は、前記液体の高さ
が十分に高くて前記高さと前記縁(3)との間に空気が
自由に流れることの出来ない時に、動かすことが出来る
血液凝固時間測定装置。 ())特許請求の範囲第5項記載の血液凝固時間測定装
置において、前記装置は第1光源(62)と第1受光器
(63)とを有し、前記光源及び受光器は前記クベット
(1,41)に関して配置され、前記第1光源から出て
前記第1受光器で受けられる第1光束(61)は前記ク
ベットを通り、前記第1光束は前記縁(3,43)の上
を通る血液凝固時間測定装置。 (8)  特許請求の範囲第5項記載の血液凝固時間測
定装置において、前記装置は前記クベット(1゜41)
に関し配置された第2光源(5)と第2受光器(6)と
を有し、前記第2光源から出て前記第2受光器で受けら
れる第2光束(4)は前記クペットを通り、前記第2光
束は前記縁(3,43)の近くその下を通る血液凝固時
間測定装置。 (9)特許請求の範囲第8項記載の血液凝固時間測定装
置において、前記第2光束(4)の通路は、前記縁←形
成される凝血(33)がこの光束によって検知されるよ
うに選ばれる血液凝固時間測定装置。
[Claims] (1) A method for measuring coagulation time of a blood sample, comprising:
A measurement method in which a sample-reagent mixture is formed by introducing the sample and at least one reagent into a stationary container (1,41 ) a method for measuring blood coagulation time, comprising the step of moving said mixture to flow back and forth around a rim (3, 43) projecting into said cuvette, whereby a clot forms on said rim. (z) A method for measuring blood coagulation time according to claim 1, wherein the mixture is moved by air pressure. (8) In the method for measuring blood coagulation time according to claim '1, the start of the coagulation time measurement is detected by measuring a change in light absorption that occurs as a result of adding the reagent to the sample. , the light absorption is caused by the edges (3, 4
3) A blood coagulation time measurement method in which measurement is performed using a first beam of light (61) passing above. (4) In the method for measuring blood coagulation time according to claim 1, the formation of a blood clot (33) WI formed on the edge (3, 43) causes the light absorption of the sample-reagent mixture to A method for measuring blood coagulation time, which is detected by measuring with a second beam of light (4) passing through the cupet (1), said beam passing close to and below the edge (3). (5) In an apparatus for measuring the coagulation time of a blood sample using a cuvette (1) that receives the sample and at least one reagent, the upper part of the cuvette is divided into two chambers - (7, 8) by a partition <2.44. ), said partition having edges (3, 43) placed at a certain distance from the bottom of said cuvette. (6) In the blood coagulation time measuring device according to claim 5, one of the upper chambers of the cupette is connected to the device 1 (21) through an opening (9, 42), and the device A variable air pressure can be created, by which the liquid contained in the cupette is controlled so that the height of the liquid is high enough that air can flow freely between the height and the edge (3). A blood coagulation time measurement device that can be used when it is not possible. ()) In the blood coagulation time measuring device according to claim 5, the device has a first light source (62) and a first light receiver (63), and the light source and the light receiver are connected to the cuvette (63). 1, 41), a first beam of light (61) emerging from said first light source and received by said first receiver passes through said cuvette, said first beam of light passing over said edge (3, 43). blood clotting time measurement device. (8) In the blood coagulation time measuring device according to claim 5, the device is provided with
a second light source (5) and a second light receiver (6) arranged with respect to the second light source (5), a second light beam (4) emitted from the second light source and received by the second light receiver passes through the cupet; The second light beam passes near and below the edge (3, 43) of the blood coagulation time measuring device. (9) In the blood coagulation time measuring device according to claim 8, the path of the second light beam (4) is selected such that the blood clot (33) formed at the edge is detected by this light beam. Blood coagulation time measurement device.
JP57101496A 1981-06-16 1982-06-15 Method and device for measuring blood coagulation time Pending JPS582750A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH3959/81A CH653136A5 (en) 1981-06-16 1981-06-16 Method and device for measuring the clotting time of blood
CH3959/818 1981-06-16
CH1843/828 1982-03-25

Publications (1)

Publication Number Publication Date
JPS582750A true JPS582750A (en) 1983-01-08

Family

ID=4267141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57101496A Pending JPS582750A (en) 1981-06-16 1982-06-15 Method and device for measuring blood coagulation time

Country Status (4)

Country Link
JP (1) JPS582750A (en)
BE (1) BE893515A (en)
CH (1) CH653136A5 (en)
ZA (1) ZA824063B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233759A (en) * 1986-03-28 1987-10-14 エスエイ・テキサコ・ベルジヤン・エヌヴイ Device for continuously measuring ratio of diluted solution to colloidal fluid generating coagulation by mixed liquid ofsaid fluid and said diluted solution
JPH02173782A (en) * 1988-12-27 1990-07-05 Central Glass Co Ltd Holographic display device
WO1996012968A1 (en) * 1994-10-19 1996-05-02 Japan Tectron Instruments Corporation Automatic analyzer
WO2004019015A1 (en) * 2002-08-22 2004-03-04 Apel Co., Ltd. Measurement cell for colorimeter or the like and method of using the same
WO2014203693A1 (en) * 2013-06-19 2014-12-24 オリンパス株式会社 Container for optical measurement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029098A (en) * 1973-07-19 1975-03-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029098A (en) * 1973-07-19 1975-03-24

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233759A (en) * 1986-03-28 1987-10-14 エスエイ・テキサコ・ベルジヤン・エヌヴイ Device for continuously measuring ratio of diluted solution to colloidal fluid generating coagulation by mixed liquid ofsaid fluid and said diluted solution
JPH0833382B2 (en) * 1986-03-28 1996-03-29 エスエイ・テキサコ・ベルジヤン・エヌヴイ probe
JPH02173782A (en) * 1988-12-27 1990-07-05 Central Glass Co Ltd Holographic display device
JPH0585910B2 (en) * 1988-12-27 1993-12-09 Central Glass Co Ltd
WO1996012968A1 (en) * 1994-10-19 1996-05-02 Japan Tectron Instruments Corporation Automatic analyzer
WO2004019015A1 (en) * 2002-08-22 2004-03-04 Apel Co., Ltd. Measurement cell for colorimeter or the like and method of using the same
WO2014203693A1 (en) * 2013-06-19 2014-12-24 オリンパス株式会社 Container for optical measurement
JPWO2014203693A1 (en) * 2013-06-19 2017-02-23 オリンパス株式会社 Optical measurement container

Also Published As

Publication number Publication date
CH653136A5 (en) 1985-12-13
ZA824063B (en) 1983-04-27
BE893515A (en) 1982-12-15

Similar Documents

Publication Publication Date Title
US4659550A (en) Method and apparatus for measuring blood coagulation time
JPH01213572A (en) Measurement of transition time of physical state of fluidized medium
US5238815A (en) Enzymatic immunoassay involving detecting fluorescence while oscillating magnetic beads
EP0418235B1 (en) Coagulation assay systems which utilize paramagnetic particles
JP4491010B2 (en) Photometer
AU603992B2 (en) Enzymatic immunoassay
JPH0694723A (en) Fluid flow controller
ES549194A0 (en) BLOOD ANALYSIS METHOD AND CORRESPONDING DEVICE
US4725554A (en) Method for measuring blood coagulation time
JPH0737989B2 (en) Method and apparatus for measuring immune reaction
FI64862B (en) REQUIREMENTS FOR PHOTOMETRIC MAINTENANCE OF THE REQUIREMENTS AND REACTIONS
JPS582750A (en) Method and device for measuring blood coagulation time
CN101578519A (en) Apparatus for measuring immunochromato test piece
JP4220879B2 (en) Absorbance measuring apparatus and absorbance measuring method
JP2675895B2 (en) Sample processing method, sample measuring method, and sample measuring device
JPH07111430B2 (en) Laser magnetic immunoassay method and measuring apparatus
US4697925A (en) Method of measurement using scattered light
US20210063426A1 (en) Drive device for an automatic analysis apparatus for in vitro diagnostics
JPS63188766A (en) Method and instrument for laser magnetic immunoassay
JPH07111428B2 (en) Laser magnetic immunoassay method and measuring apparatus
JPH0650314B2 (en) Immune reaction measuring device
JPS5694245A (en) Quantitative apparatus for determining reaction product of antigen antibody utilizing laser light
JPS604843A (en) Optical measuring method of liquid specimen and stirrer used therein
SU1327004A1 (en) Method of estimating reaction of hemagglutination
JPH0534347A (en) Laser magnetic immunoassay and measuring apparatus therefor