JPS5823563B2 - Corrosion wear detection method - Google Patents
Corrosion wear detection methodInfo
- Publication number
- JPS5823563B2 JPS5823563B2 JP53013935A JP1393578A JPS5823563B2 JP S5823563 B2 JPS5823563 B2 JP S5823563B2 JP 53013935 A JP53013935 A JP 53013935A JP 1393578 A JP1393578 A JP 1393578A JP S5823563 B2 JPS5823563 B2 JP S5823563B2
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- degree
- wear
- tube
- bridge circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000007797 corrosion Effects 0.000 title claims description 29
- 238000005260 corrosion Methods 0.000 title claims description 29
- 238000001514 detection method Methods 0.000 title description 17
- 239000004020 conductor Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 13
- 239000011810 insulating material Substances 0.000 claims description 4
- 239000000523 sample Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
【発明の詳細な説明】
この発明は、腐食損耗度検出方法に係り、特にボイラ、
熱交換器用管その地中空管の内壁の腐食損耗部の位置、
腐食損耗の度合等就検出するに最適な検出方法に関する
。[Detailed Description of the Invention] The present invention relates to a method for detecting the degree of corrosion damage, particularly for boilers,
The location of the corroded part of the inner wall of the heat exchanger pipe, the underground pipe,
This invention relates to an optimal detection method for detecting the degree of corrosion and wear.
石油精製その他の化学工業等にあっては多数の管を有す
る熱交換器が多用されており、これらの管は腐食性雰囲
気にあるものが多く、定期的に開放検査を行うことによ
り、その安全性、寿命等を確認する必要があるδ
かかる管の損耗度の検出方式として、従来、非破壊的な
ものとしては、オーステナイト系ステンレス鋼管、黄銅
管等に多用されているいわゆる渦流探傷方式がある。Heat exchangers with many tubes are often used in oil refining and other chemical industries, and many of these tubes are in a corrosive atmosphere, so periodic open inspections are performed to ensure their safety. δ It is necessary to check the durability, lifespan, etc. As a conventional non-destructive method for detecting the degree of wear of such pipes, there is the so-called eddy current flaw detection method, which is often used for austenitic stainless steel pipes, brass pipes, etc. .
この方式は励磁コイルと検出コイルとを用い、検出コイ
ルからのパルス信号に基づいて管の探傷を行うものであ
るが、腐食損耗部の深さに出力パルスが対応せず、検出
精度にも限界がある。This method uses an excitation coil and a detection coil to detect pipe flaws based on pulse signals from the detection coil, but the output pulses do not correspond to the depth of the corroded area and there is a limit to detection accuracy. There is.
また、検査対象となる管材は非磁性体でなければならず
、したがって、鋼管等の磁性体に対しては磁気飽和策を
要する等の欠点がある。In addition, the pipe material to be inspected must be a non-magnetic material, and therefore there are drawbacks such as the need for magnetic saturation measures for magnetic materials such as steel pipes.
さらに、放射線照射による管壁肉厚測定方式もあるが、
測定が一方向に限定されること、及び管が束状に重積さ
れている場合には測定が不能であること等の欠点がある
。Furthermore, there is a method of measuring tube wall thickness using radiation irradiation.
Disadvantages include that measurements are limited to one direction and that measurements are impossible when tubes are piled up in a bundle.
また、最近では、ファイバースコープ法による内面観察
も用いられるようになったが、非能率的であり、損耗部
を見落し易い等の欠点がある。In addition, recently, inner surface observation using a fiberscope method has been used, but it has drawbacks such as being inefficient and easily overlooking worn parts.
このような点に鑑み、より確実な損耗の検出手段として
、熱交換器等多数の管を有するものにあっては、代表的
な管を取外し、破壊検査を行うことにより他の管の腐食
損耗の状況を推測しているのが現状である。In view of this, as a more reliable means of detecting wear and tear, for equipment with a large number of tubes, such as heat exchangers, by removing a representative tube and conducting a destructive inspection, it is possible to detect corrosion and wear on other tubes. At present, we are speculating about the situation.
しかしながら、かかる抜取検査はあくまで推測による測
定であり、非能率かつ不経済である。However, such a sampling inspection is only a guess-based measurement, and is inefficient and uneconomical.
一方、超音波肉厚法、深さゲージによる直接測定等の方
法もあるが、非能率的であり高精度の測定はできないと
いう欠点がある。On the other hand, there are methods such as ultrasonic wall thickness method and direct measurement using a depth gauge, but these methods have the disadvantage that they are inefficient and cannot provide highly accurate measurements.
上述の如き欠点のない腐食損耗度検出方式として、第1
図に示す方式のものが提案されている。As a method for detecting the degree of corrosion damage without the above-mentioned drawbacks, the first method is
The system shown in the figure has been proposed.
すなわち、導体円板1,2を検査対象の管3の長手方向
に対して直角にかつ管内壁に円周面が近接するように配
設し、例えば円筒部材で保持することにより導体円板0
,2の間隔dを一定に保持しながら管3内を長手方向に
移動させる。That is, by arranging the conductor disks 1 and 2 at right angles to the longitudinal direction of the tube 3 to be inspected and with their circumferential surfaces close to the inner wall of the tube, and holding them with a cylindrical member, for example, the conductor disks 0
, 2 in the longitudinal direction while keeping the distance d constant.
たとえば図示の(I)位置から(II)位置の如く管内
を移動させる。For example, it is moved in the pipe from position (I) to position (II) as shown in the figure.
しかして、導体円板1,2に異符号電荷を帯電させた場
合、両回板間に生ずる電気力線は全て直線とならず、円
板周縁部において弧状曲線を描くので、図示の(1)位
置の如き無傷位置と、(II)の如き腐食損耗部4が存
在する位置とでは管の内径が異なることにより、誘電率
εが異なることになる。However, when the conductor discs 1 and 2 are charged with charges of opposite signs, the electric lines of force generated between the two discs are not all straight lines, but arcuate curves are drawn at the peripheral edge of the discs. ) The dielectric constant ε differs between an intact position such as position (II) and a position where a corroded portion 4 exists such as position (II) because the inner diameter of the tube is different.
これによって、(I)位置と(n)位置の導体円板1,
2間の静電容量CXが異なることになるので、第2図に
示すようなブリッジ回路5に円板1,2部分を組込み、
高周波発振器6によりブリッジ回路5に高周波電圧を印
加し、不平衡電圧を整流用ダイオード7で整流し、その
整流出力を増幅器8で増幅して電圧計9で表示するよう
にすることにより、腐食損耗度を検出し得ることとなる
のである。As a result, the conductor disk 1 at the (I) position and the (n) position,
Since the capacitance CX between the two discs will be different, the parts of the discs 1 and 2 are incorporated into a bridge circuit 5 as shown in FIG.
A high frequency voltage is applied to the bridge circuit 5 by a high frequency oscillator 6, the unbalanced voltage is rectified by a rectifying diode 7, and the rectified output is amplified by an amplifier 8 and displayed by a voltmeter 9. Therefore, it is possible to detect the degree of
すなわち、(I)位置においては、ブリッジ回路5の出
力が最小となるように基準コンデンサCs又は基準イン
ダクタンスコイルL0.L2を選択しておくと、腐食損
耗部4の位置に円板1,2が移動して来た時の容量Cx
の変化により、ブリッジ回路5の出力が増大し、その出
力変化の度合は腐食損耗の度合に応じて変化することか
ら、予め基準となる管材で検量線を求めておけば腐食損
耗度を知ることができることになる。That is, at position (I), the reference capacitor Cs or the reference inductance coil L0. If L2 is selected, the capacity Cx when the disks 1 and 2 are moved to the position of the corrosion wear part 4
The output of the bridge circuit 5 increases due to a change in the output, and the degree of output change changes depending on the degree of corrosion and wear. Therefore, it is possible to know the degree of corrosion and wear by obtaining a calibration curve using the standard pipe material in advance. will be possible.
ところで、円板1,2間の容量の変化で腐食損耗度を検
出するには、上記のようなブリッジ回路5の代りに、円
板1,2を含む共振回路を構成しシ容量変化に伴う共振
状態のくずれで腐食損耗を検出することを可能である。By the way, in order to detect the degree of corrosion loss based on the change in capacitance between the disks 1 and 2, a resonant circuit including the disks 1 and 2 is constructed instead of the bridge circuit 5 as described above, and the circuit is configured to detect the degree of corrosion due to the change in capacitance between the disks 1 and 2. It is possible to detect corrosion wear and tear based on the collapse of the resonance state.
第3図はその一例を示す回路図で、L3は高周波発振器
6に接続された1次コイル、Lはこの1次コイルと電磁
気的に結合された2次コイルで、この2次コイルと上記
円・板1,2の回路で共振回路を構成し、共振電圧をダ
イオード7で整流し、増幅器8を介して電圧計9で表示
する。FIG. 3 is a circuit diagram showing an example of this, where L3 is a primary coil connected to the high frequency oscillator 6, L is a secondary coil electromagnetically coupled to this primary coil, and this secondary coil and the above circle - The circuits of plates 1 and 2 constitute a resonant circuit, and the resonant voltage is rectified by a diode 7 and displayed by a voltmeter 9 via an amplifier 8.
ここで、第1図の(1)の位置においては最大の共振電
圧が得られるように回路を調整しておくと、(II)の
位置においては容量Cxの変化により共振関係がくずれ
て出力電圧が低下し、その低下の度合は腐食損耗度に応
じて変わることから腐食損耗度を知ることができること
になる。If the circuit is adjusted so that the maximum resonant voltage is obtained at position (1) in Figure 1, then at position (II), the resonance relationship is broken due to the change in capacitance Cx, and the output voltage decreases, and since the degree of decrease changes depending on the degree of corrosion wear and tear, it is possible to know the degree of corrosion wear.
しかして、この発明は検出方式を改良してより簡略化さ
れた腐食損耗度の検出方法を実現することを目的として
なされたものであり、その特徴とするところは、対をな
す円板等の導電板を用いるのではなく、導電材と管との
間の容量を検出することにより、腐食損耗度を検知する
ようにしたことにある。Therefore, this invention was made with the aim of realizing a simpler method for detecting the degree of corrosion wear by improving the detection method, and its feature is that Rather than using a conductive plate, the degree of corrosion and wear is detected by detecting the capacitance between the conductive material and the tube.
以下にこの発明の一実施例を第4図により説明する。An embodiment of the present invention will be described below with reference to FIG.
10は管3の内径よりやや小なる外径を有する絶縁材で
なる円筒部材、11はその外周部固定した導電材でなる
1条のリングである。10 is a cylindrical member made of an insulating material having an outer diameter slightly smaller than the inner diameter of the tube 3, and 11 is a ring made of a conductive material fixed to the outer circumference thereof.
12は円筒部材10内にたとえばモールドにより固定し
て収容された第2図のブリッジ回路である。Reference numeral 12 designates the bridge circuit shown in FIG. 2 fixedly housed within the cylindrical member 10, for example, by molding.
なお、このブリッジ回路の代わりに第3図の共振回路を
用いてもよい。Note that the resonant circuit shown in FIG. 3 may be used instead of this bridge circuit.
また、14は管3とブリッジ回路1.2とを結ぶリード
線、15は管の外部に設けられた表示装置で、上述した
増幅器8及び電圧計9が含まれる。Further, 14 is a lead wire connecting the tube 3 and the bridge circuit 1.2, and 15 is a display device provided outside the tube, which includes the above-mentioned amplifier 8 and voltmeter 9.
なお、表示装置15とブリッジ回路12とを接続するリ
ード線16には、円筒部材10内にて整流用ダイオード
(図示せず)が挿入接続されている。Note that a rectifying diode (not shown) is inserted and connected within the cylindrical member 10 to a lead wire 16 that connects the display device 15 and the bridge circuit 12.
この検出方法は、第2図のCxとして、管3の内面とリ
ング11との間の静電容量を検出することにより、腐食
損耗部4の検出を行うものである。This detection method detects the corroded portion 4 by detecting the capacitance between the inner surface of the tube 3 and the ring 11 as Cx in FIG.
すなわち、例えば円筒部材10の両端に上記リング11
より大きな径でかP管3の内径よりやや小さい径の絶縁
材で成るリング17,18を設けて検出プローブ19を
完成し、例えば図示のQ方向から圧搾空気を送り込んで
検出プローブ19をPの方向に移動させると、導電材で
なるリング11が管3の内面に損耗のない位置にあると
きは管3とIIソング1との間の容量は一定であるが、
腐食損耗部4の所にリング11が位置すると、リング1
1と管内面との間の間隔が犬となり、容量が減少する。That is, for example, the rings 11 are attached to both ends of the cylindrical member 10.
The detection probe 19 is completed by providing rings 17 and 18 made of insulating material with a larger diameter or a slightly smaller diameter than the inner diameter of the P tube 3. For example, compressed air is sent from the Q direction shown in the figure to move the detection probe 19 into the P tube. When moving in the direction, when the ring 11 made of conductive material is in a position where there is no wear on the inner surface of the tube 3, the capacitance between the tube 3 and the II song 1 is constant;
When the ring 11 is located at the corrosion wear part 4, the ring 1
1 and the inner surface of the tube becomes a dog, reducing the capacity.
従って、管3とリング11との間を第2図のブリッジ回
路5の1つのアームに電極1,2の代わりに組込むこと
により、上述した原理で腐食損耗度の検知が可能となる
。Therefore, by incorporating the connection between the tube 3 and the ring 11 into one arm of the bridge circuit 5 shown in FIG. 2 instead of the electrodes 1 and 2, it becomes possible to detect the degree of corrosion and wear based on the above-mentioned principle.
すなわち、予め腐食損耗のある管を用意しておいて、ブ
リッジ回路5の出力電圧と腐食損耗度との関係(検量線
)を求めておけば、電圧計9の読みから腐食損耗度を知
ることができる。In other words, if a pipe with corrosion damage is prepared in advance and the relationship (calibration curve) between the output voltage of the bridge circuit 5 and the degree of corrosion damage is determined, the degree of corrosion damage can be determined from the reading of the voltmeter 9. Can be done.
第2図のブリッジ回路5の代わりに、第3図の共振回路
を用い、管3とリング11との間の容量CxとコイルL
4 とで共振回路を形成するように構成しても、腐食
損耗度の検出が可能であることは言うまでもない。In place of the bridge circuit 5 in FIG. 2, the resonant circuit in FIG. 3 is used, and the capacitance Cx between the tube 3 and the ring 11 and the coil L are
It goes without saying that it is possible to detect the degree of corrosion damage even if a resonant circuit is formed with 4.
このように、管3とリングとの間の容量を検出するよう
にすることにより、検出素子の構成が簡単化される。By detecting the capacitance between the tube 3 and the ring in this way, the configuration of the detection element is simplified.
また、第1図に示すような円板1゜2を使用する方式に
比較し、より鋭尖な腐食損耗度の検出、すなわちより小
中の腐食損耗の検出が可能となる。Furthermore, compared to the method using a 1.degree. 2 disk as shown in FIG. 1, it is possible to detect a sharper degree of corrosion wear, that is, to detect corrosion wear on smaller and medium scales.
なお、上述の装置では、検出プローブを構成する円筒部
材10の全周面上に1個のリング11を形成しているの
で、管内に局部的に存在する腐食損耗に対しては正確な
状態を検知し得ないことも考えられる。In addition, in the above-mentioned device, one ring 11 is formed on the entire circumferential surface of the cylindrical member 10 constituting the detection probe, so it is difficult to accurately determine the state of the pipe against localized corrosion and wear. It is also possible that it cannot be detected.
かかる問題に対しては、第5図に示す如く、円筒部材の
全面にわたって均等対象的に複数個の導電材20〜23
を設け、これら各導電材に対してそれぞれブリッジ回路
24〜27を構成する。To solve this problem, as shown in FIG.
are provided, and bridge circuits 24 to 27 are configured for each of these conductive materials.
しかして、共通の交流電源29で各ブリッジ回路24〜
28を励磁すると共に、各ブリッジ回路からの出力をダ
イオードCR1〜CR,で直流に変換した後、この直流
信号を伝送してそれぞれ電圧計30で読取る。Therefore, each bridge circuit 24 to
28 is excited, and the outputs from each bridge circuit are converted into direct current by diodes CR1 to CR, and then the direct current signals are transmitted and read by voltmeters 30, respectively.
このようにすれば、複数個の導電材20〜23に対向し
た管内位置の腐食損耗の状態を確実に検知することがで
きる。In this way, it is possible to reliably detect the state of corrosion and wear at the position in the pipe that faces the plurality of conductive materials 20 to 23.
一方、このような複数の導電材20〜23及びブリッジ
回路24〜27の他に前述と同様なリング11及びブリ
ッジ回路31及びブリッジ回路28を並置し、全体的な
腐食損耗の状態を電圧計32で検知するようにすること
もできる。On the other hand, in addition to such a plurality of conductive materials 20 to 23 and bridge circuits 24 to 27, a ring 11, a bridge circuit 31, and a bridge circuit 28 similar to those described above are arranged side by side, and the overall state of corrosion and wear is measured using a voltmeter 32. It can also be detected by
なお、第5図の実施例では、各ブリッジ回路の出力をそ
れぞれ電圧計で検知するようにしているが、実際にはそ
の必要はなく、その中で最も大きな出力のみ(第3図の
共振回路を用いる場合は最も小さな出力のみ)を検知す
ればよい。In the embodiment shown in Fig. 5, the output of each bridge circuit is detected by a voltmeter, but in reality, this is not necessary and only the largest output among them (resonant circuit shown in Fig. 3) is detected. When using , it is necessary to detect only the smallest output).
かかる場合には、たとえば各ブリッジ回路の出力を整流
して直流に変換した後、オア回路で最大電圧を検出する
ようにすれば良い。In such a case, for example, the output of each bridge circuit may be rectified and converted into direct current, and then the maximum voltage may be detected using an OR circuit.
この場合、検出プローブ内で直流に変換した後伝送すれ
ば、プローブの出力信号の配線が簡略化されることにな
る。In this case, if the signal is converted to direct current within the detection probe and then transmitted, the wiring for the output signal of the probe can be simplified.
第1図は従来の検出方式を説明する図、第2図及び第3
図は本発明に関連する検出回路の例を示す回路図、第4
図は本発明による検出方法の一実施例の実施に用いられ
る装置を示す図、第5図は本発明の他の実施例の実施に
用いられる装置を示す図である。
3・・・・・・管、4・・・・・・腐食損耗部、5・・
・・・・ブリッジ回路、6・・・・・・高周波発振器、
7.CR1〜CR5・・・・・・整流用ダイオード、8
・・・・・・増幅器、9・・・・・・電圧計、10・・
・・・・円筒部材、11・・・・・・導電材リング、1
2・・・・・・ブリッジ回路、13,14,16・・・
・・・リリード線、15・・・・・・表示装置、17.
18・・・・・・絶縁材リング、19・・・・・・検出
プローブ、20〜23・・・・・・導電材、24〜28
・・・・・・ブリッジ回路、29・・・・・・電源、3
0,32・・・・・・電圧計、31・・・・・・導電材
リング。Figure 1 is a diagram explaining the conventional detection method, Figures 2 and 3
The figure is a circuit diagram showing an example of a detection circuit related to the present invention.
The figure shows an apparatus used for carrying out one embodiment of the detection method according to the present invention, and FIG. 5 is a diagram showing an apparatus used for carrying out another embodiment of the present invention. 3...Pipe, 4...Corrosion and wear and tear, 5...
...Bridge circuit, 6...High frequency oscillator,
7. CR1~CR5... Rectifier diode, 8
...Amplifier, 9...Voltmeter, 10...
... Cylindrical member, 11 ... Conductive material ring, 1
2... Bridge circuit, 13, 14, 16...
...Relead wire, 15...Display device, 17.
18... Insulating material ring, 19... Detection probe, 20-23... Conductive material, 24-28
...Bridge circuit, 29...Power supply, 3
0, 32... Voltmeter, 31... Conductive material ring.
Claims (1)
材でなり、かつ断面が円形をなす部材の周囲に周方向に
延びた帯状の導電材を装着し、この部材を前記管の長手
方向に移動させ、移動中の前記導電材と管との間の静電
容量の変化によって前記管内面に存在する腐食損耗の状
態を検知するようにしたことを特徴とする腐食損耗度検
出方法。1. A band-shaped conductive material extending in the circumferential direction is attached around a member made of an insulating material having an outer diameter slightly smaller than the inner diameter of the pipe to be inspected and has a circular cross section, and this member is attached in the longitudinal direction of the pipe. A method for detecting the degree of corrosion wear and tear, characterized in that the state of corrosion wear and tear existing on the inner surface of the tube is detected by a change in capacitance between the conductive material and the tube during movement.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53013935A JPS5823563B2 (en) | 1978-02-09 | 1978-02-09 | Corrosion wear detection method |
GB7832601A GB2015165B (en) | 1978-02-09 | 1978-08-08 | Detecting capacitively corrosion of pipes |
DE2841600A DE2841600C3 (en) | 1978-02-09 | 1978-09-25 | Method and device for determining corrosion damage in pipes |
US05/957,315 US4295092A (en) | 1978-02-09 | 1978-11-03 | Apparatus for and method of detecting and measuring corrosion damage in pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53013935A JPS5823563B2 (en) | 1978-02-09 | 1978-02-09 | Corrosion wear detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54107384A JPS54107384A (en) | 1979-08-23 |
JPS5823563B2 true JPS5823563B2 (en) | 1983-05-16 |
Family
ID=11847044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53013935A Expired JPS5823563B2 (en) | 1978-02-09 | 1978-02-09 | Corrosion wear detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5823563B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61213621A (en) * | 1985-03-19 | 1986-09-22 | Nippon Steel Corp | Improving method for thickness measuring accuracy of corroded steel material |
JP2008224409A (en) * | 2007-03-13 | 2008-09-25 | Railway Technical Res Inst | Capacitance sensor for nondestructive inspection |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3867691A (en) * | 1972-10-06 | 1975-02-18 | Commissariat Energie Atomique | Capacitive probe rotated by air pressure and used to measure internal diameter of a cylinder |
JPS5096253A (en) * | 1973-12-19 | 1975-07-31 |
-
1978
- 1978-02-09 JP JP53013935A patent/JPS5823563B2/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3867691A (en) * | 1972-10-06 | 1975-02-18 | Commissariat Energie Atomique | Capacitive probe rotated by air pressure and used to measure internal diameter of a cylinder |
JPS5096253A (en) * | 1973-12-19 | 1975-07-31 |
Also Published As
Publication number | Publication date |
---|---|
JPS54107384A (en) | 1979-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4295092A (en) | Apparatus for and method of detecting and measuring corrosion damage in pipe | |
RU2419787C2 (en) | System and method to control pipelines by pulsed eddy currents | |
US4806863A (en) | Eddy current apparatus including cylindrical coil with flux concentrator for high resolution detection of flaws in conductive objects | |
CN105891323A (en) | Eddy probe array for detecting pipeline deformation | |
CN112985647B (en) | Pipeline bending stress detection device | |
JPS60230054A (en) | Device and method of detecting defect of tubular string | |
Sadek | NDE technologies for the examination of heat exchangers and boiler tubes-principles, advantages and limitations | |
EP1348952B1 (en) | Mutual inductance bridge for detection of degradation in metallic components | |
KR101966168B1 (en) | Eddy Current Inspection Apparatus for Nondestructive Test | |
JPS5818603B2 (en) | Fushiyokusonmodokenshiyutsusouchi | |
KR101977921B1 (en) | A nondestructive testing apparatus including spiral direction current induction means | |
US10788456B2 (en) | Eddy current inspection device for nondestructive testing | |
JPS5823563B2 (en) | Corrosion wear detection method | |
CN210465347U (en) | Sensitivity calibration sample tube simultaneously used for detecting defects of ferromagnetic heat exchanger tube bundle by far-field eddy current and acoustic pulse | |
JPS5818602B2 (en) | Corrosion wear detection method | |
Al-Qadeeb | Tubing inspection using multiple NDT techniques | |
KR200307293Y1 (en) | Light-water reactor atomic reactor control rod aggregate eddy current prosecuting attorney Prove | |
EP0321013A2 (en) | A method and apparatus for internal corrosion-inspection of pipes or tubes of a relatively small diameter | |
EP0717281A1 (en) | Method and apparatus for defect detection | |
BR102023005233A2 (en) | ROTARY METHOD FOR HIGH RESOLUTION INSPECTION OF PIPELINES | |
JP3448147B2 (en) | Heat transfer tube inspection method | |
CN117990782A (en) | Magnetic core array eddy current sensor and detection device for pipeline crack detection | |
JPH08219756A (en) | Sequential thickness measuring apparatus | |
Wei et al. | Circumferential Current Field Testing Method for Innerwall Cracks Detection in Aluminum Tube | |
Zhukov et al. | Electromagnetic-acoustic equipment UVT-01N for inspecting the wall thickness of drilling pipes |