JPS5823882A - Fine particulate carbonaceous spherule containing oil and its preparation - Google Patents
Fine particulate carbonaceous spherule containing oil and its preparationInfo
- Publication number
- JPS5823882A JPS5823882A JP12186681A JP12186681A JPS5823882A JP S5823882 A JPS5823882 A JP S5823882A JP 12186681 A JP12186681 A JP 12186681A JP 12186681 A JP12186681 A JP 12186681A JP S5823882 A JPS5823882 A JP S5823882A
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- balls
- oil
- temperature
- raw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10C—WORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
- C10C3/00—Working-up pitch, asphalt, bitumen
- C10C3/14—Solidifying, Disintegrating, e.g. granulating
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Civil Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Working-Up Tar And Pitch (AREA)
Abstract
Description
本発明は微粒のピッチ球および生コークス球に関するも
のであり、更に詳しくは、石鹸・石炭などのJl&曹プ
ロ竜スで生威するピッチ類や天然に童mするビテエーメ
ン、アスファルト類より製造する、流体と同様の取扱い
が可能で、輸送・貯jl!iK便利な微粒、のピッチ球
および生コークス球に関する。
一般にピッチと生=−クスとの区別は、組成上、―確に
はし難いが本発1iKmいても例外ではなく、ピッチ球
と生コークス球とは固定炭素値や水素/炭素比などの組
成上は重寵する性状iもつものであるが、しかし、本俺
−の場★は製造法(分解や重金の鴨度)や、物理・化学
性軟の違いから両者は1確に区別できるものであるので
、以下本発明におい1:はピッチ球と生;−タス球と称
する。
ピッチ類は石油1石炭などのJ611及び着纒プ讃セス
から多量に得られる0例えば石油系重質油(職濠油)の
島鳳ブーセス、タールナンドやオイルシ翼−に#)@鳳
プIl−にス、石炭乾留ブーセスや石炭諌死ブーセスな
ど−も得られるピッチ類があり、また天#lに童画する
ビチェーメンまたはアスファルト1などである。これら
のピッチ類の一部は、11&、適轟な#&瀧を経て各種
の用途、例えば電極用バインダーピッチ、鉄−用バイン
ダーピッチやその偽のバインダーピッチ、電極コークス
、炭素質およびコークスなどの固体燃料などや、鰍科j
スまたは水嵩ガスの製、造原料などの用途に眉いられC
−る。
しかしながら、これらのピッチ類は、天然愈のビチェー
メンまたはアスファルト類の例で知られる如く、粘稠な
液体か、一体ではあるが温度が上ると粘着性があるので
、輸送及び貯11における取扱いが困難なため、未だ十
分に有効な利用がなされているとはいえない。
本発明のピッチ球および生コークス球は、これらのピッ
チ類の上記の欠点を無くし、付着性の−い *体と同様
な取扱いが可能な、新規なピッチおよび生ツークス製晶
を提供するものであり、この、゛輸送・貯蔵の容晶なピ
ッチ球および生=−クス球は、11在重要視されている
重質油の各種鶏履ブーセスにfMける問題^を解消する
のに大いに黴立つものである。即ち、現在、生産され入
手される原油は重質化の傾向にあり、一方においては石
油鋼の督要は軽質化の領内にある。I!つて、重質油を
軽質化および高品質化するための処理ブーセスは増加す
る必要に迫られ(いる、他方、石11kK代る代讐エネ
ルギーの一発もまた急がれており、−一ルナンドやオイ
ルシェールからの油の回部や石炭の液化ブーセスなどの
一発も進められており、これらから得られる重質油もま
た、軽質化・高品質化する処理プロセスの対象となる。
これらの軽質化・高品質化のための重質油処理プロセス
においThe present invention relates to fine pitch balls and raw coke balls, and more specifically, the present invention relates to fine pitch balls and raw coke balls. It can be handled in the same way as fluids, and can be transported and stored! Concerning iK convenient granules, pitch balls and raw coke balls. In general, the distinction between pitch and raw coke is based on their composition.Although it is difficult to be certain, this is not an exception, and pitch balls and raw coke balls are distinguished by their compositions such as fixed carbon value and hydrogen/carbon ratio. The above has properties that I favor, but in my case, the two can be clearly distinguished from each other based on the manufacturing method (decomposition, degree of sludge of heavy metals), and differences in physical and chemical properties. Therefore, hereinafter, in the present invention, 1: will be referred to as a pitch ball and a raw ball. Pitches can be obtained in large quantities from J611, such as petroleum 1 coal, and from J611, such as petroleum-based heavy oil (work oil), such as Shimaho Bucess, Tarnando, and Oil Sea Tsubasa. There are also pitches that can be obtained such as coal carbonization, coal carbonization, and coal drying, as well as bicemen and asphalt 1. Some of these pitches are used for various purposes such as binder pitch for electrodes, binder pitch for iron and its false binder pitch, electrode coke, carbonaceous and coke etc. solid fuel, etc.
C.
-ru. However, these pitches are difficult to handle during transportation and storage 11 because they are viscous liquids, or they become sticky when the temperature rises even though they are solid, as is known from natural bitemens or asphalts. Therefore, it cannot be said that it is still being used effectively. The pitch spheres and raw coke spheres of the present invention eliminate the above-mentioned drawbacks of these pitches and provide new pitch and raw coke crystals that can be handled in the same way as adhesive bodies. Yes, these "pitch balls and raw gas balls, which are easy to transport and store, are very effective in solving the problem of fm in various types of heavy oil boots, which are considered important in 11th century." It is something. That is, the crude oil that is currently produced and obtained tends to be heavier, while the requirements for petroleum steel are in the realm of lighter crude oil. I! As a result, there is an urgent need to increase the number of processing units needed to lighten and improve the quality of heavy oil. The heavy oil obtained from these processes is also subject to treatment processes to make it lighter and improve its quality. In the heavy oil processing process for lighter oil and higher quality
【は、必然的に、炭素質の残渣が生成するととに
なり、現有する4)11の重質油処理プ曹七スにおいて
は、これらの炭素質残渣の取扱い及び利用に多(の間一
点をIIIしているのである。
例えば1石油系重質油の処鳳プ四セスの代表的なものに
ディレードツーカー、&リカプ買セス、7)−)’ツー
カー、7し命シコーカーなどカする。
ディレード冨−★−ではセセバツテグーセスでコータド
ラム内E1m濠の#M:1−クスが生威し、これを周期
的に水力や機械的な方法により破砕して塊状ツークメと
し【4!出すため、壜出し作業が一部であると共に、製
品コークスは水分なども含み輸送・貯麿に不便で、また
燃料等に利用するにも一点がある。一方、エリカブ−セ
スは上々パッチブーセスであるが、残渣はピッチとしC
bため連続的に取出され、そのピッチはフレーカ−で冷
却Iii形化され、鉄鋼用のバインダーとして層いちれ
ている。この方法では残渣がピッチで、取出しが容重に
なったとはいえ、やはり輸送・静態には多少不便があり
、またパイン〆一などの層造にも、現時点では量的Il
c@界がある。フルードツーカーでは、生成する残渣は
=−タメのIL粒として得られるが、プUセス条件が比
較的高温であるために、コークスの燃焼性はあまり良く
なく、働科としての価値は低い、また7し命シブ−★−
においては、上記の残渣のコークス粒は引続t′JIス
化されている。ガスは輸送には便利であるが静態には不
便であや、しかもこのガスは低カーリ−で燃料としては
員界がある。
本発明者等は、重質油の処理ブーセスにおいて、必然的
に生威すゐ炭素質残渣をピッチの責で連続的に取出し−
とれを流体と同様に取扱うことので會る微粒のピッチJ
Iまたは生コークス瞭にするならば、輸送・貯lIlが
便利にな9.しかもそのまま燃料とすることができる巻
金も多く、必要に応じては、効果m1clx化すること
もでき、I!つて。
1l1111、多くの問題を残している重質油の熟覇プ
胃奄メの炭禦質!I!筺の利用に大会く貢献することが
できるであろうと考え、鋭意研究した結果、このように
重質油処鳳プ費セスにおける問題点を捩1本的に解決し
うるピッチ球及び生J−クス球を提供するに至うた。
本発明のピッチ球はII!細で且つ少くとも表Wiが。
暮夏の付着性を生じない1度KIA瀧され硬化しており
、*iw敏子であるから、そり集会体は流体のよ5に挙
動する。そのため、取扱い、輸送・1PJIが容具であ
る4111をもっている6
また、このピッチ球は実質的に水分を含ま、ず、多くの
巻金は訳分も少いものであり、粉砕・することなく、そ
のまま譬殊な燃料として、その性状の調節によっては汎
用のバーナーで燃焼することができ、しかもピッチ球中
に#Iまれる油含有率(揮発分)を調節するととkよっ
て、その燃焼性をも調節することが可卵である利点をも
っている。
更に、後に詳しく述べるよ5k、このピッチ球を流動層
などを用いて熱分解するととkよって、ピッチ中に含有
する油分は一部が分解軽質化して、分−することができ
ると共に、残部は熱重会して生;−タス珍となり、しか
も細孔を有する生コ°−クス球であるため、そのまま例
えばキルンなどの燃料に用いられ、またガス化が容易で
あるため、メヌ燃料や水素ガスの製造用原料として有用
なものとなる。との生コークス瞭も1IJllな球曹粒
子であるため、職扱い、輸送・貯蔵が便S″eあるとと
は、いさまでもない。
本発明のピッチ球は軟化点が60〜!ffi@1:、5
itr炭素4o〜75 vtjgで島るような原料ピッ
チを用い、■このピッチの微粒化、球状化することと0
この球状ピッチから油分の**ai発、または゛必要に
・応じ■ピッチ球の軽度の表′tItII化や溶剤など
による洗l[にfって得られるもので、このピッチ球の
平iI1粒子m<s*s重量掻)は30〜200Uム有
411 !! rh 〜15 vt!l!、1IjHI
till (JIgAM1$12)は45〜$1vtj
g、軟化点が140℃以上である、実質的に付着性のな
い粒子であaの圧輪下で着層を保持し得ることが*gさ
れる。
−鎗に軟化点が140を以下の巻金、または−窒炭素が
41! vt襲以下の巻金には、粘着性や強度の藺で1
通常の輸送・貯蔵に耐えるための充分な性状を示さない
。
また、とのピッチIIKおける油含有率、固定炭素など
の値で示される親戚は粒子の平均値であう【、−個の粒
子については、粒子が均一な組成であってもよ(、また
表面に比べ中心部の鎖含有率が大会い(all!炭素値
が低〜)、いわば表皮の存在するよ5な、不均一な層成
であってもよい。
IklC本発−のIIl″a−クメ摩は、上記ピッチ球
を買に1分解し、ピッチ31に含有されている重質油分
を分屡軽質化し′c闘収し、一方璃部が重總舎されるこ
とによって得られる。mち軟化点60〜220℃、一定
炭素40〜75 wt%であるようなピッチを原料とし
、■このピッチを微粒化・球状化することと0この球状
ピッチから油分の表iui発を行なうこと、■または、
必要に応じピッチ球の軽度の1!!両酸化や溶剤などk
よる洗滌と■熱分有事が2 S 〜4 vt%、iiI
定炭素75〜l1wt1llであり、O,OS’吟今以
上の細孔容積を有する粒子である。
この巻金、Ill定炭素が75 vtjl!以下の巻金
は、側孔を有−しながら且つ必要な強度を4つ4に:I
−クス球を得ることは困−であり、またiii*炭素値
が* @ vt弧を曙える巻金には、燃焼性が悪く燃料
として眉いることが不便である。
また、この生;−クス球は、餉含有率%l11tF炭素
などの値で示される組成や、平均粒子径では、ピッチ球
と重値する爾があるが、ピッチ球よりも熱分解と重含が
進みプークス化の程度が高いもので、41に熱分解重1
で生成する軽質油分が、粒子内部から揮散するために細
孔を有する粒子となる点が、ピッチ球と明1FK相違す
るものである。
な軸、上記のピッチ摩中生コークス球の平均寵@(SO
囁重量lI)の範囲は3O−200trIlンである。
粒子径が30々クーン以下の場合は、IflK流動状態
Ilcおいて粒子相互の凝集が起9易く、200々ク一
ン以上の場合には、41にガスと共に流動する際、円滑
性が劣や、輸送・貯蔵または流l化などの操作上m*L
<ない。
本発−のピッチ球及び生コークス球の製造に用いられる
原料としては石油類の熱分解ブーセス、重質111k(
III渣油)の処理ブーセス(例えば:L9カブw−k
x、8Dムプーセ> (8o1v*nt aeasph
altig))などで生成するピッチ類や天然童のビチ
ェーメンやアスファル)−などの石1lIiI系イツチ
類、石炭の靴音やIII件グシ七ス(例えば81Cブー
竜ス)などから生成する石炭系ピッチ鋼、及びその他の
各種ピッチ類であって、軟化点が60〜22G”IC1
好ましくは100〜18G”eであって、固定縦索(J
I84M−8812)が40〜75vt−のピッチが用
いられる。軟化点が60℃以下、またはiI定炭素が4
01!以下の場合には、製品のピッチ球の軟化点や生プ
ークス球の硬度などの面で、本発明のピッチ球および生
コークス球の原料としては適さない。
本発明のピッチ球および生コークス球は、各種の方法で
製造することができる。例えば0150〜400℃で比
較的低粘度に溶融した原料ピッチを、二流体ノズルや高
圧ノズルなどを用いて、原料ピッチより高温の不活性オ
スと混合し、微粒化と原料中の一部の重質油の蒸発を行
い、そのあと適轟な方法で冷却してピッチ球を得る方法
(この場合、蒸発によって重質な油が回収される)、0
150〜400℃で比較的低粘度に溶融した原料ピッチ
を原料ピッチより低温の不活性ガス中に諷会し、黴諺化
と冷却を行い、必lIKよっては水噴射なども併用して
冷却を促進しピッチ球を得る方法、■常温で固体のピッ
チを適癲な方法で粉砕し、微粉状ピッチを原料ピッチの
溶融点(歌化点+約20℃)より高温のメス中に導入し
て溶融球状化と厘科申の一部の重質油分の蒸発を行い、
そのあと適轟な方法で冷却し【ピッチ球を得る方法(こ
の場合もm1lcよって重質な油が回収される)などで
ある−との場舎、不活性ガスとは、ピッチ類に対して化
学及応性をもたない、実質的に不活性なガスであって、
例えばメタンなど軽質炭化水素を含む燃料ガス、ブーセ
メからでる分等βスー童なおまた。製造法の■■■IC
おいて、必要あれば、それらの製造法の適宜の過−1例
えば微粒化ニー、不活性ガスから分■されたピッチ球の
処理1寝、または=−タス球の前処環ニーなどで、■−
化剤を含むガスなどkよって、粒子の表面を軽度K11
l化するかO不活性ガスから分離したピッチ球を、適轟
な溶剤、例えばす7す等の軽質炭化水素溶剤、で廻時周
、洗浄する、などの処1を行ってもよい。4HC■の方
法で原料ピッチの軟化点が140℃以下の場合には、製
品のピッチ球の軟化点を140℃以上とするために上記
の処理が必要になる。なお製造法の■■において加熱溶
融したピッチの粘度は噴霧化に必要な程度に低下される
が、必要によっては粘度を低下させるために例えば分解
生成油等を少量添加してもよ〜S o、、(また、上記
の■■0の方法#Cおける工程圧力は。
ピッチ球に対する不活性1スの量によう【異なるが、一
般に常圧〜10 Jg/cs*”の範囲である。圧力が
この範囲より低い場合には歪活性ガスの量が多くなり、
装置も大#IVcなり【、不騒洒で奉る。一方、圧力が
この範囲を越える場合は、粒子の生成IIs″e粒子間
などの衝突が多くなり、粒子間の付着などが起り、望ま
しくない。
保持し、また、生プークス球を得るための4(1〜$2
0℃の過糎で、磁着することなく球状を保つようなピッ
チ球、を得ることが出来る。、また、上記■@[F]の
各方法においてピッチ球とガス流との分離は、例えばナ
イフ酵ン、バグフィルタ−などの機械的一方法で行なう
ことができる。
次に%41:ゴークス球を製造するには、上記の方法で
得られたピッチ球を温度40G−!$20℃、圧力、常
圧〜1 G kl/11”の条件で熱分解して得ること
がで會る。この場合、ピッチ球に含有される油分は熱分
解・軽質化して11釈することがで電、!1I111は
重蒙舎し、:x−クス化が進むと共に@質油分の揮散の
ため細孔を有する生コータス球を得ることができる。こ
り巻金熱分解置度が400℃以下では分解適度が遍く、
s20℃以上では生スークス球の油含有量や強度の点で
不*iでその層状も球厘でなくなる場合があるので望ま
しくない。
なお、ピッチ球を装量せずに生コークス球のみを製造す
る場合には、■■の方法において微粒・球状化ニーの条
件や急冷温度を調節して、比較的高、温のまま直ちに熱
分解重@に移行することにより、熱綴済、性を陶土させ
ることも可能である。
本発明のピッチ球及び生コークス球の脣黴をより明確に
示すためk、前述■の製造方法をより詳Itに1、図面
の7−−に従って以下説明する。
本坤輯のピッチ球を製造する方法をここでは嬉−工1と
呼び、このピッチ球から本発明の生コークス球を製造す
る方法を第二工種と呼ぶととにする。
第−工場は、加熱された波状のピッチを微粒化し、球状
で、付着性のない硬化した表両を有す番四体ピッチ球を
作ると共に、原料ピッチ中に含有されている重質油分の
一部を回収する工1で島る・1111槽lK、*イc温
度が150〜400″’CICjll熱または保持され
ていて、望ましくは粘度が30拳竜ンチボイズ以下であ
るような原料ピッチを、高圧ポンプ2を用いて微粒化器
3へ送り、jIl島デー。
で2 G ON800℃の温度望ましくは300〜藝0
0”eKjlll鵬された、ピッチに対して実質#に不
活性なガス申に噴射し、微粒化する。微粒化器3はベン
チニツニ4.!の接触器であり、好ましくは部分的に少
くとも10 m/@ahの線速度を有する高速の不活性
ガス流に対し、対内mx*数の圧力ノズル(例えばスワ
ールノズル)を通してピッチを噴射する。
この場合、原料ピッチの温度は、150〜400℃が良
く、150℃以下では一般に粘度が高く微粒化が国難で
あり、400℃以上ではピッチが熱によって変質するの
で好ましくない、また、不活性メスの温度は200〜s
oo℃がよく、zo。
℃以下では、油分の蒸発速度が遍く、且つ大量のメスが
必要となり経済性が悪い、SOO℃以上では蒸発速度が
連過ぎ(望ましい液状のピッチ球は得られない、なお、
ピッチ球に対する不活性ガスの量はo、z〜1s脩(重
量比)、通常0.5〜8普の範囲である。また、高速不
活性ガスは液状ピッこの過程では、まず微粒のピッチ液
滴ができ、高温のガス流からピッチ液滴に伝熱がおこり
、゛ピッチ液滴に含有され曵いた重質油の一部がガス流
中El!発拡散す1゜
この結果、ピッチと不活性ガスの混合流の温度は低下し
、多くの巻金約】0秒以内の関に混金゛滝の温度は17
5〜475℃となる0次いで、この混合流を急冷し、ピ
ッチ液滴を固化させ、ガス流る。この場合、ピッチ球か
らの熱回収やガス#l−らの重質油の回収も適宜の方法
で行なわれる。
この微粒化器3における重要なバラメーターは、原料で
ある液状ピッチの温度と供給量に対する不活−ガスの温
度と供給量の割合、噴射および/または混合の条件、混
合流の滞留゛時間及び急冷温度などである。これらの−
節によってピッチ球の一定炭素、餉平均含有率、ピッチ
球の中の油分の分布、軟化点(付着性)などが決まる。
ピッチ球の急冷は、例えば混合流中に水や低温ガスなど
を噴射して、混合流の温度を70〜40・℃にすること
によっても可能である。この巻金冷却負度が70℃以下
では、蒸発した鎗や水蒸気の凝縮が起り、纒晶中に混入
するため!ましくなく、400 ’C以上ではピッチ球
の熱分解や粒子間の二次的な凝集付着が起9好ましくな
い、またピッチ球の魚冷は、多段流動層5を用いて行う
こともできる。即ちピッチ球をガス流と分層するため、
例えばtイタ四ン4を通って、多段流動層5に入ったピ
ッチ球は、流動層に導入される常温〜1o。
℃で通常5 ”’ 100 C1l/see 、好まし
くは10〜60−4・@の適度の不活性ガスと直接また
は間接に熱交換し、冷却されて常温〜10G’ICの温
度で破り幽される。また上記多段流動層の代りに移動層
を用いても良い。
ピッチ球と分離されたガス流は、適蟲な熱交換器8及び
クーラー10を過って冷却され、ガス流中に存在した油
分は、蒸留塔12で11釈されi。
熱交換IIsや多段流動層5で回収される熱は図示の例
では嚢傭不活性メスの加熱に利用されて熱効率の向上を
行う。
かくして得られたピッチ球は実質的に付着性がなく職扱
い、輸送、貯蔵の容異な特殊燃料などのすぐれた製品と
なるが、第二工程の全コークス球め原料ともなる。
また、回収された重質の油分は脱硫などの4611を受
けてから燃料油として用いられる。
第二工程は必要に応じ全コークス球を製造するためのも
ので、この工程は第一工程から得られる微粒のピッチ球
から、熱分解により比較的軽質な油を圃収し、一方、残
る粒子を細孔を有する生=−戸ス糟とする工程である。
館一工程から得られるピッチ球は、そのニーの条件によ
って異なるが、固定炭素45〜I!!r%fiで、5
!j 〜15 vtl I)Nlk含h、IP’:)実
質fliKm酉の付着性がない微粒子である。
第一工程で得られた製品のピッチ球または嬉一工程かも
適蟻な温度で抜き出されたピッチ球は、コークス粒子の
流動している流動層熱分解11に6に供給され、R″I
IkIIk状態される。′熱分解温度は400 N52
0”C1圧7)st當常圧I G kl/m”、熱分解
の為の平均潴貿時間は1分〜2時間のIIIIl内であ
る。 ・。
また、この流動層に用いられるコークス粒子は、この、
館二工1で得られる製品コークス粒子が用いられる。
3
− この第二工程の過程では熱分解と併行して起ってい
る重縮合反応の為にピッチ球は全コークス球となり、こ
の生=−タス球は原料ピッチ球中の固定炭素カミ高いこ
とに加えて、前記の分解工程における重縮合反応により
強度も高いものとなり、且つ細孔を有するものとりつて
いる。
流一層熱分解II遥から出る、全コークス球は高温であ
るため、例えば多段流動層7によって熱回収しながら冷
却され、製品の生スータス球となる。なお上記多段流動
1鶴、好まし七−〇−40g+/s@c を用いる0
図ノ例では、多段流動層1からの熱回収は低温の不活性
ガスとの熱交換で行われるから、この不活性ガスを加熱
器9へ導いて使用することによって熱の利用効率を向上
させることができる。
は、゛微軟化器に用いられた不活性ガスと共に、熱交換
器8およびクーラ−10を通って冷却され、蒸留塔12
で油分が゛回収される。分離回収された軽質油は脱硫な
どの処理を受けて製品となる0分解ガスは図の如く、゛
微粒化器の不活性ガスと共に蒸留塔12で処理してもよ
いが、軽質油のみを取得するために別の蒸留塔をもうけ
て分離してもよい。
が25〜4 vrt%、固定炭素が75〜9@vt襲の
細孔!有する粒子で、取扱い、輸送・貯蔵が容1であや
、固体燃料や炭素材料などとしても用いられるが、多孔
質である事からガス化が容品で、ガス燃料や水素ガス製
造用原料としても適している。
第一工程から製造されるピッチ球と第二工1で製造され
る全コークス球□の量の比率は、各々の!iケツ)(C
1要)k応じて適轟に変化さ艙るεとは可能である。
次に本発明を実施例によつ−C更に^体的Ell@する
。この実施例は本発明の理解をより完全にするための一
製造方法の例であり【本発明のピッチ球及び全コークス
球のすべての製法や用途を@定するものではない。
実施例−1−ム
実施例−1で用いた原料ピッチは減圧残油を熱分解して
得られたピッチで、その性状は第1表の如くであった。
Cjl1表〕
との原料ピッチを310″eに加熱しく 31 G”e
Kmける粘度100cp)30”l/hrの流量で、4
00℃に加熱された窒素ガス気流中にノズルより噴射し
て微粒化した。窒素ガスの流量は77”I/hrとした
。
微粒化装置は、最大直径が5−Owmφ、しばり藩の内
径が151wφ、長さ2,500 mノヘyf& 9−
ll接触装雪受、0.3■φのノズルが4本、しばり都
の直前に設けられており、原料ピッチはノズルから窒素
ガスの流れに対内流(角度45°)kなるようkj1射
される。J[科ピッチの噴射におけるノズル圧は約15
0 jg/−であった。
窒素ガス中にピッチの噴射により、混合ガス流は約35
0″ck低下したが、接触装置の出口で更に2S”Cの
水を約15 by/br ”t’噴射して約to’cに
急冷した。これを、ナイフ四ンを用いてメス流とピッチ
球を分離し、ピッチ球を、得た・、微粒化(伝熱・蒸発
) malt、た滞留時間は・、、2 apcであった
。
製品ピッチ球は、平均粒子径が約8oイクーン(40N
15061ンが90襲)で、軟化点はzoo℃以上−あ
り、常温で粒子が10kI/−の圧縮下で球型を保持し
得るものであった。ピッチ球の性状は第211の如くで
あった。
ピッチ球は約26.4 jv/hrで破出され、原料ピ
ッチに対する収率は約88 wtlで゛あった。
一方、ピッチ球と分−した窒素ガス流は、クーラーで冷
却され、油分な一収した。 [jK油は沸点540℃以
上の1分を約30%含む重質油で、原料ピッチに対する
収率は約12w傷であった。
実施例−1−B −
実施例−1−ムで得られたピッチ球を26.4JIF原
料に用いた。内径210■φ、有効高さ1000鱈の流
動層反応器、を用い、80℃のピッチ球を。
まずオゾン−QF 3 vol−を含んだ約100℃の
空気2・OIm”/hrを用いて約2時間、予備的に表
頁の酸化J12!1mlを行い、そのおと600℃の窒
素ガスを6”Arで吹き込んで、徐々に温4度を450
℃まで上昇させ、引続き熱分解を行った。熱分解条件I
t。
反応温度、450℃、圧力、 0.3・”l/a”、反
応時間は097時間であった。流動層の窒素ガスの璽塔
速度は0.13□@Cであった―
夏応後、40℃の窒素ガスに切換え【冷却し、6S℃の
生ツークス球を製品とし【取供した。
製品の生;−クス球は、粒!!40〜150々夕票ンの
粒子が80襲の粒子で、その性状は第3表の如くであっ
た。 −
〔第3表〕
生=−タス糟の収量は197k1gで、収率はピッチ球
に対して74.6 vtlであり、原料ピッチに対して
it fi B、 7 vtjG ”e b ツタ@熱
分解より出た分解オスは、クーツーで40’Cまで冷却
し、分解油とC,以下の分解ガスを分離した・分解油は
、原料ピッチ球に対し、約214vt%で&9、分解ガ
スはS、 Ovtlであった0分解油の性状は第4表の
如くであった。
〔第4表〕
実施例−2−ム
実施例2で用いた原料ピッチは減圧残油を熱分解して得
られたピッチで、その性状は第S@に示す如くであった
。
〔第5表〕
このJI科ピッチを320℃に保持し、(32゜’CK
おける粘度は200 cp ) 30 jv/hr #
)1重量で、600″eに加熱された不活性ガス気流中
にノズルにより噴射した。不活性ガスの流量は28 k
g/hrでガスの組成は籐61Rの如くであった。
黴IIjLf装置は最大直径がsO■φであり、しかも
しばり部の内憂が15−φ長さ150G露のベンチ&リ
ーii*m装置で、0.3繻φのノズルが4本、し−り
部の直−に歇号られ、ピッチはこのノズルから不活性ガ
スの滝れに対角線(角度4s@)kなるように噴射され
る。なお、原料ピッチの噴射に加けるノズル圧は:I
00 kl/’os”であった。
不活性メス中にピッチの噴射により81会メス流は約4
1!l:に低下したが更にsitの水を11jv/hr
の開会で噴射して約300℃に電々した。
an化(伝熱・蒸発)K要した滞留時間は約0.15秒
であった。
混合流はナイフ四ン分■器でピッチ球とオスとを分離し
、次いでピッチ球を多段流動層クーツーにて、流動層の
底部に導入された40℃の不ai性ガスと接触さ(冷却
し、65℃の製品として得たφ部品ピッチ球は平j1粒
子径が約100μ(sO〜150μが90襲)で、軟化
点はsoo℃以上であり、常置で粒子が10IIII/
g−の圧縮下で離層を保持し、その性状は第7表の如く
であった。
〔第7表〕
ピッチ3Iは25.5&l/hrで亀山され、原料ピッ
チに対する収率は8 S vt%であった。
一方、ピッチ球とナイクpンで分離したガス流は、熱交
換器およびクー2−で冷却し、蒸留塔でWAIIIL餉
及び凝縮水とオフガスに分離し、オフガスは循環して、
不活性ガスとして加熱器を経て微粒化MiIスとし、ま
た一部は多段流動層クー2・−の冷却用ガスに使用した
。
蒸留塔で分離された一収油は、沸点540″C以上の部
分を約sO囁禽む重質油で、収率は約1sWtsであっ
た。
実施例−2−B
実施例−2−ムと仝様の原料を用い、仝様の方法でピッ
チ球を作り、ナイクーンでガス流と分離した0次いで多
li#1wh層クーラーの二段目からピッチ球を抜き出
しく温度119℃)、内@210■、有効高さ1,00
0111の111I流動層の流動層熱分解器を用い、2
!!、 $ 1111/ hrで熱分解した。@分解
最伸は温度450℃、圧力0.3Jv/w”、千均夏応
時岡はa、s時間であった。また流動層の流動ガスには
、微粒化に使用したガスと同じsoo’eの不活性メス
を使用した。ガス組成は実施例−2−五の第曝表に示し
、またその 塔速度は0.1 S /s@cであった。
熱分解により得られた生コークス球は多段流動層クーラ
ーにて底部に導入される4(1−の不活性ガスと接触さ
せ、冷却して、65℃で製品として―出した。
製品の生コークス球は1粒径5o〜150μの粒子が8
5−である微粒状生コークス球で、その性状は第8表の
如くであった。
一方、流動層熱分解器置より出る分解ガスは、微粒化器
からでてナイクーンでピッチ球と分離された不活性ガス
とは別に熱交換器およびクーラーで冷却し、蒸留塔で、
分解油及び凝縮水と塔頂ガスに分離し、塔頂ガスは循環
して、不活性ガスとして、加熱炉を経【、微粒化用ガス
または多段流動層クーツーの冷却用として使用した。
蒸留塔で分■された分解ガスは原声ピッチ球に対し約t
o vt%であり、また分解油は約15.6vt−で、
その性状は館9表の如くであった。
図面は本g&嘴のIII論例のブーセスシー−を示す、
li中主な部分は次の通りである。
1:保温槽、 2:高圧ポンプ、
3!接触微粒化器、 4:tイターン分離機、5!多段
流動層(急冷用)、
6!流動層熱分解器、7:多段流動層(冷却用)、12
:蒸留塔
手続補正書
昭和84年9月17日
特許庁長官 島 1)春雪 殿
事件の表示 昭和54年 特願第121844 号発
明の名称 微粒含油炭素質球及びその製造法補正をする
者
事件との関係 特許出願人名 称
富士スタンダードリサーチ株式会社代理人
−−1
補正の対象
う断書の発券←咄願人の欄−
明細書の発明→n←特許請求の範囲一発明の詳細な説明
の欄補正の内容 別紙の通り
明細書を次のように補正する。
t 第26頁第9行に「窒塔」とあるを「空塔Jと訂正
する。
2 第30頁第8行及び第9行に「μ」とあるを「ミタ
四ン」と訂正すち、
五 第s2頁第3行に「その」とある次に「空」と加入
する。
4 同頁第8行に「μ」とあるを「ミターン」と訂正す
る。
翫 同頁下から第7行にr ky/mJとあるをrky
/’kJと訂正する。[Inevitably, carbonaceous residues are generated, and in the current 4) 11 heavy oil processing systems, there is a large amount of effort required to handle and utilize these carbonaceous residues. For example, representative examples of the four processes for producing heavy petroleum oil include delayed tsuka, &recap buying cess, 7)-)' tsuka, and 7-shiko car. In Delayed Tomi-★-, the #M:1-x in the E1m moat in the coater drum is grown by the Sesebutteguses, and this is periodically crushed by hydraulic or mechanical methods to form lumps [4! In order to discharge the coke, some work is required to take out the bottle, and the coke product also contains water, making it inconvenient to transport and store, and there are also problems in using it as fuel. On the other hand, Erica Busses is a patch Busses, but the residue is pitch and C
Therefore, the pitch is taken out continuously, and the pitch is cooled with a flaker to form a III shape, and is layered as a binder for steel. Although this method makes it possible to take out the residue in a pitch-like manner, it is still somewhat inconvenient in terms of transportation and static conditions.
There is a c@ world. In Fluid Tsuker, the generated residue is obtained as IL grains, but because the processing conditions are relatively high temperature, the combustibility of coke is not very good, and its value as a working material is low. 7th life Shibu-★-
In this case, the residual coke grains were subsequently converted to t'JI gas. Although gas is convenient for transportation, it is inconvenient for static conditions, and furthermore, this gas has a low curly content and has limited usefulness as a fuel. The inventors of the present invention have developed a system in which the carbonaceous residue that inevitably grows in heavy oil processing booths is continuously extracted using pitch.
The pitch J of the fine particles that meet by treating the liquid like a fluid
9. If raw coke or raw coke is made clear, transportation and storage will be convenient.9. Moreover, there are many rolls that can be used as fuel as is, and if necessary, it can be converted into an effect m1clx, and I! Tsute. 1l1111, the charcoal quality of heavy oil that leaves many problems! I! Thinking that it would be able to greatly contribute to the use of casings, and as a result of intensive research, we have developed a pitch ball and raw J- I ended up offering Kusu balls. The pitch ball of the present invention is II! It is thin and at least has a front side. Since it has been hardened by being exposed to KIA once and does not cause adhesion in late summer, the sled assembly behaves like a fluid. Therefore, handling, transportation, and 1 PJI have a container of 4111.6 In addition, this pitch ball contains virtually no moisture, and many rolled metals have a small amount of moisture, so they can be handled without being crushed. As a special fuel, it can be burned in a general-purpose burner by adjusting its properties, and by adjusting the oil content (volatile content) contained in the pitch ball, its combustibility can be improved. It also has the advantage of being adjustable. Furthermore, as will be described in detail later, if this pitch ball is thermally decomposed using a fluidized bed or the like, part of the oil contained in the pitch is decomposed and lightened and can be separated, while the remainder is The raw coke is heated and becomes raw coke, and since it is a raw coke ball with pores, it can be used as a fuel in kilns, etc., and it can be easily gasified, so it can be used as fuel or hydrogen. It becomes useful as a raw material for gas production. It is no wonder that the raw coke of the present invention has a softening point of 60~!ffi@1 since the raw coke is made of spheroid particles with a viscosity of 1 IJll, so it is difficult to handle, transport, and store it as a job. :, 5
Itr carbon 4o ~ 75 vtjg using a raw material pitch that looks like an island, ■ atomization and spheroidization of this pitch and 0
Oil content is released from this spherical pitch, or if necessary, it is obtained by mild surface conversion of the pitch ball or washing with a solvent, etc., and the average particle of this pitch ball is m<s*s weight) is 30~200U 411! ! rh~15vt! l! , 1IjHI
till (JIgAM1$12) is 45~$1vtj
(g) It is shown that the particles have a softening point of 140° C. or higher and are substantially non-adhesive and can maintain the deposited layer under the pressure ring of (a). - The spear has a softening point of 140 or less, or - Nitrogen carbon is 41! For rolls of less than VT, it is rated 1 in terms of adhesiveness and strength.
Does not exhibit sufficient properties to withstand normal transportation and storage. In addition, the relatives indicated by the values of oil content, fixed carbon, etc. in pitch IIK with and are the average values of the particles. In comparison, the chain content in the center is large (all! carbon value is low ~), and it may be an uneven stratification, so to speak, where an epidermis exists. The force can be obtained by disassembling the above pitch ball, reducing the heavy oil content contained in the pitch 31 by weight, and then removing the heavy oil. A pitch with a softening point of 60 to 220°C and a constant carbon content of 40 to 75 wt% is used as a raw material, 1. This pitch is atomized and spheroidized, and the oil content is extracted from this spherical pitch. or
Mild pitch ball 1 if necessary! ! Both oxidation and solvents, etc.
Washing and ■ Heat content is 2 S ~ 4 vt%, iii
The particles have a constant carbon of 75 to 11wt1ll and a pore volume larger than that of O,OS'. This rolling metal has constant carbon of 75 vtjl! The following windings have side holes and have the required strength of 4: I
It is difficult to obtain a square sphere, and it is inconvenient that a winding metal with a carbon value of *@vt arc has poor combustibility and cannot be used as fuel. In addition, although this raw soybean is comparable to pitch sphere in terms of its composition as indicated by the value of carbon content, %l11tF carbon, etc., and its average particle size, it is more susceptible to thermal decomposition and heavy content than pitch sphere. Those with a high degree of advanced pukes have a thermal decomposition weight of 1 to 41.
The difference between the pitch ball and the Mei 1FK is that the light oil produced in this process evaporates from inside the particle, resulting in particles with pores. axis, the average value of the raw coke ball during the above pitch grinding@(SO
The range of weight (lI) is 30-200trl. If the particle size is less than 30 Kuhns, mutual agglomeration of particles is likely to occur in the IflK flow state Ilc, and if the particle size is 200 Kuhns or more, the smoothness is poor when flowing with gas. m*L for operations such as transportation, storage, or fluidization.
<No. The raw materials used in the production of the pitch balls and raw coke balls of this plant include petroleum pyrolysis products, heavy 111k (
III residue oil) processing boothes (for example: L9 turnip w-k
x, 8D Mpuse> (8o1v*nt aeasph
Coal-based pitch steel produced from stones such as natural bicemen and asphalt (altig)), coal-based pitch steels such as coal thuds, , and other various pitches with a softening point of 60 to 22G"IC1
Preferably 100 to 18G”e, fixed longitudinal cable (J
I84M-8812) is used with a pitch of 40-75vt-. Softening point is 60℃ or less, or iI constant carbon is 4
01! The following cases are not suitable as raw materials for the pitch balls and raw coke balls of the present invention in terms of the softening point of the product pitch balls and the hardness of the raw coke balls. The pitch balls and raw coke balls of the present invention can be manufactured by various methods. For example, raw material pitch melted to a relatively low viscosity at 0150 to 400°C is mixed with an inert male having a higher temperature than the raw material pitch using a two-fluid nozzle or a high-pressure nozzle to atomize and remove some of the heavy weights in the raw material. Method of obtaining pitch balls by evaporating heavy oil and then cooling it in a suitable manner (in this case, heavy oil is recovered by evaporation), 0
The raw material pitch, which has been melted to a relatively low viscosity at 150 to 400°C, is mixed with an inert gas at a lower temperature than the raw material pitch to make it moldy and cooled. A method of accelerating the production of pitch spheres: ■ Pulverize solid pitch at room temperature in an appropriate manner, and introduce the finely powdered pitch into a scalpel at a temperature higher than the melting point of the raw pitch (singing point + about 20°C). By melting and spheroidizing and evaporating some of the heavy oil in the
After that, it is cooled in a suitable manner [method of obtaining pitch balls (in this case, heavy oil is recovered by MLC), etc., and inert gas is used to obtain pitch balls. A substantially inert gas having no chemical reactivity,
For example, fuel gas containing light hydrocarbons such as methane, etc., such as those emitted from Bouseme, etc. Manufacturing method■■■IC
and, if necessary, carry out appropriate modifications of their manufacturing methods, such as atomization, treatment of pitch balls separated from an inert gas, or pretreatment of pitch balls, etc. ■−
The surface of the particles is slightly heated to K11 by using a gas containing a chemical agent.
The pitch ball that has been chlorinated or separated from the O inert gas may be washed with a suitable solvent, for example, a light hydrocarbon solvent such as Soot, for example. If the softening point of the raw material pitch is 140°C or less in the 4HC■ method, the above treatment is required to make the softening point of the product pitch ball 140°C or higher. In addition, in the production method ■■, the viscosity of the heated and melted pitch is reduced to the extent necessary for atomization, but if necessary, a small amount of decomposition product oil, etc. may be added to reduce the viscosity. ,, (Also, the process pressure in method #C of above ■■0 is the same as the amount of inert 1s for the pitch ball [although it varies, it is generally in the range of normal pressure to 10 Jg/cs*''. Pressure When is lower than this range, the amount of strained active gas increases,
The equipment is also large #IVc [and is served without noise. On the other hand, if the pressure exceeds this range, particles will be generated, collisions between particles will increase, and adhesion between particles will occur, which is undesirable. (1~$2
A pitch ball that maintains its spherical shape without being magnetically attached can be obtained by oversizing at 0°C. In each of the above-mentioned methods ①@[F], the pitch ball and the gas flow can be separated by a mechanical method such as a knife fermentation method or a bag filter. Next, to produce a %41: Goks ball, the pitch ball obtained by the above method is heated to 40G-! It can be obtained by thermal decomposition under conditions of $20℃, normal pressure to 1 G kl/11". In this case, the oil contained in the pitch ball can be pyrolyzed and lightened to 11". Gadeden, !1I111 is processed by Jumonsha, and as the conversion to x-cus progresses, it is possible to obtain raw cortus spheres with pores due to the volatilization of @ quality oil. Below, the degree of decomposition is uniform,
If the temperature is higher than 20°C, the oil content and strength of the raw sukusu spheres will be poor and the layered structure may not be as spherical, which is undesirable. In addition, when producing only raw coke balls without charging pitch balls, adjust the atomization/spheroidization knee conditions and quenching temperature in the method described in ■■, and immediately heat the coke at a relatively high temperature. By transitioning to decomposition, it is also possible to heat-bound and make the material into clay. In order to more clearly show the moldiness of the pitch balls and raw coke balls of the present invention, the manufacturing method described in (1) above will be explained in more detail below in accordance with 1 and 7-- of the drawings. The method for producing the pitch balls of this invention is herein referred to as the first method, and the method for producing the raw coke balls of the present invention from the pitch balls is referred to as the second method. The No. 1 factory atomizes the heated wavy pitch to produce spherical pitch balls with hardened, non-adhesive surfaces, and also removes the heavy oil contained in the raw pitch. In Step 1 of recovering a portion, the raw material pitch is heated to 150 to 400'' or maintained at a temperature of 150 to 400'', and preferably has a viscosity of 30 mm or less. The high pressure pump 2 is used to send the atomizer 3 to the atomizer 3. At 2 G ON, the temperature is 800°C, preferably from 300 to 0.
The atomizer 3 is a contactor with a bench temperature of 4.0 and is preferably partially injected with a substantially inert gas relative to the pitch. Pitch is injected into a high-speed inert gas flow with a linear velocity of m/@ah through mx* number of internal pressure nozzles (e.g. swirl nozzles).In this case, the temperature of the raw pitch is 150-400°C. Generally, below 150℃, the viscosity is high and atomization is a national problem, and above 400℃, the pitch deteriorates due to heat, which is undesirable.
oo℃ is good, zo. If the temperature is below ℃, the evaporation rate of the oil will be uneven and a large amount of scalpel will be required, which is not economical. If it is above SOO℃, the evaporation rate will be too continuous (desirable liquid pitch balls cannot be obtained.
The amount of inert gas for the pitch ball is in the range of 0, z to 1s (weight ratio), usually 0.5 to 8s. In addition, in the process of liquid pitch, the high-velocity inert gas first forms fine pitch droplets, and heat transfer occurs from the high-temperature gas flow to the pitch droplets. El in the gas flow! As a result, the temperature of the mixed flow of pitch and inert gas decreases, and the temperature of the mixed metal falls within about 0 seconds for many windings.
The mixed stream is then quenched to between 5 and 475°C to solidify the pitch droplets and allow the gas to flow. In this case, heat recovery from the pitch ball and recovery of heavy oil such as gas #1 are also performed by appropriate methods. The important parameters in this atomizer 3 are the ratio of the temperature and supply amount of the inert gas to the temperature and supply amount of the raw material liquid pitch, injection and/or mixing conditions, residence time of the mixed flow, and Such as quenching temperature. These −
The knots determine the pitch ball's constant carbon content, the average content of grains, the distribution of oil in the pitch ball, the softening point (adhesion), etc. The pitch ball can also be rapidly cooled by, for example, injecting water or low-temperature gas into the mixed flow to bring the temperature of the mixed flow to 70 to 40°C. If the winding cooling degree is below 70°C, the evaporated spears and water vapor will condense and mix into the spool crystal! It is undesirable that temperatures above 400'C cause thermal decomposition of the pitch spheres and secondary agglomeration and adhesion between particles.Furthermore, the pitch spheres can also be cooled using a multi-stage fluidized bed 5. In other words, in order to separate the pitch ball from the gas flow,
For example, the pitch ball that has passed through the tank 4 and entered the multistage fluidized bed 5 is introduced into the fluidized bed at room temperature to 1°C. It is directly or indirectly heat exchanged with a suitable inert gas of usually 5''' 100 C1l/see, preferably 10 to 60-4.℃, cooled and crushed at a temperature of room temperature to 10 G'IC. Also, a moving bed may be used instead of the multi-stage fluidized bed.The gas stream separated from the pitch spheres is cooled by passing through a suitable heat exchanger 8 and a cooler 10, and the gas that was present in the gas stream is cooled. The oil is distilled in the distillation column 12. The heat recovered in the heat exchange IIs and the multi-stage fluidized bed 5 is used to heat the inert scalpel in the illustrated example to improve thermal efficiency. The collected pitch balls are virtually non-adhesive and can be used as special fuel products that are difficult to handle, transport, and store. The oil content is used as fuel oil after undergoing 4611 such as desulfurization.The second step is to produce whole coke balls as required, and this step is performed from the fine pitch balls obtained from the first step. This is a process in which a relatively light oil is harvested through thermal decomposition, while the remaining particles are turned into a raw material with pores.The pitch ball obtained from the Tateichi process differs depending on the conditions of the knee. is fixed carbon 45~I!!r%fi, 5
! j ~15 vtl I) Nlk content, IP':) Fine particles with virtually no fliKm adhesion. The pitch spheres of the product obtained in the first step or the pitch spheres extracted at an appropriate temperature in the Kiichi process are supplied to 6 to the fluidized bed pyrolysis 11 in which coke particles are flowing.
IkIIk state. 'Thermal decomposition temperature is 400 N52
0"C1 pressure 7)st normal pressure I G kl/m", the average transit time for pyrolysis is within 1 minute to 2 hours.・. In addition, the coke particles used in this fluidized bed are
Product coke particles obtained at Tate Niko 1 are used.
3 - In the process of this second step, the pitch spheres become all coke spheres due to the polycondensation reaction occurring in parallel with thermal decomposition, and these raw = -tas spheres have a high amount of fixed carbon in the raw pitch spheres. In addition, due to the polycondensation reaction in the decomposition step, the strength is also high, and some have pores. Since the whole coke spheres coming out of the first-layer pyrolysis II Haruka are at a high temperature, they are cooled while recovering heat, for example, in a multi-stage fluidized bed 7, and become raw soot spheres as a product. In addition, using the above multi-stage flow 1 crane, preferably 7-〇-40g+/s@c 0
In the illustrated example, heat recovery from the multi-stage fluidized bed 1 is performed by heat exchange with low-temperature inert gas, so by guiding this inert gas to the heater 9 and using it, the efficiency of heat utilization is improved. be able to. is cooled through a heat exchanger 8 and a cooler 10 together with the inert gas used in the slight softener, and is then sent to a distillation column 12.
The oil is recovered. The separated and recovered light oil undergoes treatments such as desulfurization, and the zero cracked gas that becomes the product may be processed in the distillation column 12 together with the inert gas of the atomizer, as shown in the figure, but only the light oil is obtained. For this purpose, a separate distillation column may be provided for separation. is 25-4 vrt%, fixed carbon is 75-9@vt pores! These particles are difficult to handle, transport, and store, and are used as solid fuels and carbon materials, but because they are porous, they can be easily gasified, and can also be used as raw materials for gas fuel and hydrogen gas production. Are suitable. The ratio of the amount of pitch balls produced in the first process and the total coke balls □ produced in the second process 1 is the same for each! i butt) (C
1) It is possible for ε to change appropriately depending on k. Next, the present invention will be further illustrated by examples. This example is an example of a manufacturing method for a more complete understanding of the present invention, and does not define all manufacturing methods or uses of the pitch balls and whole coke balls of the present invention. Example 1 The raw material pitch used in Example 1 was obtained by thermally decomposing vacuum residual oil, and its properties were as shown in Table 1. Cjl1 table] Heat the raw material pitch to 310"e 31 G"e
Km viscosity 100cp) at a flow rate of 30”l/hr, 4
The mixture was atomized by being injected from a nozzle into a nitrogen gas stream heated to 00°C. The flow rate of nitrogen gas was 77"I/hr. The atomization device had a maximum diameter of 5 mm, an inner diameter of 151 w, and a length of 2,500 m.
ll Contact snow receiver, 4 nozzles of 0.3■φ are installed just before the tie, and the raw material pitch is injected from the nozzles so that there is an inward flow (angle 45°) to the flow of nitrogen gas. Ru. The nozzle pressure in jetting with J[family pitch is approximately 15
It was 0 jg/-. By injection of pitch into nitrogen gas, the mixed gas flow is approximately 35
Although the temperature decreased to 0"ck, water of 2S"C was further injected at the outlet of the contacting device to about 15 by/br "t" to rapidly cool it to about to'c. The pitch spheres were separated and the pitch spheres were obtained.The residence time for atomization (heat transfer and evaporation) was 2 apc.The average particle diameter of the product pitch spheres was approximately 8 degrees ( 40N
The particles had a softening point of 90° C. or more, and the particles could maintain their spherical shape under compression of 10 kI/- at room temperature. The properties of the pitch ball were similar to those of No. 211. The pitch spheres were ejected at a rate of about 26.4 jv/hr, and the yield based on the raw pitch was about 88 wtl. On the other hand, the nitrogen gas stream that was separated from the pitch ball was cooled down in a cooler and collected in an oily state. [jK oil is a heavy oil containing about 30% of 1 min with a boiling point of 540° C. or higher, and the yield based on the raw material pitch was about 12 W scratches. Example-1-B - The pitch ball obtained in Example-1-B was used as a 26.4JIF raw material. Using a fluidized bed reactor with an inner diameter of 210 mm and an effective height of 1000 mm, pitch balls at 80°C were used. First, 1 ml of oxidation J12! shown on the front page was preliminarily carried out for about 2 hours using 2.OIm''/hr of air at about 100°C containing 3 vol of ozone-QF, and then nitrogen gas at 600°C was added. Blow in with 6" Ar and gradually raise the temperature to 450 degrees.
℃ and then thermal decomposition was carried out. Pyrolysis conditions I
t. The reaction temperature was 450° C., the pressure was 0.3·“l/a”, and the reaction time was 0.97 hours. The tower velocity of nitrogen gas in the fluidized bed was 0.13□@C. After the summer, the nitrogen gas was switched to 40°C and cooled, and raw Zugs bulbs at 6S°C were obtained as products. Raw product: - Couscous balls are grains! ! The particles with a particle size of 40 to 150 particles were particles with a particle size of 80 particles, and their properties were as shown in Table 3. - [Table 3] The yield of raw = - Tussu is 197 k1g, the yield is 74.6 vtl for the pitch sphere, it fi B, 7 vtjG ``e b ivy @ pyrolysis for the raw material pitch The decomposed male that came out was cooled to 40'C in a coo-two, and the cracked oil and C, and the following cracked gas were separated.The cracked oil was about 214vt% of the raw material pitch ball &9, and the cracked gas was S, The properties of the Ovtl 0 cracked oil were as shown in Table 4. [Table 4] Example 2 The raw material pitch used in Example 2 was obtained by thermally decomposing vacuum residual oil. The properties of the pitch were as shown in No. S@. [Table 5] This JI pitch was maintained at 320°C and
The viscosity is 200 cp) 30 jv/hr #
) 1 weight was injected by a nozzle into an inert gas stream heated to 600″e.The flow rate of the inert gas was 28 k
g/hr and the gas composition was like Rattan 61R. The mold IIjLf device is a Bench & Lee II*m device with a maximum diameter of sO■φ and a 15-φ length of 150G, and four 0.3-φ nozzles. The inert gas is injected from this nozzle at a diagonal line (angle 4s@) to the inert gas stream. The nozzle pressure applied to the injection of raw material pitch is: I
00 kl/'os''. By injecting pitch into the inert knife, the 81 knife flow was approximately 4
1! l:, but the sit water was further reduced to 11jv/hr.
It was fired at the opening of the event, and the temperature electrified to about 300 degrees Celsius. The residence time required for anification (heat transfer/evaporation) was approximately 0.15 seconds. The mixed stream is separated into pitch balls and males using a knife separator, and then the pitch balls are brought into contact (cooled) with a 40°C inert gas introduced into the bottom of the fluidized bed in a multi-stage fluidized bed chamber. However, the φ component pitch sphere obtained as a product at 65℃ has an average particle size of about 100μ (sO ~ 150μ is 90μ), a softening point of soo℃ or more, and a particle size of 10III/
It maintained delamination under compression of 100 g, and its properties were as shown in Table 7. [Table 7] Pitch 3I was milled at 25.5 l/hr, and the yield based on the raw pitch was 8 S vt%. On the other hand, the gas stream separated by the pitch ball and the pump is cooled by a heat exchanger and a cooler, and is separated into water, condensed water, and off-gas in a distillation column, and the off-gas is circulated.
The mixture was passed through a heater as an inert gas to form atomized MiI gas, and a portion was used as a cooling gas for a multi-stage fluidized bed cooler 2.-. The oil separated in the distillation column was a heavy oil with a boiling point of 540"C or higher containing about sO, and the yield was about 1 sWts. Example-2-B Example-2-M A pitch ball was made using the same method as above using the same raw materials as above, and the pitch ball was extracted from the second stage of a multi-layer cooler, which was separated from the gas flow using a Naikoon (temperature 119℃), inside@ 210■, effective height 1,00
Using a 0111 111I fluidized bed pyrolyzer, 2
! ! , pyrolyzed at $1111/hr. @The maximum decomposition temperature was 450°C, the pressure was 0.3 Jv/w'', and the time was a, s for Chiyunka Ojioka. Also, the fluidizing gas in the fluidized bed contained soo', the same gas used for atomization. The gas composition was shown in the exposure table of Example 2-5, and the column speed was 0.1 S/s@c. Raw coke obtained by pyrolysis The spheres are introduced into the bottom of a multi-stage fluidized bed cooler, brought into contact with an inert gas of 4 (1), cooled and discharged as a product at 65°C. 8 particles
The properties of the finely granulated raw coke balls were as shown in Table 8. On the other hand, the cracked gas coming out of the fluidized bed pyrolyzer is cooled in a heat exchanger and cooler separately from the inert gas that comes out of the atomizer and is separated from the pitch spheres in a Naikoon, and then sent to a distillation column.
The cracked oil, condensed water, and tower top gas were separated, and the tower top gas was circulated and used as an inert gas through a heating furnace, as a gas for atomization, or for cooling a multistage fluidized bed. The decomposition gas separated in the distillation column is approximately t for the original pitch pitch.
o vt%, and the cracked oil is about 15.6 vt-
Its properties were as shown in Table 9. The drawing shows the book G &Beak's III thesis,
The main parts of li are as follows. 1: Heat retention tank, 2: High pressure pump, 3! Contact atomizer, 4: T-tern separator, 5! Multistage fluidized bed (for rapid cooling), 6! Fluidized bed pyrolyzer, 7: Multistage fluidized bed (for cooling), 12
: Amendment to Distillation Column Procedures September 17, 1984 Director General of the Patent Office Shima 1) Indication of Tono Haruyuki Case 1978 Patent Application No. 121844 Title of Invention Case of a person amending fine oil-impregnated carbonaceous spheres and their manufacturing method Relationship of patent applicant name
Fuji Standard Research Co., Ltd. Agent - 1 Issuance of the declaratory document subject to amendment ← Applicant's column - Invention in the description → n ← Scope of claims - Detailed description of the invention column Contents of the amendment As shown in the attached sheet The description is amended as follows. t In the 9th line of page 26, the word ``Nitou'' is corrected to ``Kuto J.'' 2 The word ``μ'' in the 8th and 9th lines of the 30th page is corrected to ``Mita 4''. , 5. In the third line of page s2, after the word "so", add "ku". 4 In the 8th line of the same page, the word "μ" is corrected to "miturn".翫 On the 7th line from the bottom of the same page, it says r ky/mJ.
/'kJ.
Claims (1)
で、油含有率が5s〜15豐t、−1固定炭素が45〜
15vtJ、軟化点が140℃以上で、常温・10 k
y /ax”の圧縮下では球型を保持し得る、実質的に
付着性のないピッチ球。 2 平均直径(sag重量径)がSo〜2QQtり田ン
で、油含有率が25〜4wt、−1固定炭素が75〜?
4wtjであり、且つ、細孔を有する生コークス球。 五 原料であるピッチが、軟化点60〜220℃、一定
炭素40〜7’5vt6%である、石油系または石炭系
などのピッチ額を、150〜400℃の温度に保ちなが
ら、常圧〜10 ky/a/の圧力下で、実質的にピッ
チに対して不活性な、その温度が200〜−OS℃のガ
ス流中に、混合微粒化し、この混゛合減を70〜400
’eに急冷し、微粒ピッチ球と油とを分離1111Lす
ることから成る、平均直観が30−200すlンでああ
ピッチ球の製造万機。 4、厘科であるピッチが、軟化点゛・O〜ト1℃、k保
ちながら、実質的にピッチに対して不tIK性な、その
温度が200〜800℃の1xll中に、温會轍粒化し
、この混合流を70〜400℃に急冷し、amピッチ球
と油とを分離−釈する館−1猥と、第−工1で得られた
ピッチ球を更[1動層を層い【、温度40G−5!O℃
、圧力、雪圧〜10欅/e1m”、平均−留時間1分〜
2時間で熱分解と重―会し、微粒の生コークス球と1質
の分解油とを分−關釈する第二工程とよりなる。平均粒
子IIがgo−zoo々りpンの生コークス球の製造方
鉄。[Claims] - Average diameter (io-weight II) is So ~ 2004 oil, oil content is 5 s ~ 15 t, - 1 fixed carbon is 45 ~
15vtJ, softening point is 140℃ or higher, room temperature, 10K
Substantially non-adhesive pitch ball capable of retaining its spherical shape under compression of y/ax. -1 fixed carbon is 75~?
A raw coke ball that is 4wtj and has pores. (5) The raw material pitch is petroleum-based or coal-based pitch with a softening point of 60 to 220°C and a constant carbon of 40 to 7'5vt6%, while maintaining the pitch at a temperature of 150 to 400°C under normal pressure to 10%. Under a pressure of ky/a/, the mixture is atomized in a gas flow which is substantially inert to pitch and whose temperature ranges from 200 to -OS°C, and the atomization is reduced to 70 to 400 °C.
It consists of quenching to 'e' and separating the fine pitch balls from the oil, and the production of pitch balls with an average weight of 30-200 l is possible. 4. Pitch, which is a common material, is heated in a warm environment at a temperature of 200 to 800 °C, while maintaining its softening point of ゛・O ~ 1 °C. The pitch balls obtained in Step 1 are granulated, and the mixed flow is rapidly cooled to 70 to 400°C to separate the am pitch balls and oil. [Temperature 40G-5! ℃
, pressure, snow pressure ~10 keyaki/e1m", average residence time ~1 minute
The second step consists of pyrolysis and separation of fine raw coke balls and one quality cracked oil in two hours. A method for producing raw coke balls with an average particle size of go-zoo-rich.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12186681A JPS5823882A (en) | 1981-08-05 | 1981-08-05 | Fine particulate carbonaceous spherule containing oil and its preparation |
GB08222386A GB2103650B (en) | 1981-08-05 | 1982-08-03 | Microspherical pitch spheres |
CA000408699A CA1186262A (en) | 1981-08-05 | 1982-08-04 | Microspherical oil-containing carbonaceous particles and process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12186681A JPS5823882A (en) | 1981-08-05 | 1981-08-05 | Fine particulate carbonaceous spherule containing oil and its preparation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5823882A true JPS5823882A (en) | 1983-02-12 |
Family
ID=14821858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12186681A Pending JPS5823882A (en) | 1981-08-05 | 1981-08-05 | Fine particulate carbonaceous spherule containing oil and its preparation |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS5823882A (en) |
CA (1) | CA1186262A (en) |
GB (1) | GB2103650B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62128343U (en) * | 1986-02-07 | 1987-08-14 | ||
CN115572487A (en) * | 2016-03-07 | 2023-01-06 | 加拿大国家铁路公司 | Method and system for transporting asphalt in solidified form and converting crude oil into end-use petroleum products |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5920381A (en) * | 1982-07-28 | 1984-02-02 | Fuji Standard Res Kk | Preparation of oil-containing carbon spheres in fine particles |
JPS6114110A (en) * | 1984-06-26 | 1986-01-22 | Kawasaki Steel Corp | Manufacture of fine and hollow body of carbon |
CA1302934C (en) * | 1987-06-18 | 1992-06-09 | Masatoshi Tsuchitani | Process for preparing pitches |
CN114684817B (en) * | 2021-11-12 | 2023-08-25 | 中国神华煤制油化工有限公司 | Method and device for preparing spherical anode active material, lithium battery anode and lithium battery |
-
1981
- 1981-08-05 JP JP12186681A patent/JPS5823882A/en active Pending
-
1982
- 1982-08-03 GB GB08222386A patent/GB2103650B/en not_active Expired
- 1982-08-04 CA CA000408699A patent/CA1186262A/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62128343U (en) * | 1986-02-07 | 1987-08-14 | ||
CN115572487A (en) * | 2016-03-07 | 2023-01-06 | 加拿大国家铁路公司 | Method and system for transporting asphalt in solidified form and converting crude oil into end-use petroleum products |
Also Published As
Publication number | Publication date |
---|---|
GB2103650B (en) | 1985-08-21 |
GB2103650A (en) | 1983-02-23 |
CA1186262A (en) | 1985-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2481311A1 (en) | PROCESS FOR DECARBURIZING OR DEMETALLIZING A HYDROCARBON LOAD | |
US4394132A (en) | Particulate coal-in-liquid mixture and process for the production thereof | |
CN107709474A (en) | Carbon black generates system | |
CN202063875U (en) | Green circulation economy type coal coking process device | |
CN102229806A (en) | Green circular economy technology with coal coking as the main part | |
US4094746A (en) | Coal-conversion process | |
JPS6024153B2 (en) | Method for producing low sulfur and low ash fuel | |
WO1996037296A1 (en) | Iron sulfides and process for producing the same | |
AU2013226908B2 (en) | Coal blend briquette and process for producing same, and coke and process for producing same | |
JPS5823882A (en) | Fine particulate carbonaceous spherule containing oil and its preparation | |
JPH01301786A (en) | Continuous fluidization for improving quality of raw material containing heavy hydrocarbon | |
EP3312223B1 (en) | Method for thermally decomposing polyethylene and polypropylene waste | |
EP3744813A1 (en) | A process for conversion of fuel grade coke to anode grade coke | |
US4624807A (en) | Process for producing microspherical, oil-containing carbonaceous particles | |
JPS60248793A (en) | Thermal decomposition of heavy oil | |
JPS58113291A (en) | Preparation of oil-containing fine carbonaceous sphere | |
US3455789A (en) | Process for continuous carbonization of coal | |
US2447006A (en) | Production of sulfo compositions | |
CN108315044A (en) | The heat-carrying gas air flow bed gasification method and gasification burner of hydrocarbon material containing heavy hydrocarbon and/or solid | |
US4412908A (en) | Process for thermal hydrocracking of coal | |
RU2633584C1 (en) | Method for coke production and coke | |
US2447005A (en) | Method and apparatus for producing sulfo compositions | |
JPS61249600A (en) | Treatment of oil storage tank sludge | |
US3449238A (en) | Processing hydrocarbons containing carbon black | |
CN113716561A (en) | Preparation method of spherical activated carbon, spherical activated carbon and preparation device thereof |